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ABSTRACT Multiparental populations are of considerable interest in high-density genetic mapping due to their increased levels of
polymorphism and recombination relative to biparental populations. However, errors in map construction can have significant impact
on QTL discovery in later stages of analysis, and few methods have been developed to quantify the uncertainty attached to the
reported order of markers or intermarker distances. Current methods are computationally intensive or limited to assessing uncertainty
only for order or distance, but not both simultaneously. We derive the asymptotic joint distribution of maximum composite likelihood
estimators for intermarker distances. This approach allows us to construct hypothesis tests and confidence intervals for simultaneously
assessing marker-order instability and distance uncertainty. We investigate the effects of marker density, population size, and founder
distribution patterns on map confidence in multiparental populations through simulations. Using these data, we provide guidelines on
sample sizes necessary to map markers at sub-centimorgan densities with high certainty. We apply these approaches to data from
a bread wheat Multiparent Advanced Generation Inter-Cross (MAGIC) population genotyped using the Illumina 9K SNP chip to assess
regions of uncertainty and validate them against the recently released pseudomolecule for the wheat chromosome 3B.

LINKAGE maps have been fundamental to genetic analysis
for many years, both for gaining a better understanding of

genomic structure and for utilizing that structure to gain power
in mapping gene–trait associations. For humans and many
other species, high-density consensus maps have been pub-
lished and used across multiple mapping studies (Murray
et al. 1994; Dietrich et al. 1996; Chowdhary and Raudsepp
2006; Bult et al. 2008; Cox et al. 2009; Wong et al. 2010).
However, efforts to increase the saturation of genetic maps with
high-throughput genotyping are still being made in many plant
species (Poland et al. 2012; Ward et al. 2013; Wang et al.
2014).

Many approaches to genetic map estimation have been
proposed and are reviewed along with common challenges
in Cheema and Dicks (2009). Perhaps the most challenging
step in map construction is ordering markers within a linkage

group. Methods for ordering markers in biparental popula-
tions have been well studied and include techniques such as
seriation (Buetow and Chakravarti 1987), ant colony opti-
mization (Iwata and Ninomiya 2006), minimum spanning
trees (Wu et al. 2008), rapid chain delineation (Nascimento
et al. 2010), and simulated annealing (Van Ooijen 2011).
These in turn form the basis of numerous map-construction
software packages. These can be roughly divided up into
those relying on multipoint approaches, which incorporate
information across the genome to maximize the likelihood
of the map (MAPMAKER, Lander et al. 1987; CRI-MAP,
Green et al. 1990; JoinMap, Stam 1993; R/qtl, Broman
et al. 2003; CARTHAGENE, deGivry et al. 2005), and those
relying on two-point approaches, which achieve much greater
speed by using only pairwise recombination estimates
(RECORD, van Os et al. 2005; OneMap, Margarido et al.
2007; MSTmap, Wu et al. 2008; Lep-MAP, Rastas et al. 2013;
HighMap, Liu et al. 2014). The gain in accuracy frommultipoint
approaches must therefore be balanced against the accompa-
nying computational burden.

The recent increases in genotyping throughput have
made high-density genetic maps increasingly valuable, both
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in fine-mapping trait associations and as anchors for physical
maps in progress toward full sequence assembly. However,
this increase has also resulted in a number of problems for
map construction and ensuing analyses. First, the resolution
and coverage of the map are limited by the number of
individuals and design of the population. Second, the compu-
tational burden of mapping thousands of markers per chro-
mosome limits analysis to the fast two-point methods (Wu
et al. 2007; Speed and Zhao 2008; Rastas et al. 2013). Hence,
although we typically have low power to distinguish between
marker locations when performing high-density mapping, we
also rarely have information about uncertainty attached to the
resulting map. Indeed, although simulations have shown that
map misspecification can bias estimates or reduce power in
subsequent analyses such as QTL mapping (Daw et al. 2000),
the uncertainty in their estimation is rarely taken into account
(Matise et al. 2007). Identification of weak areas of a genetic
map could help in avoiding spurious results in further analy-
sis or draw attention to regions that should be analyzed more
thoroughly. Since regions of high marker density are likely to
correspond to those with greater uncertainty, accounting for
the map uncertainty is crucial for appropriate use of high-
density maps.

For the first of these issues, multiparental crosses offer
a solution by increasing the genetic diversity and opportu-
nities for recombination in the population. In particular,
multiparent advanced generation inter-cross (MAGIC) re-
sults in a large population of inbred lines with a large number
of recombination events accumulated throughout the gen-
erations of the pedigree. These populations were proposed
as a compromise between advanced inter-crosses (Darvasi
and Soller 1995) and heterogeneous stock populations (Mott
et al. 2000), combining the creation of highly recombinant
inbred lines from the first design with the larger and more
diverse set of founders from the second.

MAGIC populations have been created in several plants,
including model plant Arabidopsis thaliana (Kover et al.
2009), model crop rice (Bandillo et al. 2013), and unse-
quenced crops such as wheat (Huang et al. 2012). They have
been successfully used as mapping populations (Huang et al.
2012) and in conjunction with biparental populations to pro-
duce a high-density consensus map in bread wheat (Cavanagh
et al. 2013). In these studies, the authors found that not only
could more markers be mapped than in individual biparental
populations, but the multiparental map often allowed linkage
groups to be joined together in the consensus map since the
increased diversity enabled greater coverage of markers across
the genome.

