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ABSTRACT Models for genome-wide prediction and association studies usually target a single phenotypic trait. However, in animal
and plant genetics it is common to record information on multiple phenotypes for each individual that will be genotyped. Modeling
traits individually disregards the fact that they are most likely associated due to pleiotropy and shared biological basis, thus providing
only a partial, confounded view of genetic effects and phenotypic interactions. In this article we use data from a Multiparent Advanced
Generation Inter-Cross (MAGIC) winter wheat population to explore Bayesian networks as a convenient and interpretable framework
for the simultaneous modeling of multiple quantitative traits. We show that they are equivalent to multivariate genetic best linear
unbiased prediction (GBLUP) and that they are competitive with single-trait elastic net and single-trait GBLUP in predictive performance.
Finally, we discuss their relationship with other additive-effects models and their advantages in inference and interpretation. MAGIC
populations provide an ideal setting for this kind of investigation because the very low population structure and large sample size result in
predictive models with good power and limited confounding due to relatedness.

UNDERSTANDING the behavior of complex traits in-
volves modeling a web of interactions among the effects

of genes, environmental conditions, and other covariates.
Ignoring one or more of these factors may substantially affect
the accuracy and the generality of the conclusions that can
be drawn from the model (Li et al. 2006; Hartley et al. 2012;
Alimi et al. 2013), both in the context of genome-wide
association studies (GWAS) and genomic selection (GS).
Indeed a lot of attention has been devoted in recent liter-
ature to improving traditional additive genetic models,
which were originally defined using only allele counts
(e.g., Meuwissen et al. 2001), by supplementing them with
additional information. Some examples include marker-
based kinship coefficients (Speed et al. 2012), spatial het-
erogeneity and dominance (Finley et al. 2009), and gene
expression data (Druka et al. 2008).

However, most studies in plant and animal genetics still
focus on a single phenotypic trait at a time despite the
availability of a set of simultaneously measured traits for
each genotyped individual. Models for analyzing multiple

traits have been available since Henderson and Quaas (1976)
introduced the multivariate extension of the genetic best
linear unbiased prediction (GBLUP) models, and have been
investigated as recently as Stephens (2013) in the context
of GWAS. More recent additions include structural equa-
tion models (SEM; Li et al. 2006), a Bayesian extension of
seemingly unrelated regression (SUR; Banerjee et al. 2008),
the MultiPhen ordinal regression (O’Reilly et al. 2012), and
spatial models (Banerjee et al. 2012).

In this article we use Bayesian networks (BNs; Pearl, 1988;
Koller and Friedman, 2009) to build a multivariate depen-
dency model that accounts for simultaneous associations and
interactions among multiple single nucleotide polymorphisms
(SNPs) and phenotypic traits. BNs have been applied to the
analysis of several kinds of genomic data such as gene expres-
sion (Friedman 2004), protein–protein interactions (Jansen
et al. 2003; Sachs et al. 2005), pedigree analysis (Lauritzen
and Sheehan 2004), and the integration of heterogeneous
genetic data (Chang and Mcgeachie 2011). Their modular
nature makes them ideal for analyzing large marker pro-
files. As far as SNPs are concerned, BNs have been used to
investigate linkage disequilibrium (LD; Mourad et al. 2011;
Morota et al. 2012) and epistasis (Han et al. 2012) and to
determine disease susceptibility for anemia (Sebastiani
et al. 2005), leukemia (Chang and Mcgeachie, 2011),
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and hypertension (Malovini et al. 2009). The same BN
can simultaneously highlight SNPs potentially involved
in determining a trait (e.g., for association purposes)
and be used for prediction (e.g., for selection purposes):
a network capturing the relationship between genotypes
and phenotypes can be used to compute the probability
that a new individual with a particular genotype will have
the phenotype of interest (Lauritzen and Sheehan 2004;
Cowell et al. 2007).

Materials and Methods

A BN is a probabilistic model in which a directed acyclic
graph G is used to define the stochastic dependencies quan-
tified by a probability distribution (Pearl 1988; Koller and
Friedman 2009). The variables X = {Xi} under investigation
in this context include T traits Xt1 ; . . . ;XtT and S SNPs
Xs1 ; . . . ;XsS , each of which is associated with a node in G.
The arcs between the nodes represent direct stochastic de-
pendencies and determine how the global distribution of X
decomposes into a set of local distributions,

PðXÞ ¼
Y

PðXijPXiÞ; (1)

one for each variable Xi, depending only on its parents PXi .
This modular representation can capture direct and in-
direct associations between SNPs and phenotypes and
associations between SNPs due to linkage and population
structure.

