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ABSTRACT fwdpp is a C++ library of routines intended to facilitate the development of forward-time simulations under arbitrary
mutation and fitness models. The library design provides a combination of speed, low memory overhead, and modeling flexibility not
currently available from other forward simulation tools. The library is particularly useful when the simulation of large populations is
required, as programs implemented using the library are much more efficient than other available forward simulation programs.

THE past several years have seen an increased interest in
simulating populations forward in time (Peng et al. 2007;

Carvajal-Rodríguez 2008; Chadeau-Hyam et al. 2008; Hernandez
2008; Neuenschwander et al. 2008; Padhukasahasram et al.
2008; Peng and Amos 2008; Peng and Liu 2010; Pinelli et al.
2012; Messer 2013; Kessner and Novembre 2014) to under-
stand models with natural selection at multiple linked sites
that cannot be easily treated using coalescent approaches.
Compared to coalescent simulations, forward-time simula-
tions are extremely computationally intensive, and several
early efforts may not be efficient enough for in-depth sim-
ulation studies (reviewed in Messer 2013). More recently,
two programs, sfs_code (Hernandez 2008) and SLiM (Messer
2013) have been introduced and demonstrated to be effi-
cient enough (both in runtime and in memory requirements)
to obtain large numbers of replicates, at least for the case
of simulating relatively small populations. Both of these
programs are similar in spirit to the widely used coalescent
simulation program ms (Hudson 2002) in that they attempt
to provide a single interface to simulating a vast number of
possible demographic scenarios while also allowing for mul-
tiple selected mutations, which is not possible on a coales-
cent framework. The intent of both programs is to allow
efficient forward simulation of regions with large scaled
mutation and recombination rates (u = 4Nm and r = 4Nr,

respectively, where N is the number of diploids, m is the
mutation rate per gamete per generation, and r is the recom-
bination rate per diploid per generation) by simulating a rel-
atively small N and relatively large m and r (also see Hoggart
et al. 2007; Chadeau-Hyam et al. 2008, for another example
of a similar strategy). This “small N” strategy allows a sample
of size n � N to be taken from the population to study the
effects of complex models of natural selection and demogra-
phy on patterns of variation in large chromosomal regions.
Messer (2013) has recently shown that his program SLiM is
faster than sfs_code for such applications and requires less
memory. However, both programs are efficient enough such
that either could be used for the purpose of investigating the
properties of relatively small samples.

The modern era of population genomics involving large
samples (1000 Genomes Project Consortium et al. 2012, 2012;
Cao et al. 2011; Mackay et al. 2012; Pool et al. 2012) and very
large association studies in human genetics (Burton et al.
2007) demonstrates a need for efficient simulation methods
for relatively large population sizes. For example, simulating
current human genome-wide association studies with thou-
sands of individuals would require simulating a population
much larger than the number of cases plus controls. Further,
the simulation of complex genotype-to-phenotype relation-
ships will require parameters such as random effects on
phenotype and fitness (not currently implemented in SLiM
or in sfs_code) such that heritability is less than one (see
Neuenschwander et al. 2008; Peng and Amos 2008; Pinelli
et al. 2012; Thornton et al. 2013; Kessner and Novembre
2014, for existing examples of such simulations).

In this article I present fwdpp, which is a C++ library for
facilitating the implementation of forward-time population
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genetic simulations. Rather than attempt to provide a gen-
eral program capable of simulating a wide array of models
under standard modeling assumptions akin to ms, SLiM, or
sfs_code, fwdpp instead abstracts the fundamental opera-
tions required for implementing a forward simulation under
custom models. An early version of the code base behind
fwdpp has already been used successfully to simulate a novel
disease model in a large population that would not be
possible with existing forward simulations (Thornton et al.
2013) and to simulate “evolve and resequence” experiments
such as in Burke et al. (2010; Baldwin-Brown et al. 2014).
Since the publication of those articles, the library code has
been improved in many ways, reducing runtimes by more
than a factor of 2. fwdpp provides a generic interface to
procedures such as sampling gametes proportional to their
marginal fitnesses, mutation, recombination, and migration.
The use of advanced C++ techniques involving code tem-
plates allows a library user to rapidly develop novel forward
simulations under any mutation model or fitness model (in-
cluding disease models as discussed above). The library is
compatible with another widely used C++ library for pop-
ulation genetic analysis [libsequence (Thornton 2003)] and
contains functions for generating output compatible with
existing programs based on libsequence for calculating sum-
mary statistics. Further, the runtime performance of pro-
grams implemented using fwdpp compares quite favorably
to SLiM for the small N case described above. However, for
the case of large N, fwdpp results in programs with signifi-
cantly smaller runtimes and memory requirements then ei-
ther SLiM or sfs_code, allowing for very efficient simulation
of samples taken from large populations for the purposes of
modeling population genomic data sets or large case/control
studies.