Regarding the second issue of statistical confidence in
genetic maps, two classes of methods have been considered.
This again reflects the difference between more accurate
multipoint methods and methods based on fewer markers,
which are more practical for high-throughput data. Several
packages for linkage map construction include functions to
compare orders for a set of markers, either based on the
multipoint likelihood or the number of crossovers (Broman

et al. 2003; Margarido et al. 2007). Other confidence
measures have considered analysis of the whole map
through Bayesian or bootstrap approaches (Servin et al.
2010; Ronin et al. 2010). However, these can be very com-
putationally demanding, and in practice are used to refine
the order rather to indicate regions of low confidence. As
the computational burden typically limits comparison of
likelihoods to smaller subregions, DeWan et al. (2002)
proposed an order support score examining the likelihood
ratio of the two most likely orders within a triplet of markers.
More recently Gilks et al. (2012) proposed a Bayesian method
for estimating the uncertainty in triplets of markers, but
this can be applied only to populations of biparental inbred
lines where each marker segregates with equal probabil-
ity. In particular, it is not applicable to multiparental
populations.

In light of the potential of multiparental populations for
high-density map construction and the limits of current
approaches, we developed a novel sliding window approach
to assessing map uncertainty in such populations. For
a triplet of markers, we derive the asymptotic distribution
of the pairwise recombination fraction matrix between the
markers. Given an estimated map, we can then use this
distribution to construct an uncertainty measure based on a
test of whether the data agree with the current order and
marker distances. We compare this to the support score
method for triplets through simulation to demonstrate the
ability of each method to highlight regions where markers
may be misordered during the map construction process.
Finally, we apply our approach to a map constructed from
a four-parent wheat MAGIC population genotyped at high
density and validate the resulting uncertain areas against
genome sequence.

Materials and Methods

Preliminaries

Mapping: We can establish a general statistical framework
for genetic mapping. Assume that we have a set of K arbi-
trarily ordered genetic markers {M1, M2, . . . MK}. Let u rep-
resent the matrix of true recombination fractions between
each pair of markers. Element ujk gives the true recombina-
tion fraction between markers j and k. Instead of specifying
a map via a matrix of recombination fractions, a common
alternative is to specify the order of the markers and the
recombination fractions between the adjacent markers (George
2005). We let d = (d1, . . ., dK)T represent the true order of the
markers, which is a permutation of (1, . . ., K). Let uadjacent be
a vector (of length K 2 1) of the adjacent recombination frac-
tions, where the kth element corresponds to udk;dkþ1 . Then our
true genetic mapM can be represented by the set of parameters
{d, uadjacent}, and the mapping task can be framed as estimating
these two quantities.

We assume that crossovers occur as a homogeneous
Poisson process leading to the use of Haldane’s map function
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(Haldane 1919) to convert between recombination fractions
and genetic distance (Zhao and Speed 1996).

MAGIC populations: While a variety of designs can be
broadly categorized as MAGIC, we initially focus here on
a simple version of the MAGIC design. We define a general
h-parent MAGIC population, where h can be written as 2j, as
follows. Starting with h inbred founder lines, in each of the
first j generations, we form crosses by pairing off individuals
under the restriction that each of the h founders can appear
at most once in the ancestry of the progeny at any genera-
tion. The individuals resulting from the jth generation hence
contain equal contributions from each of the h founders.
These individuals are then selfed until essentially inbred,
typically for six or more generations.

Founder distribution patterns (FDP): Let X be an N 3
K-matrix of marker genotype data, where xðiÞj represents
the marker genotype at locus j for individual i of the N
progeny. While some markers may be multiallelic in prac-
tice, we assume that we are dealing with the most common
scenario, where we have genotyped biallelic SNPs. We write
the two alleles as 0 and 1; hence xðiÞj 2 f0; 1gfor all i and j.
We also define the haplotype at two markers j and k for
the ith individual as xðiÞjk ¼ ðxðiÞj ; xðiÞk Þ. Let G be the corre-
sponding unobserved matrix of the originating founders
for each of the progeny alleles. In the case of a four-parent
cross, gðiÞj 2 fA;B;C;Dg and the set of true founder haplotypes
is gðiÞjk 2 T ¼ fðA;AÞ; ðA;BÞ; ðA;CÞ; ðA;DÞ; :::; ðD;DÞg, where
gðiÞjk ¼ ðgðiÞj ; gðiÞk Þ. Knowing the founder genotypes and the
founder origin of each progeny genotype is sufficient to con-
struct the progeny genotypes.

We refer to the pattern (vector) of observed alleles in the
h founders at marker j as the founder distribution pattern
(FDP), denoted by fj. Then the complete matrix of FDPs for
all markers is denoted by F, where the columns of F are the
K FDPs. For biallelic markers in a four-parent population, all
FDPs will match one of the seven listed in Table 1, swapping
allele labels if necessary. Similarly, for an eight-parent popu-
lation there are 127 possible FDPs, and for a general h-parent
MAGIC cross, there would be 2h21 21 possibilities.

