Skip to main content
. 2014 Sep 1;2(3):164–176. doi: 10.1089/big.2014.0023

Table 3.

Performance of the Contact Map Prediction Methods That Participated in the CASP9 Competition Using Two Performance Metrics (Precision and XD) and Three Confidence Thresholds (L/5, L/10, and Top5)9

    Precision L/5 Precision L/10 Precision Top5 XD L/5 XD L/10 XD Top5
Team ID Method Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank
RR490 3D PSP 33.8±24.5 4.30 (2) 38.6±28.0 4.78 (2) 46.7±31.7 4.59 (2) 15.1±8.0 3.96 (2) 17.5±8.5 3.98 (2) 19.9±9.4 3.96 (2)
RR391 3D PSP 32.8±25.0 3.74 (1) 37.2±28.3 4.30 (1) 45.9±33.0 3.91 (1) 15.3±8.4 3.28 (1) 17.3±9.4 3.28 (1) 19.6±10.5 3.35 (1)
RR051 Rule-based 21.1±13.3 5.87 (3) 24.1±16.4 5.98 (3) 25.7±23.2 6.11 (4) 10.6±5.3 5.33 (3) 11.7±7.1 5.63 (3) 11.8±9.0 5.96 (3)
RR002 SVM 21.0±16.0 6.15 (4) 24.3±21.7 6.48 (6) 23.0±25.4 7.43 (10) 10.2±7.4 6.07 (4) 11.6±8.4 6.07 (4) 12.0±9.1 6.5 (7)
RR138 Random forest 20.6±13.9 6.24 (5) 23.3±21.1 6.39 (5) 27.7±24.2 6.15 (5) 10.5±5.3 6.33 (5) 11.5±6.8 6.30 (6) 12.4±7.6 6.32 (6)
RR103 Neural network 20.1±16.2 6.35 (6) 26.9±25.7 6.04 (4) 31.4±34.0 5.78 (3) 9.1±5.6 6.96 (7) 11.1±8.2 6.11 (5) 11.9±10.7 6.15 (4)
RR375 Random forest 19.3±14.5 7.09 (8) 21.9±17.5 6.54 (7) 24.6±21.7 6.22 (6) 10.1±6.0 6.46 (6) 9.9±7.3 6.41 (7) 10.5±8.9 6.22 (5)
RR244 Neural network 18.8±15.0 6.41 (7) 21.5±18.3 6.70 (8) 22.3±23.1 7.11 (7) 9.0±5.8 7.39 (9) 10.0±6.7 7.26 (9) 10.2±8.4 7.43 (10)
RR422 Not specified 16.4±13.7 7.61 (9) 18.3±17.8 7.11 (9) 18.6±19.9 7.09 (8) 7.9±5.2 7.30 (8) 8.6±7.3 7.2 (8) 8.4±7.9 7.41 (9)
RR119 Neural network 15.6±17.3 8.13 (11) 19.0±22.2 7.26 (10) 20.0±24.8 7.26 (9) 7.5±6.9 8.13 (10) 8.6±8.2 7.8 (10) 9.6±8.5 7.09 (8)
RR080 Neural network 14.8±17.4 8.30 (12) 16.7±22.8 8.30 (12) 15.4±25.0 8.26 (12) 7.3±7.2 8.39 (11) 7.7±8.7 8.57 (11) 7.1±9.6 8.5 (11)
RR214 Neural network 14.0±13.2 7.80 (10) 12.1±13.4 8.11 (11) 11.4±16.4 8.09 (11) 6.0±5.7 8.41 (12) 5.0±6.1 9.39 (12) 4.6±7.2 9.1 (12)

Participating teams are identified by their team ID. The row corresponding to our team is marked in bold. For each metric and confidence threshold, we report the average score (higher=better) and average rank of score (lower=better) across the proteins used for test. A brief description of the machine learning method used by each team is provided.