In the spirit of commonly used additive genetic models
for quantitative traits (e.g., Meuwissen et al. 2001), we make
some further assumptions on the BN:

1. each variable Xi is normally distributed, and X is multi-
variate normal;

2. stochastic dependencies are assumed to be linear;
3. traits can depend on SNPs (i.e., Xsi/Xtj) but not vice

versa (i.e., not Xtj/Xsi), and they can depend on other
traits (i.e., Xti/Xtj ; i 6¼ j); and

4. SNPs can depend on other SNPs (i.e., Xsi/Xsj ; i 6¼ j).

We also assume that dependencies between traits broadly
follow the temporal order in which they are measured; for
instance, traits that are measured when a plant variety is
harvested can depend on those that are measured while it is
still in the field (and obviously on the markers as well), but
not vice versa. In other words, assumptions 3 and 4 define
BNs that describe the dependencies of phenotypes on
genotypes in a prognostic model, as opposed to a diagnostic
model in which genotypes depend on phenotypes. The latter
is often preferred over the former because it results in sim-
pler models when the Xi are discrete (Sebastiani and Perls
2008); in that setting, the number of parameters grows ex-
ponentially with the number of parents of each node. How-
ever, this is not the case here due to assumptions 1 and 2.
Under these assumptions, the local distribution PðXti jPXti

Þ of
each trait is a linear model of the form

Xti ¼ mti þPXti
bti þ eti

¼ mti þ Xtjbtj þ . . .þ Xtkbtk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
traits

þ Xslbsl þ . . .þ Xsmbsm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SNPs

þeti ; eti � N
�
0;s2

ti I
�
;

(2)

where I is the identity matrix. SNPs will typically be coded
using their allele counts (0, 1, 2), although extensions to
multiallelic SNPs and to account for dominance are trivial.
Similarly, the local distribution PðXsi jPXsi

Þ of each SNP is

Xsi ¼ msi þ Xslbsl þ . . .þ Xsmbsm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SNPs

þesi ; esi � N
�
0;s2

si I
�
:

(3)

Therefore, each parent adds only one parameter to a local
distribution.

The regression parameters in (2) and (3) can be estimated
in different ways. When G is sparse, ordinary least squares
(OLS) are often used because each local distribution is
estimated independently and contains few regressors.
Otherwise, penalized estimators such as ridge regression
(RR; Hoerl and Kennard 1970) can be used when G is dense.
The resulting BN can then be considered a flexible implemen-
tation of multivariate ridge regression, which has a number of
of desirable properties over OLS (Brown and Zidek 1980).

Equivalently, we can describe a BN using its global
distribution, denoted with P(X) in (1). Following assump-
tion 1, X has a multivariate normal distribution, say X �
N(m, S). In addition, by definition graphical separation of two
nodes Xi and Xj in G implies the conditional independence of
the corresponding variables given the rest. As a result, some
elements of the precision matrix V = S21 will be equal to
zero and some will be strictly positive according to the struc-
ture of G. The link with the parameterization based on the
local distributions arises from the fact that in each PðXijPXiÞ
the regression coefficient associated with Xj will be bj =
2Vij/Vii; so bj = 0 if and only if the (i, j) element of V is
itself equal to zero (Cox and Wermuth 1996, pp. 68–69).

It is interesting to note that this formulation defines BNs
that are equivalent to multivariate GBLUP models (Henderson
and Quaas 1976). For simplicity of notation, assume we are
modeling only two traits Xt1 and Xt2 with a common set of SNP
genotypes XS. In this case a multivariate GBLUP model has the
form �

Xt1
Xt2

�
¼

�
mt1
mt2

�
þ
�
ZS O
O ZS

��
ut1
ut2

�
þ
�
et1
et2

�
; (4)

where ut1 ;ut2 are the random effects for the two traits; ZS is
the design matrix of the genotypes XS; mt1 ;mt2 are the pop-
ulation means; and et1 ; et2 are the error terms. ut1 ;ut2 and
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et1 ; et2 are independent of each other and distributed as mul-
tivariate normals with zero mean and covariance matrices

COV
��

ut1
ut2

��
¼

�Gt1t1 Gt1t2
GT
t1t2 Gt2t2

�
and

COV
��

et1
et2

��
¼

"
s2
t1I s2

t1t2 I
s2
t2t1I s2

t2 I

#
:

(5)

The covariance matrix Gt1t2 models the pleiotropic effects of
the SNPs on traits, potentially increasing the accuracy of
multivariate GBLUP compared to a single-trait model.