As we consider pairs of markers in map construction,
we define two important quantities based on pairs of
FDPs. When observing biallelic markers in a multiparental
population, different originating founder haplotypes can
result in the same observed biallelic haplotype. Let
a 2 A ¼ fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg, which is the set of all
biallelic haplotypes for two markers j and k. Then Ha

jk and
Ra
jk, respectively, can be defined as the number of nonre-

combinant and recombinant elements of T, which result in
a specific value of a. For example, if the FDP at marker j is
(0 1 1 1)T, and the FDP at marker k is (1 0 1 0)T, then H00

jk ¼ 0
and R00

jk ¼ 2, while H01
jk ¼ 1 and R01

jk ¼ 1. Although there are
21 possible pairwise combinations of the seven FDPs for a four-
parent MAGIC, the unordered values of Ha

jk and Ra
jkfor each

pair reduce to five classes, enumerated in Table 2.

Asymptotic Distribution

Likelihood: For high-density data, map estimation is
typically carried out on the basis of the two-point estimates
of the recombination fractions (Cheema and Dicks 2009),
primarily due to computational issues. Fundamentally, map
uncertainty is due to the sampling error attached to these
estimates, which will propagate through to the final map
estimate. While the marginal distribution of the recombi-
nation fraction estimators have been studied (Neumann
1990; Martin and Hospital 2006; Wu et al. 2007), the joint
distribution has received little attention in the literature.
Given the pedigree and the marker data, we can specify
a likelihood function Lðd; uadjacent;XÞ. For two loci, we can
write this in terms of quantities previously defined, using
probabilities derived by Broman (2005). For four-parent
RILs,

Pr
�
gðiÞjk
���ujk� ¼

8>>><>>>:
12 ujk

4
�
1þ 2ujk

� if gðiÞj ¼ gðiÞk

ujk

4
�
1þ 2ujk

� if gðiÞj 6¼ gðiÞk :

Then the two-locus log-likelihood function can be written as

ℓ
�
ujk; xjk

��f j; fk�
¼
XN
i¼1

X
a2A

I
�
xðiÞjk ¼ a

�

3 log

0B@ X
gðiÞjk 2H

Pr
�
xðiÞjk ¼ a

���gðiÞjk ; f j; fk�Pr�gðiÞjk ���ujk�
1CA

¼
XN
i¼1

X
a2A

I
�
xðiÞjk ¼ a

�
log

 
Ha
jk þ ujk

h
Rajk 2Ha

jk

i
4
�
1þ 2ujk

� !
: (1)

The fifth class of FDP pairs is a special case that results
in a likelihood that does not depend on ujk. In this case,
all Ha

jkterms are equal to 1 and all Ra
jk terms are equal to 3

(Table 2). Substituting these values into Equation 1 yields

Table 1 Possible founder distribution patterns (FDP) for biallelic
markers in a four-parent MAGIC population

Founder f1 f2 f3 f4 f5 f6 f7

A 1 1 1 0 1 1 1
B 1 1 0 1 1 0 0
C 1 0 1 1 0 1 0
D 0 1 1 1 0 0 1
% 13.7 17.5 15.2 26.1 5.3 8.9 13.2

The last row (%) indicates the observed percentages of each FDP among 4606
biallelic SNPs mapped in the wheat four-parent MAGIC population.
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This no longer depends on ujk and hence cannot be used to
estimate the recombination fraction between these pairs. We
thus remove the minimal set of markers to avoid including
any such pairs in our data prior to map construction. After
maximizing the likelihood for all other pairs of markers, we
estimate uadjacent by taking a subset from the matrix and derive
an order for the markers by minimizing the sum of adjacent
recombination fractions (SARF) in uadjacent (Falk 1989).

Composite likelihood: To derive the asymptotic joint distri-
bution of the pairwise recombination fraction estimates, we
approximate the log-likelihood in Equation 1 via a composite
log-likelihood in

ℓCðu;XjFÞ ¼
XN
i¼1

XK21

j¼1

XK
k¼jþ1

logPr
�
xðiÞj ; xðiÞk

���F; u�
¼
XN
i¼1

XK21

j¼1

XK
k¼jþ1

logPr
�
xðiÞj ; xðiÞk

���f j; fk; u�:
(2)

Composite likelihoods are a special case of misspecified
likelihoods, where the full likelihood is approximated by the
product of a series of marginal or conditional likelihoods
(Varin and Vidoni 2005). Pairwise composite likelihoods
have been used previously in statistical genetics to avoid
computational issues with high-dimensional data (McVean
et al. 2004; Larribe and Fearnhead 2011). However, they
have been used primarily for population genetic data in
human populations, which differ greatly in structure from
inbred line populations. The primary benefit of using this
form of the likelihood is that the asymptotic distribution
(as sample size goes to infinity) of the maximum composite
likelihood estimators û is well characterized. Specifically,

ffiffiffiffi
N

p �
û2 u

�
/
D

N
�
0; ½JðuÞ�21VðuÞ½JðuÞ�21

�
; (3)

where N is the sample size, and

VðuÞ ¼ var½=lCðu;XjFÞ�
JðuÞ ¼ 2E



=2lCðu;XjFÞ

�
:

Full asymptotic joint distribution of pairwise recombi-
nation fraction estimators: Assuming that the necessary
regularity conditions hold, we derive the asymptotic joint
distribution of the pairwise recombination fraction estimate
using Equation 3. As each parameter ujkwill appear in a sin-
gle term of the summation in Equation 2, the partial deriv-
atives can be expressed as

