Table 2. Comparison of the S-FFT and S-TF phase refinement algorithms for different compounds (data resolution limit in the 0.85–1.04 Å d spacing interval).
As expected, both S-FFT and S-TF algorithms yield similar success ratios, although S-TF is much more efficient in computing time (for small molecules).
| Code | Unit-cell content | Space group | No. of refined phases | No. of solutions S-FFT/S-TF | No. of trials (cycles) |
|---|---|---|---|---|---|
| PGE2a | C20H32O5 | P1 | 161 | 21/25 | 25 (11–37) |
| MBH2b | C45H72O9 | P1 | 580 | 24/24 | 25 (15–70) |
| TVALc | C108H180N12O36 | P1 | 1043 | 23/25 | 25 (19–54) |
| NEWQBd | C96H80N8O20 |
as P1 |
663 | 24/25 | 25 (21–60) |
| GOLDMAN2e | C224H128 | Cc | 607 | 25/25 | 25 (16–45) |
| BHATf | C20H16N20O36F8 | Pc | 285 | 11/16 | 25 (24–49) |
| HOV1g | Pr56Ni32Si36 | C2/m as Cm | 518 | 22/25 | 25 (14–67) |
| MUNICH1h | C160H128 | C2 | 352 | 2/2 | 50 (18–55) |
| BIHi | C56B36H152O12N4S8 | P21/c as Pc | 661 | 25/25 | 25 (10–20) |
| CORTISONj | C84H112O20 | P212121 | 247 | 6/14 | 50 (17–47) |
| BNAk | C40B36H100O12S8Na4 | Pnma, P212121 | 303 | 5/7 | 25 (9–12) |
| WINTER2l | C110H178N22O32Cl12 | P21 | 1045 | 6/1 | 25 (30–53) |
| TOTCm | C198H216O36 | P61 | 301 | 20/25 | 25 (17–51) |
| TUR10n | C180H288O24 | P6322 | 160 | 6/8 | 50 (20 fixed) |
| BEDo | C208H208N32O32 | I4 | 285 | 8/8 | 25 (18–50) |
| ALFA1p | C328O110N65H500 | P1 | 3772 | 3/† | 360 (88–179) |
References: (a) DeTitta et al. (1980 ▶); (b) Poyser et al. (1986 ▶); (c) Smith et al. (1975 ▶); (d) Grigg et al. (1978 ▶); (e) Irngartinger et al. (1981 ▶); (f) Bhat & Ammon (1990 ▶); (g) Hovestreydt et al. (1983 ▶); (h) Szeimies-Seebach et al. (1978 ▶); (i) Teixidor et al. (1991 ▶); (j) Declercq et al. (1972 ▶); (k) Teixidor et al. (1990 ▶); (l) Butters et al. (1981 ▶); (m) Williams & Lawton (1975 ▶); (n) Braekman et al. (1981 ▶); (o) Sheldrick et al. (1978 ▶); (p) Privé et al. (1999 ▶).
The S-TF refinement with the same control parameters was not carried out due to the large number of triplets generated.