As was the case in (2), each trait Xti ; i ¼ 1; 2 has a popu-
lation mean mti and an error term eti that is normally dis-
tributed and independent of the SNP effects. The residual
variance s2

ti is also specific to each trait. The two traits de-
pend directly on each other because of the covariances
s2
t1t2 ;s

2
t2t1 and indirectly through the covariance structure

of the SNP effects Gt1t2 . If we denote COVð½ut1ut2 �TÞ as G
and COVð½et1et2 �TÞ as R, we can write

S ¼ COV

0
BB@
2
664
Xt1
Xt2
ut1
ut2

3
775
1
CCA ¼

�
ZSGZTS þ R ZSG

ðZSGÞT G

�
; (6)

which is the covariance matrix of the global distribution.
The structure of the BN defined over X ¼ fXt1 ;Xt2 ;ut1 ;ut2g
and corresponding to the multivariate GBLUP in (4) arises
from V = S21 as discussed above. Finally, it is important to
note that even though GBLUP does not model the SNP
effects using the allele counts directly as in (2) and (3),
when Gt1;t1 and Gt2;t2 have the form XSXT

S the linear depen-
dence on ZSuti can be equivalently expressed as a random
regression in the allele counts (Piepho 2009; Piepho et al.
2012). The form of Gt1;t1 ;Gt2;t2 determines how the allele
counts are scaled or weighted in the regression. This formu-
lation of GBLUP results in a more natural interpretation of
SNP effects, which is in fact analogous to the interpretation
they are given in a BN (Scutari et al. 2013).

Another interesting property of the BN defined above is
that the covariance matrix of the SNP genotypes, which is a
submatrix SSS of S (the global covariance matrix), is used in
computing V and determines which arcs are present in G
between the SNPs. Furthermore, SSS encodes the LD pat-
terns between the SNPs as measured by the squared allelic
correlation r2. This has been shown to be useful in exploring
complex LD patterns in an inbred Holstein cattle population,
albeit with a discrete BN (Morota et al. 2012) and measuring
LD in a way that is closer to D and D9 (Falconer and Mackay
1995). Such patterns are reflected in the BN through V, pro-
viding an intuitive representation of LD as well as of genetic
effects on phenotypes as a single, coherent whole.

BNs present two other advantages over classic multivar-
iate regression models such as multivariate GBLUP and ridge
regression. First, there is a vast literature on performing
causal modeling with BNs from both experimental and

observational data (Pearl 2009). Given the lack of a formal
distinction between response and explanatory variables in
BNs, the same algorithms can be used for inference on the
traits based on the genotypes and vice versa. The former
includes the estimation of phenotypic EBVs, which is the
basis of genomic selection; the latter can be used for asso-
ciation mapping in polygenic traits and when the desired
phenotype is a combination of conditions on several traits.
Second, the fundamental properties of BNs do not depend
on the distributional assumptions of the data. Therefore,
accommodating heterogeneous traits (discrete, ordinal,and
continuous) in the model requires only specifying the form
of the local distributions.

Estimating a BN from data are typically performed as
a two-step process. The first step consists in finding the
graph G that encodes the conditional independencies pres-
ent in the data and is called structure learning. This can be
achieved using conditional independence tests (constraint-
based learning), goodness-of-fit scores (score-based learning),
or both (hybrid learning) to identify statistically significant
arcs. The second step is called parameter learning and deals
with the estimation of the parameters of the local distribu-
tions; G is known from the previous step and defines which
variables are included in each one. In addition, we propose
using structure learning to retain in the BN only those SNPs
that are required to make inference on the traits and that
make the remaining SNPs redundant. For each trait, such
a subset is called the Markov blanket (BðXtiÞ; Pearl 1988)
and includes the parents, the children, and the other nodes
that share a child with the trait. Therefore, we can disregard
all the SNPs that are not part of any such Markov blanket
and reduce drastically the dimension of the model. We have
shown in previous work (Scutari et al. 2013) how Markov
blankets are effective when used in this setting.