@ℓC
�
u; xðiÞjk

���F�
@ujk
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X
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�
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where IðxðiÞjk ¼ aÞ is an indicator variable that takes value one
if xðiÞjk ¼ a and zero otherwise. For ease of later reading, let

Ka
jk ¼

3Ha
jk 2Rajk�

1þ 2ujk
�h
Ha
jk

�
ujk 2 1

�
2 ujkRajk

i:
We begin by computing the covariances between the

elements of the score vector to determine V(u). Suppose
we have four markers j, k, l, and m, where some of the
markers may overlap (e.g., when we consider the covari-
ance of recombination fraction between j and k with that
between j and l)

cov
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Table 2 Possible coefficient classes in a four-parent MAGIC for two
biallelic loci j and k

Class 1 Class 2 Class 3 Class 4 Class 5

a Ha
jk

Rajk Ha
jk Rajk Ha

jk Rajk Ha
jk Rajk Ha

jk Rajk

00 2 2 1 0 1 1 0 1 1 3
01 0 4 0 3 0 2 1 2 1 3
10 0 4 0 3 1 5 1 2 1 3
11 2 2 3 6 2 4 2 7 1 3
% 2.8 2.8 14.1 14.1 39.9 39.9 38.5 38.5 4.7 4.7

Ha
jk and Rajk are the number of nonrecombinant and recombinant phase-known two-

marker haplotypes (respectively) that are represented by an observed haplotype of
a. Note that the labels for a may be permuted and result in the same variance class
for recombination fraction estimates between the two loci. The last row (%) indi-
cates the percentage of pairwise combinations of 4606 SNPs mapped in wheat
four-parent MAGIC populations that fall into each class.
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Note that all the expectations can be replaced by the
probabilities of the event occurring, since the product of
two indicator functions is also an indicator function. Hence
we can write the covariance as

cov

0@@ℓC
�
u; xðiÞjk

���F�
@ujk

;
@ℓC
�
u; xðiÞlm

���F�
@ulm
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X
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X
b2 A
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jkK

b
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h
Pr
�
xðiÞjk ¼ a; xðiÞlm ¼ b

�
2 Pr

�
xðiÞjk ¼ a

�
Pr
�
xðiÞlm ¼ b

�i
: (5)

For disjoint intervals, where no markers overlap, this expres-
sion contains four-locus probabilities, which are dependent
on the order of the four markers. However, V(u) can be
expressed for triplets using only two- and three-locus proba-
bilities, as derived in Broman (2005).

Deriving the Hessian matrix J(u) is straightforward in
comparison. Taking the derivative of Equation 1, we see that
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4
�
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since the expression in brackets depends only on ujk. Hence
the off-diagonal elements of the Hessian are 0, and the di-
agonal elements can be derived from
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by taking the negative expectation to get
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Equations 5 and 6 are sufficient to calculate V(u) and J(u)
for an arbitrary number of markers. To consider groups of
four or more markers, four-locus probabilities are required,
which are difficult to obtain in closed form. By limiting our
attention to triplets we can fully specify the covariance ma-
trix using previously published results for these quantities.

We note that in addition to a dependence on sample size
and the value of the recombination fraction estimator (and
hence the distance between markers), the variance also
depends on the FDPs in multiparental populations. The
asymptotic variance of the pairwise recombination fraction
estimator of ujk is the reciprocal of the Fisher information,
given in Equation 6. The Ha

jk and Ra
jk terms result in the

dependency of variance of the estimator on the FDPs at
markers j and k. We can characterize the classes of FDP pairs
in Table 2 according to the variance of the resulting recom-
bination fraction estimator. Pairs of markers contained in the
classes described in Table 2 have the same variance for the
recombination fraction estimate between the markers, with
variance increasing from class 1 to class 4.

Although we focus on a simple version of the MAGIC
design here, extensions to more complex designs incorpo-
rating additional generations of intercrossing will rely only
on the use of appropriate two-loci and three-loci probabil-
ities, many of which have been derived in Broman (2005)
and Teuscher and Broman (2007).

Uncertainty Measures

We consider two uncertainty measures derived from the
joint asymptotic distribution of the recombination fraction
estimates. The first is the probability that the map pro-
duced by minimizing the SARF criterion will produce the
correct marker order. In addition to providing an estimate
of the correctness of the map, we show how to use this
probability to estimate the required number of lines to map
markers with high certainty under different conditions of
marker density and FDPs. The second is a hypothesis test of
whether the estimated marker order is correct and as such
provides a direct indicator of regions of uncertainty in
a map. We compare this in simulation to one other measure
of uncertainty, which is briefly described at the end of this
section.