Sampling Algorithm

The library supports two sampling algorithms for forward
simulation. The first of these is an individual-based method,
where N diploids are represented. Descendants are generated
by sampling parents proportionally to their fitnesses, followed
by mutating and recombining the parental gametes. Below, I
show that the individual-based method results in the fastest
runtime for models involving natural selection. Therefore, for
most applications, the individual-based sampling functions
should be considered the default choice for developing cus-
tom simulations.

The second algorithm is gamete based. In this algorithm,
no diploids are represented. Rather, in any generation t,
there are gt gametes, each with 0 , x , 2N copies present
in the population. To generate the next generation, the
expected frequency of each gamete in the next generation
is obtained using the formula

p9i ¼
piwi

w
;

where p 9i is the expected frequency of the ith gamete in the
next generation, pi is its current frequency ðx=2NÞ; and

wi ¼
Pj¼gt

j¼1 Pijwij=pi is the marginal fitness of the gamete
over all possible diploid genotypes (Pij) containing the ith
gamete (Crow and Kimura 1971, p. 179). The expected
frequencies of each gametes are used in one round of mul-
tinomial sampling to obtain the number of copies of each
gamete in the next generation. Although slower than the
individual-based sampler for models with selected muta-
tions, the gamete-based sampler reflects the original code
base of fwdpp, previously used in Thornton et al. (2013) and
Baldwin-Brown et al. (2014). This code provides only one
additional function to the library user and requires fewer
data structures (as no container of diploids is needed). It
is therefore kept in the library both for backward compati-
bility with previous projects and for the possibility of future
performance improvements.

Library Design

The intent of the library is to provide generic routines for
mutation, recombination, migration, and sampling of game-
tes proportionally to their fitnesses in a finite population of
N diploids. The library does this in a memory-efficient man-
ner by defining a small number of simple data types. First,
there are mutations. The simplest mutation type is repre-
sented by a position and an integer representing its count
in the population (0 # n # 2N). Second, there are gametes,
which are containers of pointers to mutations. Finally, in
individual-based simulations, there are diploids, which are
pairs of pointers to gametes. The schema relating these data
structures is shown in Figure 1. The details of the relations
between data types in individual-based simulation are
shown in supporting information, Figure S1. This pointer-
based structure is perhaps obvious, but it has several advan-
tages. First, it replaces copying of data with copying of
pointers, which is both faster and much more memory effi-
cient. Second, because each pointer is unique, we can ask
whether two gametes carry the same mutation by asking
whether they contain the same pointers, with no need to
query the actual position, etc., of the mutation object
pointed to. Finally, storing pointers to neutral and nonneu-
tral mutations in separate containers typically speeds up the
calculation of fitness because most models of interest will
involve a relatively small proportion of selected mutations
compared to the total amount of variation in the population.

Library users create their own custom data types primar-
ily by extending fwdpp’s built-in mutation type by creating
a new mutation type that inherits from the built-in type
(described above) and adding the new required data. For
example, selection coefficients, origination and fixation
times, etc., may be tracked by a custom mutation type (Fig-
ure S1). The gamete type is then a simple function of the
custom mutation type and the container in which these
mutations are stored (Figure S1).

These user-defined data types are passed to functions
implementing the various sampling algorithms required for
the simulation. Because the library cannot know ahead of
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time what the “rules” of the simulation are, library algo-
rithms are implemented in terms of templates, which may
be thought of as skeleton code for a particular algorithm. In
other words, a template function could be implemented in
terms of type “T”, which could be an integer, a floating-point
number, or a custom data type as decided by the program-
mer using the function. The substitution of specific types for
the place holders (and related error checking) is performed
by the compiler. In standard C++, templates are used to
implement algorithms on data stored in containers [such
as sorting (Josuttis 1999, pp. 94–101)]. The behavior of
these algorithms may be modified by custom policies (Josuttis
1999, pp. 119–134). For example, a sorting order may be
affected by a policy. Similarly, users of fwdpp provide poli-
cies specifying the biology of the population at each stage of
the life cycle. An example of a policy function would be the
mutation model. A mutation model policy must specify the
position and initial frequency of a new mutation along with
any other data such as selection coefficients, dominance, etc.
Many of the most commonly used policies for standard pop-
ulation genetic models (multiplicative fitness, how mutation
containers are updated after sampling, etc.) are provided by
the library. A typical custom policy typically involves little
new code, and the example programs distributed with the
library demonstrate this point. The library also comes with
additional documentation detailing the concept of policies in
standard C++ and how that concept is applied in fwdpp
and what the minimal requirements are for each type of
policy (mutation, migration, and fitness being the three
most important). The ability to extend the built-in mutation
and gamete types and combine them with custom policies
facilitates the implementation of algorithms for simulation
under arbitrary models. As the library has developed, I have
found that it has evolved to a point where the balance be-
tween inheritance (the ability to build custom types from
existing types, such as mutations) and template-based data
types and functions is such that new models may be imple-
mented with relatively little new code being written.