From these considerations, we used the R packages bnlearn
(Scutari 2010) and penalized (Goeman 2012) to implement
the following hybrid approach to BN learning.

Structure Learning

a. For each trait Xti , use the SI-HITON-PC algorithm (Aliferis
et al. 2010) to learn the parents and the children of the
trait; this is sufficient to identify BðXtiÞ because the only
nodes that can share a child with Xti are other traits
or SNPs that are parents of other traits due to assump-
tion 3. The choice of SI-HITON-PC is motivated by its
similarity to single-SNP analysis, which is improved on
with a subsequent backward selection to remove false
positives. Dependencies are assessed with Student’s
t-test for Pearson’s correlation (Hotelling 1953) and
a = 0.01, 0.05, 0.10.

b. Drop all the markers that are not in any BðXtiÞ.
c. Learn the structure of the BN from the nodes selected in

the previous step, setting the directions of the arcs accord-
ing to assumptions 3 and 4. We identify the optimal struc-
ture as that which maximizes the Bayesian information
criterion (BIC; Schwarz 1978).
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Parameter Learning

Learn the parameters of the local distributions using OLS
and RR. For comparison, we also fitted an elastic net (ENET)
model (Zou and Hastie 2005) and a univariate GBLUP in-
dividually on each trait and on all the available SNPs using
the glmnet (Friedman et al. 2010) and synbreed (Wimmer
et al. 2012) R packages. Since we have shown BNs to be
equivalent to a multivariate GBLUP, we did not fit the latter
as a separate model. We investigated the properties of the
resulting models using, in each case, 10 runs of 10-fold
cross-validation. Predictive power was assessed by averag-
ing the cross-validated correlations arising from the 10 runs
and computing confidence intervals as in Hooper (1958). In
the case of BNs, predictions in the cross-validation folds
were performed jointly on all traits and in two different
ways: by conditioning only on the SNPs in the BN, to
provide a measure of genetic predictive ability (rG) and a fair
comparison with single-trait models, and by conditioning on
the parents of each trait, which may in turn be traits them-
selves, to provide a tentative measure of causal predictive
ability (rC).

To perform inference, we produced an averaged BN using
the 100 networks we obtained in the course of cross-
validation. First, we created an averaged network structure
using their graphs as in Scutari and Nagarajan (2013): we
kept only those arcs that appear with a frequency higher
than a threshold estimated from the graphs themselves.
SNPs that ended up as isolated nodes (i.e., they were not
connected to any other SNP or trait) were dropped. We then
estimated the parameters of the averaged BN with RR using
the whole data set. We used the resulting BN to generate
samples of 106 random observations from the conditional
distributions of various traits and SNPs with either logic
sampling or likelihood weighting (Koller and Friedman
2009) to explore their properties and interplay under differ-
ent conditions. Statistics estimated from such a big sample
are very precise and can capture even small differences
reliably.

We based our analysis on a winter wheat population
produced by the UK National Institute of Agricultural Botany
(NIAB) comprising 15877 SNPs for 720 genotypes. Seven
traits were measured: yield (YLD; tonnes per hectare),
flowering time (FT; 6–54, aggregate of five scores taken at
3- to 7-day intervals), height (HT; centimeters), yellow
rust in the glasshouse (YR.GLASS; 1–9) and in the field
(YR.FIELD; 1–9), Fusarium (FUS; 1–9), and mildew (MIL;
1–9). Disease scores from 1 to 9 reflect increasing level of
infection, and flowering time scores from 6 to 54 increasing
lateness in flowering. The population was created using
a multiparent advanced generation inter-cross (MAGIC)
scheme. Such a scheme is designed to produce a mapping
population from several generations of intercrossing among
eight founders and has the potential to improve quantitative
trait loci (QTL) mapping precision (for more details and to

access the data see Mackay et al. 2014). The use of multiple
founder varieties results in a population that is segregating
for more QTL and traits than a biparental population, and
the balanced crossing used in each generation reduces LD
and family structure by ensuring that each founder has an
equal opportunity to contribute to each genotype.