Probability of correct order: We derive an expression for
the probability that minimizing SARF in an inbred line
genetic mapping experiment will result in a correct estimate
of marker order. As a simple example, consider a triplet of
markers {X, Y, Z} for which there are three possible orders.
Each of these orders results in a possible SARF given by the
sum of two entries in the matrix of recombination fraction
estimates û. For example, the SARF corresponding to the
order X–Y–Z is ûXY þ ûYZ. Let S be a vector containing all
SARF corresponding to the possible orders of markers in
the map. The key to deriving the probability of correct order
(PCO) is to note that S is expressible as an affine transfor-
mation of the recombination fractions, written as S ¼ Bû.
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Hence an approximation to the distribution of S, based on
the asymptotic distribution of û given in Equation 4, is

S � NðBu;SS ¼ N21B½JðuÞ�21VðuÞ½JðuÞ�21BT

(Wackerly et al. 2008). Now suppose the marker orders are
listed in order of increasing SARF, so that the first one is that
which minimizes the criterion. The PCO is the probability
that Z = S1 2 S21 , 0, where S21 denotes the vector S with
the first entry omitted. However, we note that Z = QS is in
turn an affine transformation of S. If s is the number of
potential orders, Q can be written as [1s21 –Is21], where
the two entries denote the vector of ones of length s2 1 and
the identity matrix of size s 2 1 respectively. Hence
ZeNðQBu;QSSQTÞ, and we define the

PCO ¼ FZð0s21Þ;

where FZ(z) is the cumulative distribution function of Z. We
note that this probability depends on factors such as sample
size and marker spacing, as well as FDPs in multiparental
populations. While the cumulative distribution function
cannot be evaluated analytically, it is straightforward to
compute numerically for triplets of markers. However, the
dimension of Z grows exponentially with the number of
markers, so for larger sets of markers it may be necessary
to consider other dimension reduction techniques to reduce
the computational burden.

Hypothesis test (MMU): We define our primary measure of
map uncertainty on the basis of the hypothesis test for
marker order in triplets of markers X, Y, and Z. We assume
that the correct order of the markers is X–Y–Z and write the
vector of recombination fractions u as {uXY, uYZ, uXZ}. Under
the assumption that crossovers occur as a Poisson process,
crossovers in disjoint intervals are independent, so we can
write the third recombination fraction as a function of the
other two:

uXZ ¼ uXY þ uYZ 2 2uXYuYZ:

Similarly, each possible order of the three markers gives rise
to a different constraint of this form, so we can represent the
order of the markers as a nonlinear restriction on the
recombination fractions. As the asymptotic distribution of
u is normal, we can construct nonlinear Wald tests based on
these formulas (Phillips and Park 1988).

We define our measure of map uncertainty (MMU) as
the –log10(P-value) for the test of the null hypothesis that
the true order is X–Y–Z. Hence larger values indicate
higher uncertainty. This statement is mathematically equiv-
alent to Equation 3; hence our test of the null hypothe-
sis H0 : gðuÞ ¼ uXZ 2 uXY 2 uYZ þ 2uXYuYZ ¼ 0 is a Wald test
given by

W ¼ gðûÞT
�
GðûÞV̂ðûÞGðûÞT
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gðûÞ:

Here GðuÞ ¼ @g=@uT ¼ ð1þ 2uYZ; 1þ 2uXY ; 1ÞT and V̂ðûÞ is
the estimated variance–covariance matrix of û. As we are
testing only a single restriction, asymptoticallyW � X2

1. Here
we investigate triplets of markers, but since the estimate of
V(u) based on two- and three-locus probabilities is consis-
tent (Molenberghs and Verbeke 2005, Chap. 9), it could be
used to produce confidence intervals and perform hypothe-
sis testing for sets of four or more markers.

Order support score: We compare our measure to the order
support score (OSS) previously proposed by DeWan et al.
(2002). They compare the most likely order of a triplet
against the second most likely order. The OSS is defined
by Keats et al. (1991) as the log-ratio of the likelihood under
the two proposed orders. Dewan et al. (2002) define as un-
certain those regions where the OSS is less than three and
propose removing these markers from the map. We con-
vert the OSS to the same scale as our measures by extend-
ing its definition using the Vuong closeness test, which is
a likelihood-ratio-based test for comparing two models
(Vuong 1989).

For a triplet of arbitrarily ordered markers j, k, and l, we
can formulate the test as follows. Let û1be the maximum-
likelihood estimates of the recombination fractions under
the first marker order d1, and let û2be the maximum-likelihood
estimates of the recombination fractions under the second
marker order d2. Let LR be the ratio of the likelihoods
under the two models. The Vuong test statistic is given
byy ¼ LR=v

ffiffiffiffi
N

p
, wherev2is the sample variance of the point-

wise log-likelihood ratios under each model. To determine
a P-value for this test, the statistic is compared to the standard
normal distribution.

Data

Simulation studies: To assess the accuracy of the approx-
imate asymptotic distribution and the performance of our
estimation approach we conducted 2000 simulations of
four-parent MAGIC populations. In each simulation we
generated lines from a four-parent MAGIC pedigree selfed to
fixation, using a genetic map with a triplet of equally spaced
markers. We considered the effects of varying marker
density, sample size, and founder distribution patterns. We
varied marker density from 0.5 to 5 cM; population sizes
from 500 to 1500; and selected combinations of FDPs with
low, medium, and high variances (Supporting Information,
Table S1). These variance categories depend on the FDPs for
each of the three pairs of markers contained in the triplet
and are relative to other possible combinations of the FDP
classes categorized in Table 2. The overall variance matrix
for the three markers will depend on all of the factors sim-
ulated (e.g., marker density, population size, and FDP). For
each of these combinations we computed the PCO to deter-
mine how much precision was achievable in mapping for
given scenarios of markers and population sizes.

For our second proposed measure, the hypothesis test,
we undertook a simulation study to estimate its power. As
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above, we examined the impact of marker density, popula-
tion size, and founder distribution pattern. In each replicate
we calculated the proposed test statistic, using a null hypoth-
esis while generating data under the alternative order X–Z–Y.
The power estimate was then the proportion of times that the
null hypothesis was rejected.

All simulations were performed using functions from
R/qtl (Broman et al. 2003) and scripts written in the R lan-
guage (R Core Team 2013). Code to generate all simulations
can be found in File S1.

Wheat MAGIC: We estimate uncertainty attached to a map
constructed from a four-parent wheat MAGIC population
described by Huang et al. (2012). Genotypes from 1088
lines derived from the four parents were collected using
the 9K SNP chip (Cavanagh et al. 2013), with 4606 biallelic
markers mapped. We focus on chromosome 3B, as the avail-
ability of its assembled sequence provides a standard for
validation. Genotypes for these 207 markers can be found
in File S2 and the analysis script in File S3. For triplet anal-
ysis, a representative marker from each set of markers with
the same map position was used, resulting in 111 triplets.
We estimate uncertainty using the MMU and the OSS and
compare regions identified as uncertain to those where the
genetic map is inconsistent with the physical map.

To identify regions of inconsistency between the maps,
we aligned 362 putative marker sequences from the 9K consen-
sus map for chromosome 3B (Cavanagh et al. 2013, http://
www.pnas.org/content/suppl/2013/04/29/1217133110.
DCSupplemental/sd03.xls) to the targeted pseudomolecule
traes3bPseudomoleculeV1 (http://wheat-urgi.versailles.inra.
fr/projects/3bseq, released January 2014, Choulet et al.
2014). Alignment was performed using Biokanga (release
2.97.1, http://sourceforge.net/projects/biokanga/files/) at
two levels of stringency. For each marker, two sequences
containing, respectively, one variation of the allelic SNP locus
were generated, and these sequences were then independently
aligned to the targeted 3B pseudomolecule. First, we allowed
maximal stringency with zero substitutions; alignments
reported at this level of stringency are to loci that match one
allele of the target SNP sequence. We then performed a further
alignment, relaxing the stringency and allowing at most one
substitution per 100 bp of the individual marker sequence. In
this case, reported accepted alignments are those where there
is an assembly specific variant relative to the marker sequence,
which may be at the known allelic base site or at a novel site(s)
additional to the known allelic site.

Results and Discussion

Results

Simulation studies: We performed simulation studies to
assess the efficacy of the uncertainty measures in predict-
ing regions of the genome, which are mapped incorrectly.
This additionally provides guidelines for FDPs and marker

densities that are likely to prove most difficult for map
construction.

We consider the performance of our approach in typical
map construction scenarios in Figure 1 and Figure 2. We
vary marker density, sample size, and FDPs for a triplet of
markers and estimate the PCO when constructing a map
by minimizing the SARF criterion. We see that the empirical
estimates match very closely with the theoretical values
derived above and, further, that except in cases of high

Figure 1 Probability of correct order (PCO) for a triplet of markers gen-
erated from a four-way population with (A) varying sample size for fixed
marker spacing of 1 cM and (B) varying marker spacing for fixed sample
size of 1000. Lines denote the theoretical values of the PCO, while circles
denote the empirical values.
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variance FDPs, small sample sizes, and very dense markers,
we expect that markers will typically be ordered correctly.
In particular, the probability of correctly ordering a triplet
of markers when the marker spacing is .2 cM is high for
almost any FDP. For sample sizes.1000 lines, the probability
is well above 0.9 for all scenarios.

We also consider the power of the test across various
population sizes with a fixed intermarker spacing of 1 cM,
and under varying marker density, with a fixed population

size of 1000 lines. These two situations are illustrated in
Figure 2, A and B, respectively. For each, we plot the theo-
retical power of the test (solid line), along with the power
estimated from simulations (points) for triplets of markers
with low, medium, and high variance FDPs. There are a num-
ber of factors that influence the power. Since the PCO rises
with increasing intermarker separation and with sample
size, the number of markers that are misordered falls, and
hence so does the importance of statistical power. However,
the power also increases with increasing intermarker sepa-
ration and with sample size. The theoretical curves converge
toward 1 with a sigmoid shape. A majority of triplets will
resemble the medium or high FDP variance cases (Table 2).
The power of the test is .80% when N = 1000 and the
intermarker spacing is at least 2.5 cM. The power for the
worst (high-variance) FDP improves almost linearly with
increased sample size for N near 1000.

Wheat MAGIC: We calculated measures of uncertainty for
the map based on the 9K SNP chip in wheat (Cavanagh et al.
2013). In particular, we focused on chromosome 3B (Figure
3A), as the assembled sequence was recently publicly re-
leased, and it is the only chromosome for which this is cur-
rently available. In Figure 3B, we compare the P-values from
our proposed hypothesis test with those from the OSS for
111 triplets. We note that for most triplets labeled as un-
certain by our test, the markers are very dense. Of those
triplets where the average spacing between markers was
,1 cM, 52% are labeled uncertain, indicating the difficulty
in ordering these markers unambiguously. The OSS, in con-
trast, does not label these triplets as uncertain. Only two
markers are indicated to be uncertain by the OSS, which
do not have high MMU; given that these markers are spaced
at .5 cM from the nearest marker and the population size is
quite large, our simulations indicate that it is unlikely that
these were actually misordered.