SNPs were preprocessed by removing those with minor
allele frequencies ,1% and those with .20% missing data.
Missing data in the remaining SNPs were imputed using the
impute R package (Hastie et al. 2013). Other widely used
imputation methods in genetics, such as that implemented
in MaCH (Li et al. 2010), could not be used because of the
lack of precise mapping information at the time of the anal-
ysis; a 90K consensus map has just been submitted for pub-
lication (Wang et al. 2014). Subsequently, we removed one
SNP from each pair whose allele counts have correlation
.0.95 to increase the numerical stability of the models. In
the end, 3164 SNPs were left for analysis. Phenotypes were
adjusted for kinship using a univariate BLUP model for each
trait based on pedigree information, thus accounting for
population structure. Individuals with missing pedigree in-
formation or phenotypes were dropped from the analysis,
leaving 600 individuals with complete records.

Results

Table 1 shows genetic predictive correlations (rG) and
causal predictive correlations (rC) for single-trait ENET, sin-
gle-trait GBLUP, and BNs fitted with a = 0.01, 0.05, 0.10.
Only the results for BNs whose parameters are estimated
with RR are reported, because using OLS provides essen-
tially the same performance. The average rG obtained with
RR across all traits is 0.324 for a= 0.01, 0.327 for a= 0.05,
and 0.331 for a = 0.10, all with a standard deviation of
60.004; with OLS we obtain 0.322 for a = 0.01, 0.325
for a = 0.05, and 0.324 for a = 0.10, again with a stan-
dard deviation of 60.004. Similar considerations can be
made for rC.

First, we note that BNs and single-trait ENET have
comparable predictive power for rG: BNs are best for YLD,
YR.GLASS, and YR.FIELD, while ENET is best for FT, HT,
MIL, and FUS. Overall, the average rG across all seven traits
is 0.343 6 0.004 for ENET and 0.331 6 0.004 for BNs with
a = 0.10. Therefore, while ENET outperforms BNs on aver-
age, BNs still provide the best rG in three traits of seven.
In addition, both ENET and BNs outperform single-trait
GBLUP, which has rG = 0.186 6 0.005 overall. As expected,
the choice of the kinship matrix used in GBLUP does not
significantly affect rG because we accounted for the effect
of family structure on the traits as a preliminary step. Using
different marker-based estimates of kinship such as allele
sharing (Habier et al. 2007) or allelic correlation (Astle
and Balding 2009) provides no benefit over not using a kin-
ship matrix at all.

It is also apparent that increasing a does not produce any
marked increase in rG; while larger values of a result in
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larger BNs, the small increase in predictive power is not
worth the longer time required to estimate the model un-
der cross-validation. On average, we learned BNs with 47
nodes (including the 7 traits) in a few seconds for a =
0.01, with 75 nodes in 20 min for a = 0.05, and with 89
nodes in 2.5 hr for a = 0.10. Further increasing a as in
Scutari et al. (2013) only exacerbates the problem (24 days
for a = 0.15, results not shown). Of all the SNPs included
in BNs, few are not parents of any trait and thus appear to
be false positives: 1 of 40 (2.5%) for a = 0.01, 2 of 68
(2.9%) for a = 0.05, and 4 of 82 (4.8%) for a = 0.10. The
dimension of the BNs is in stark contrast with the average
number of nonzero SNP effects in the ENET models: 110
nonzero coefficients for YR.GLASS, 2661 for YLD, 55 for
HT, 105 for YR.FIELD, 333 for FUS, 1725 for MIL, and 24
for FT.

As far as causal predictive correlations rC are concerned,
we observe a distinct improvement compared to rG for three
traits: YLD, YR.FIELD, and FUS. As for the other four traits,
the difference between rG and rC is not as marked, even
though it is statistically significant in all cases except flower-
ing time. Overall, rC = 0.373 6 0.004, which is higher than
both BN’s rG = 0.331 6 0.04 for a = 0.10 and the ENET’s
rG = 0.343 6 0.004.

The averaged BN for a = 0.10 is shown in Figure 1; it has
50 nodes and 78 arcs. For ease of plotting, the SNP names
corresponding to the labels used in the figure are reported in
Table 2. The dimension of the BN is comparable to that
obtained for a = 0.01 (30 nodes, 44 arcs) and a = 0.05
(44 nodes, 66 arcs). In all three cases the threshold for arc
inclusion estimated as in Scutari and Nagarajan (2013) is
0.49, which is close to the intuitive choice of including in the
averaged BN those arcs that appear in more than half of the
BNs obtained during cross-validation. All SNPs in the aver-
aged BN are linked with at least one trait, with the exception
of G1789 (D_contig28346_467). Their minor allele frequen-
cies range from 0.02 (G2208; IAAV1322) to 0.47 (G1945;
Excalibur_c29304_176). Furthermore, the BN is small
enough that RR and OLS parameter estimates are practically
equivalent.

As far as phenotypic traits are concerned, the averaged
BN captures several known relationships. YR.FIELD is influ-
enced by FT (FT / YR.FIELD in Figure 1); early flowering
genotypes will have their leaves exposed to the pathogens for
a longer time than later genotypes, resulting in higher yellow
rust scores even if they have the same level of true disease
resistance. This is substantiated by the posterior distribution
of the disease score conditional on flowering time being in the
bottom quartile ([21.0, 29.7]) or in the top quartile ([33.8,
42.0]): it has mean 2.54 in the first case and 2.33 in the
second. Standard deviation is 0.47 in both cases. The same
is true for YR.GLASS, which has means 2.50 and 2.48 for
early and late flowering genotypes; standard deviation is
0.43. The network structure suggests that the YR.GLASS is
not influenced directly by FT (i.e., there is no FT / YR.
GLASS arc). The two yellow rust scores (YR.GLASS / YR.
FIELD) are positively correlated (0.34), likely because of dura-
ble resistance. In addition, we note that YR.FIELD summarizes
adult resistance to a mixed population of pathotypes, which
may include the specific pathotype used to measure juvenile
resistance in YR.GLASS.

We can also see from Figure 1 that YLD depends directly
on both HT (HT / YLD) and FT (FT / YLD), but it is
affected only indirectly by all the disease scores except YR.
GLASS. Conditional on the combinations of bottom and top
quartiles for FT and HT ([64.3, 74.5] and [79.5, 87.7]), the
expected yield is 7.54, 7.71, 7.15, and 7.33, respectively.
Standard deviation is 0.47 in all four scenarios. Therefore,
we observe a marginal increase in YLD of �0.15 when com-
paring short and tall genotypes, and a marginal decrease of
�0.4 when comparing early and late flowering genotypes;
this is consistent with Flintham et al. (1997) and Snape et al.
(2001). The interplay between HT and FT appears to be
negligible in determining yield. Conditioning on the bottom
and top quartiles of the disease scores, we see a difference
in the mean YLD of +0.08 (FUS), 20.02 (MIL), 20.01
(YR.GLASS), and 20.10 (YR.FIELD).

The apparent increase in YLD associated with high FUS
scores is the result of the confounding effect of HT, which is
directly linked to both variables in the BN (FUS ) HT /
YLD). This is expected because susceptibility to Fusarium is
known to be positively related to HT (Srinivasachary et al.
2009), which in turn affects YLD. Conditional on each quar-
tile of HT, FUS has a negative effect on YLD ranging from
20.04 to 20.06.

The last interaction between phenotypes in the BN is
between MIL and YR.GLASS (MIL / YR.GLASS). This can
be explained by the increased susceptibility to one disease in
genotypes that are weakened by the onset of the other, by
disease resistance being controlled by shared regions in the
genome (Spielmeyer et al. 2005; Lillemo et al. 2008), and to
a lesser extent by the influence of weather conditions (Beest
et al. 2008). The BN in Figure 1 identifies 9 SNPs that are
linked to at least one of MIL and YR.GLASS and may be
tagging pleiotropic QTL for disease resistance. By contrast-
ing low and high level of both diseases (scores #1.5 and

Table 1 Genetic (rG) and causal (rC) predictive correlations for the
7 traits and for single-trait elastic net (ENET), single-trait GBLUP
and BNs estimated with a = 0.01, 0.05, 0.10 and RR

YLD FT HT YR.FIELD YR.GLASS MIL FUS

ENET rG 0.15 0.30 0.48 0.39 0.59 0.21 0.27
GBLUP rG 0.10 0.15 0.19 0.22 0.32 0.21 0.12
BN,0.01 rG 0.20 0.29 0.46 0.37 0.60 0.12 0.22

rC 0.38 0.29 0.45 0.44 0.62 0.13 0.33
BN,0.05 rG 0.18 0.27 0.46 0.39 0.61 0.12 0.25

rC 0.34 0.27 0.45 0.44 0.63 0.14 0.32
BN,0.10 rG 0.18 0.28 0.45 0.40 0.62 0.13 0.25