To assess our ability to identify uncertain regions in
a genetic map, we compared the genetic order of markers in
the wheat MAGIC map to physical order. While we do not
expect the genetic and physical positions to be linearly
related, we would expect the orders to correspond in the
case that marker sequence for a location on the genetic
map could be uniquely and accurately mapped to a phys-
ical position. Fewer than half of 362 markers mapped to
chromosome 3B in previous genetic maps (Cavanagh et al.
2013) could be aligned to the pseudomolecule sequence.
At the highest level of stringency (zero mismatches allowed),
only 56 markers could be aligned; this increased to 147
upon allowing a single mismatch per 100 bp (Table S2).
For the MAGIC wheat population, this resulted in 30 trip-
lets being omitted due to lack of information on physical
position.

When we compare the genetic map with the physical
positions, we identify a number of regions worthy of further
investigation (Figure 4). First, we note a large region of
markers with high MMU; these are likely centromeric,

Figure 2 Power for the hypothesis test that the estimated map is superior
to the other two triplet orders for a four-way population with (A) varying
sample size for fixed marker spacing of 1 cM and (B) varying marker
spacing for a fixed population size of 1000. Lines denote the theoretical
values of the power, while circles denote the empirical values.
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where very low recombination rates may result in small
genetic map distances corresponding to large physical dis-
tances. In this region, two markers are identified as having
high uncertainty that does not align well with the physical
map; the general level of uncertainty in this region indicates
that these may have been misordered. Second, we note sev-
eral markers whose genetic map positions are inconsistent

with physical positions. Apart from the two regions already
mentioned, none of these are identified as uncertain (high
MMU) by our method.

Where possible, we compared the genetic map positions
of these markers in the MAGIC map to those in two other
biparental mapping populations that had .80 markers
aligned to the pseudomolecule (Synthetic 3 Opata and Gla-
dius 3 Drysdale; Cavanagh et al. 2013) to determine
whether this was likely to be an issue with the MAGIC
map. Of the 12 markers indicated to have alignment issues,
4 were not mapped in the other populations; 4 were rela-
tively consistent with physical positions in at least one of the
other populations; and 4 showed the same inconsistencies as
in the MAGIC map. These last 4 likely indicate issues either
with the alignment of the marker sequence to the pseudo-
molecule or with the physical positions themselves; all were
labeled as low uncertainty by our approach. They include
the markers with the most drastic differences from physical
position (genetic positions at opposite ends of the chromo-
some). In contrast the middle four markers, which may in-
dicate issues with the MAGIC map, are all located in the
centromeric region; 3 of 4 were labeled as highly uncertain
(P , 1e-20) in our analysis.

Discussion

We have used the asymptotic distribution of recombination
fraction estimators to derive two measures of map un-
certainty in the context of multiparental populations. This
has not been explored even in biparental populations, as

Figure 3 Measures of uncertainty for chromosome 3B. (A) Measure of
map uncertainty (MMU), calculated as –log10(P-value) for hypothesis test
that the true order is the given map order, for all triplets on the chromo-
some. Red line denotes a LOESS fit to the MMU across the chromosome,
with span of 0.15. (B) Dependency of MMU and –log10(P) for order
support score (OSS) on distance to closest marker (log-scale). Points are
denoted uncertain if Bonferroni-adjusted P-value from respective tests is
,0.05. Points are denoted as very uncertain if the MMU . 20.

Figure 4 Genetic and physical positions of 81 markers aligned to chro-
mosome 3B. Points are denoted uncertain if the test that the true order
matches the given map order yields a Bonferroni-adjusted P-value ,0.05.
Points are denoted as very uncertain if the MMU, calculated as –log10(P-
value) for the test, .20. Markers whose genetic map position is incon-
sistent with physical position are denoted by asterisks.
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previous attempts to characterize this relationship have
been based on simulation studies (Wu et al. 2003; Mollinari
et al. 2009) rather than on an analytical approach. We focus
on multiparental populations as they offer great promise for
high-density mapping and as such uncertainty measures are
crucial. However, the measures we define could be used
equally well on biparental populations.

Simulations of maps and accompanying uncertainty
measures can provide guidelines for map construction in
multiparental populations. We note that for populations of
size 500 or less, which have been generated in several
plants, the only markers that can be reliably ordered when
very tightly linked are those whose FDPs fall into the low
variance category. In general, the high-variance category of
FDP combinations will have the worst performance for
ordering and hence highest uncertainty. For marker spacings
.2 cM, however, most markers can be confidently ordered
using the SARF criterion. Once populations have size
.1000, the recombination fractions can be estimated
with sufficient precision to order most markers spaced 1 cM
apart, and almost all which have .3- to 5-cM spacing.

The FDPs have a major influence on map construction in
multiparental populations. This represents the fact that the use
of primarily biallelic SNPs in a multiallelic system may
introduce significant uncertainty (Weir et al. 2006) and lower
marker informativeness, both of which affect the ability to
order markers (Wu et al. 2011). Leal (2003) performed a sim-
ulation study comparing the variance of recombination fraction
estimators under biallelic markers and multiallelic markers in
a population genetics scenario. Leal found that the recombina-
tion fraction estimates based on biallelic markers had a higher
variance than the estimates from the multiallelic markers,
which affected the effectiveness of subsequent QTL detection.