rC 0.34 0.28 0.45 0.45 0.63 0.14 0.31

Standard deviations computed as in Hooper (1958) is 0.01 for all correlations. Traits
are yield (YLD), flowering time (FT), height (HT), yellow rust in the field (YR.FIELD)
and in the glasshouse (YR.GLASS), mildew (MIL), and Fusarium (FUS).
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$3.5, respectively), we can infer which allele may be linked
with resistance to both diseases using the conditional
expected allele counts, nLOW and nHIGH. For three of the nine
genes, the difference between the two is marked: G418
(BobWhite_c5756_516; nLOW = 0.5, nHIGH = 1.9), G311
(BobWhite_c37358_208; nLOW = 1.1, nHIGH = 1.7), and
G1217 (BS00062679_51; nLOW = 0.8, nHIGH = 1.7). The
90K consensus map in Wang et al. (2014) locates G418 in

chromosome 2D along with other SNPs conferring resistance
to YR.GLASS. The same is true also for G311 in chromosome
2B and for G2127 in chromosome 2A. As for the other six
SNPs, |nLOW 2 nHIGH| , 0.5, which suggests that their in-
dividual effects are small and that they might work in con-
cert with other genes producing polygenic effects.

Similar analyses on the other traits identify two more
SNPs with |nLOW 2 nHIGH| # 0.5 that may be tagging

Figure 1 Averaged network obtained from the cross-validated BNs for a = 0.10. Green nodes correspond to traits: yield (YLD), flowering time (FT),
height (HT), yellow rust in the field (YR.FIELD) and in the glasshouse (YR.GLASS), mildew (MIL), and Fusarium (FUS). Blue nodes correspond to SNPs. The
thickness of the arcs represents the strength of the corresponding dependence relationships as measured by their frequency in the BNs produced during
cross-validation.
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known genes. G1896 (Excalibur_c19078_210) has nLOW =
0.3, nHIGH = 1.2 when contrasting top and bottom quartiles
for HT and has nLOW = 0.2, nHIGH = 1.7 when contrasting
the bottom quartile of HT and FUS $ 3.5 with the top
quartile of HT and FUS # 1.5. The latter pair of scenarios
is motivated by the fact that taller plants are less susceptible
to Fusarium than shorter plants. The LD analysis in Mackay
et al. (2014) suggests that this SNP is located in chromo-
some 4D in this population and that it may be tagging Rht-
D1b, a dwarfing gene that is also closely associated with
resistance to Fusarium (Srinivasachary et al. 2009). In addi-
tion, G266 (BobWhite_c30043_150) appears to be located
in chromosome 2D and to be tagging Ppd-D1, which controls
photoperiod response. Contrasting the bottom quartiles of
both FT and HT with the top quartiles we have nHIGH =
0 and nLOW = 0.8.

Discussion

Modeling multiple quantitative traits simultaneously has
been known to result in better predictive power than
targeting one trait at a time in the context of additive
genetic models (Henderson and Quaas 1976). BNs provide
a general framework in which to estimate and analyze such
models. They also provide an accompanying graphical rep-
resentation that is intuitive yet rigorous; a plot such as that
in Figure 1 can be very useful for exploratory analysis, to
disseminate results and to motivate further quantitative and
qualitative analyses in GWAS and GS studies.

From a theoretical point of view, BNs are more versatile
than additive models in common use. By assuming that
variables are normally distributed, we have shown that

BNs are in fact equivalent to multivariate GBLUP and, by
extension, to single-trait GBLUP. Furthermore, the separa-
tion between structure and parameter learning makes it
possible to accommodate different parametric assumptions
with relatively few changes and subsume models such as
univariate and multivariate ridge-regression (Hoerl and
Kennard 1970; Brown and Zidek 1980). As far as inference
is concerned, several established methods from the litera-
ture can be used to predict traits from SNPs and vice versa;
two examples are logic sampling and likelihood weighting
(Koller and Friedman 2009). Both allow exploration of
complex scenarios of practical relevance by estimating in-
formative statistics from the corresponding conditional dis-
tributions of traits and SNPs. This is made easier by the lack
of a formal distinction between response and explanatory
variables in the BN, which is central in traditional linear
models. As a result, BNs can be used for association studies
as well as genomic prediction. In the former, we can condition
on some complex combination of traits and predict the
expected allele counts of SNPs. Such an approach has the
potential of detecting which SNPs tag relevant QTL and which
of their alleles are favorable. In the latter, we have shown that
BNs are competitive with a state-of-the-art model such as sin-
gle-trait ENET when predicting traits from SNPs and that they
outperform single-trait GBLUP for the population analyzed in
this article. As evidenced by the difference between rG and rC,
using BNs as a multitrait model and performing predictions
based on those variables identified as putative causal for each
trait outperforms ENET as well by leveraging pleiotropic
effects (Hartley et al. 2012). This shows that it is possible to
improve genomic selection for traits that are expensive to
measure by incorporating cheaper ones in the predictions.
Clearly, the impact of correlated phenotypes on the predictive
power of BNs depends on the strength of their correlation.

Based on the BN in Figure 1, we can also observe some
interesting properties of BNs as genetic models. First, the
difference in the number of SNPs included in the BNs com-
pared to the ENET models can be attributed to the limited
ability of BNs to capture small epistatic effects (Han et al.
2012). Consider, for instance, a polygenic effect in which
two SNPs are jointly associated with a trait but in which
each SNP is not significant on its own. Such an effect will
not be captured because both SNPs will be discarded by the
single-SNP screening performed at the beginning of feature
selection. As observed in other studies, this does not have
a significant impact on predictive ability if a large enough a

threshold is used, as Markov blankets are very effective at
feature selection (Chang and McGeachie 2011; Scutari et al.
2013). Second, SNPs with pleiotropic effects are included in
the BN even when association with a single phenotype is
detected; at that point they can be linked to all relevant
phenotypes. This is the case of the SNPs controlling resis-
tance to both mildew and yellow rust discussed above. Fur-
thermore, direct and indirect effects of such SNPs and of
traits are correctly separated for the observed traits, as in
the case of the Fusarium effect on yield.

Table 2 SNPs included in the averaged BN

LABEL NAME LABEL NAME

G418 BobWhite_c5756_516 G311 BobWhite_c37358_208
G800 BS00022299_51 G877 BS00022830_51
G866 BS00022703_51 G795 BS00022270_51
G2570 Kukri_c7241_322 G260 BobWhite_c29014_241
G832 BS00022473_51 G1896 Excalibur_c19078_210
G2953 Tdurum_contig64772_417 G942 BS00024496_51
G266 BobWhite_c30043_150 G847 BS00022562_51
G2835 RFL_Contig4790_1091 G200 BobWhite_c22728_78
G2208 IAAV1322 G257 BobWhite_c28819_733
G1906 Excalibur_c20837_868 G261 BobWhite_c2905_590
G1984 Excalibur_c37696_192 G599 BS00009575_51
G383 BobWhite_c47401_491 G2416 Kukri_c100613_331
G1033 BS00035141_51 G1941 Excalibur_c27950_459
G1853 Excalibur_c11795_934 G1338 BS00066211_51
G524 BS00000721_51 G1945 Excalibur_c29304_176
G1276 BS00064538_51 G1789 D_contig28346_467
G2318 IACX11305 G1800 D_GBUVHFX01DSLGX_212
G1294 BS00065110_51 G775 BS00022148_51
G1750 CAP12_c2800_262 G43 BobWhite_c11692_148
G1373 BS00067203_51 G1217 BS00062679_51
G2588 Kukri_rep_c102953_304 G1263 BS00064140_51
G2920 Tdurum_contig42584_1190

The labels are those used in Figure 1, while the SNP names are from Mackay et al.
(2014) and Wang et al. (2014).
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MAGIC populations provide an ideal starting point for
fitting BNs. On the one hand, the particular pattern of crosses
used to produce a MAGIC population results in a very low
population structure. This reduces the confounding effect of
relatedness on the estimation of SNP effects (Astle and Balding
2009) and on mapping approaches based on LD (Mackay et al.
2014). On the other hand, the size of of the population is large
enough to detect weak associations and associations with rare
variants. Both are in fact present in the averaged BN, which
includes SNPs with minor allele frequencies as low as 0.02 and
SNPs that are significant (e.g., for MIL and YR.GLASS) only
when considering multiple traits at the same time.

Finally, SNPs of interest can be made to segregate in the
population by choosing the founders appropriately, since
balanced crosses ensure opportunities for recombination
among the founders. This is particularly important in model-
ing multiple phenotypes, as we need to ensure that as many
relevant QTL and genes as possible are tagged to correctly
dissect their genetic layout.
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