As our method relies on the recombination fractions
between markers, it is subject to the fallacies of the MAGIC
design that result in certain values being nonidentifiable. To
simplify our computation, we removed markers for which
this would be an issue prior to map construction. In practice
this results in a loss of �15% of markers, although the exact
value will depend on founder distribution patterns. These
markers could be added to the map by methods imputing
recombination fractions or relying on multipoint probabili-
ties, but to assess the uncertainty in their vicinity will require
further investigation. However, any method utilizing pairwise
recombination fractions would be subject to this same issue.

One of the measures we derive estimates the probability
of ordering markers correctly by minimizing the SARF
criterion. While many algorithms determine marker order,
minimizing SARF has been shown to perform well as a
heuristic (Olson and Boehnke 1990; Wu et al. 2003; Mollinari
et al. 2009). Since many methods have similar performance,
we do not expect the probability derived for SARF to vary
greatly if an alternative is used for map construction. If
anything, the PCO should increase for more sophisticated
approaches. The other measure is a hypothesis test com-
paring the currently estimated map order against alternate

orders. As this will be calculated across the genome, there
is a need to correct for multiple testing when interpreting
which regions are uncertain in a map. A Bonferroni correction
will suffice to identify the most problematic markers, but
given that adjacent triplets contain overlapping markers, this
will be overly stringent.

While there are a number of limitations to focusing on
triplets of markers, this is a practical division of the genome
for high-density maps. Bootstrap approaches such as those
in Mester et al. (2003) and Matise et al. (2007) would be
computationally prohibitive for maps containing hundreds
of thousands of markers, constructed from thousands of
individuals. Other groups, such as Gilks et al. (2012), have
also investigated the use of triplets. However, this has been
derived solely for biparental inbred line populations and
requires more investigation to generalize fully to multipar-
ental populations in an efficient manner. In practice, the use
of triplets will most easily identify pairwise flips of markers,
and markers with larger-scale rearrangements will show
a complex pattern of uncertainty. However, from our simu-
lations we have seen that markers spaced over larger dis-
tances can be ordered with high accuracy, so considering
subsets of markers in triplets may provide additional infor-
mation about this type of misordering. Further, we plan to
extend our approach to an arbitrary number of markers by
computing four-locus probabilities. As noted in the composite
likelihood section, the formulation of the asymptotic distribu-
tion depends only on these probabilities even for arbitrary
numbers of markers, so the only limitation once this has been
done will be due to computational power. In contrast, extend-
ing Gilks’ Bayesian approach, which is based on posterior
probabilities, to windows of more than three markers would
be very difficult, since its efficacy is dependent on a closed-
form expression for the likelihood.

Ideally, measures of uncertainty could be incorporated
into downstream analyses directly, but even without doing
so they provide useful information for verification of QTL
mapping. At a basic level, identifying regions of uncertainty
in the map may assist in improving the overall order and
hence mapping accuracy. However, it is quite likely that errors
in marker ordering will occur, particularly at sub-centimorgan
distances. Rather than removing the markers with uncertainty
and losing information for downstream analyses it is important
to consider the measure of uncertainty (Figure 4) alongside
QTL profiles. This will be particularly important in situations
where accuracy of the map is vital, such as in targeting regions
for fine mapping or utilizing markers in selection. Further, the
uncertainty may provide an extra measure of verification in
comparing QTL across multiple traits and/or environments to
determine whether they represent pleiotropy or multiple
effects in a small interval.
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Table S1   Founder distribution patterns used for triplets in simulation. The variance class of pairs of markers in the order 

X‐Y, Y‐Z, X‐Z is given by Class.  

  Low  Medium High 

  X  Y Z  X Y Z X Y  Z

A  1  1  1  1 1 1 1 1  1

B  1  1  1  1 0 1 0 1  0

C  0  0  0  1 0 1 1 1  1

D  0  0  0  0 1 0 1 0  1

Class  1  1  1  3 3 2 4 4  2
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Table S2   Marker sequences aligned to the 3B pseudomolecule. One sheet is included for each of the four cases 

considered during alignment: either zero (suffix .s0) or one (suffix .s1) substitutions allowed per 100 bp, and either the 

given allele in the marker sequence or an alternate sequence substituting the second allelic base at the SNP location (suffix 

AltAllele). Table S2 is available for download as an Excel file at 

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167577/‐/DC1 

In each sheet, columns are: 

Marker: the original marker sequence name; if the alternative allelic base is used then the marker name is suffixed with _S 

Sense: if 0 then the marker aligns sense to the target; if 16 then the marker aligns reverse complemented to the target. 

TargetLoci: Phyisical position at which alignment starts for the marker sequence 

MarkerLen: marker sequence length 

MarkerSequence: marker sequence 
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Files S1‐S3 
 

Available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167577/‐/DC1 

File S1   Simulation script in R 
 
File S2   Genotypes for wheat parents and RILs from a four‐parent MAGIC 
 
File S3   R script to perform the uncertainty analysis of the included Chr 3B data 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