Library Features

The library contains several features to facilitate writing ef-
ficient simulations. As of library version 0.2.0, these features
are supported for both the gamete- and individual- based
portions of fwdpp and include the following:

1. The ability to initialize a population from the output of
a coalescent simulation stored in the format of the pro-
gram ms (Hudson 2002). Either this input may come from
an external file or the coalescent simulation could be run
internally to the program, for example using the routines
in libsequence (Thornton 2003). The routines are compat-
ible with coalescent simulation output stored in binary
format files, using routines in libsequence version $1.7.8.

2. Samples from the population may be obtained in ms format.
3. The ability to copy the containers of mutations and game-

tes into new containers. The result of the copy operation
is an exact copy of the population that can be evolved
independently. Applications include simulating replicated
experimental evolution (Baldwin-Brown et al. 2014) or
conditioning simulation results on a desired event, such
as the fate of a particular mutation, and repeatedly re-
storing and evolving the population until the desired out-
come is reached via naive rejection sampling.

4. The population may be written to a file in a compact bi-
nary format. This binary output may then be used as input
for later simulation. Applications of this feature include
storing populations simulated to equilibrium for later evo-
lution under more complex models and/or storing the
state of the population during the course of a long-running
simulation such that it may be restarted from that point in
the case of unexpected interruptions.

Library Dependencies

The code in fwdpp uses the C-language GNU Scientific Li-
brary (GSL) (http://www.gnu.org/software/gsl/) for random

Figure 1 Major data structures used by
the simulation library for individual-
based simulation. Mutations are stored
in a doubly linked list. Within the list,
each mutation occupies a unique place
in memory accessible via a C++ pointer.
The pointers to the three mutations are
labeled M1, M2, and M3. Gametes are
containers of pointers, meaning that the
data for any specific mutation are stored
only once and may be accessed via the
pointers contained by gametes bearing
that mutation. The “gamete pool” of
a population is also stored in a doubly
linked list. The entire population is thus
represented by three data structures:
a list of mutations, a list of gametes con-
taining pointers into the mutation list,
and a vector of diploids.
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number generation. The boost libraries (http://www.boost.
org) are used extensively throughout the code. Finally, libse-
quence (Thornton 2003) was used to implement the input and
output in ms format described in the previous section. All three
of these libraries must be installed on a user’s system and be
accessible to the system’s C++ compiler.

Documentation and Example Programs

The library functions are documented using the doxygen
system (http://www.doxygen.org). The documentation in-
cludes a tutorial on writing custom mutation and fitness
functions. The library also contains several example pro-
grams whose complete source codes are available in the
documentation. The simplest of these programs are diploid
and diploid_ind, which use the gamete- and individual-
based methods, respectively, to simulate a population of N
diploids with mutation, recombination, and drift and output
a sample of size 0 , n � 2N in the same format as ms
(Hudson 2002). The remaining example programs add com-
plexity to the simulations and document the differences with
respect to these programs. All of the example programs
model mutations according to the infinitely many sites model
(Kimura 1969) with both the mutation and recombination
rates being uniform along the sequence. (Nonuniform recom-
bination rates are trivial to implement via custom policies

returning positions along the desired genetic map of the sim-
ulated region.) In practice, I expect that future programs de-
veloped using fwdpp will use the individual-based sampler
due to its speed in models with selection (see below). Many
of the examples are implemented using both the gamete- and
individual-based sampling methods. The names of source
code files and binaries for the latter have the suffix “_ind”
added to them to highlight the difference.

The complete library documentation and example code
are distributed with the source code (see Availability below).
All of the performance results described below are based on
the example programs.

Availability

fwdpp is released under the GNU General Public License
(GPL) (http://www.gnu.org/licenses/gpl.html). The primary
web page for all software from the author is http://www.
molpopgen.org/software/, where links to the main fwdpp
page may be found. The source code is currently distributed
from https://github.com/molpopgen/fwdpp.

Performance

Performance under the constant-sized Wright–Fisher model
without selection was evaluated using the University of Cal-
ifornia, Irvine, High-Performance Computing Cluster, which

Figure 2 Performance comparison for the case of small population size (N). Shown are the means of runtime and of peak memory use for sfs_code,
SLiM, and a program written using fwdpp. Note that the y-axis is on a log scale. The results are based on 100 simulations with the following base
parameter values: diploid population size N = 500, locus length L = 5 3 106 bp, mutation rate per site mbp = 1 3 1029, and recombination rate per
diploid per site rbp = 1 3 1028. (Both SLiM and sfs_code parameterize per-generation rates as per base pair.) All simulations were run for 10N
generations. For each column, one of the four parameters was varied while the remainder were kept at their base values. For the leftmost column,
sfs_code was run with 100 loci of length L/100 for all L . 106. Simulations implemented using fwdpp do not explicitly model sites and instead are
implemented in terms of the usual scaled mutation and recombination rates u = 4NLmbp and r = 4NLrbp, respectively.
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consists of dozens of 64-core nodes, mainly with AMD
Opteron 6274 processors. An entire queue of three such
nodes was reserved for performance testing, ensuring that
no disk-intensive processes were running alongside the sim-
ulations and degrading their performance. All code was
compiled using the GNU Compiler Collection (GCC) suite
(http://gcc.gnu.org), version 4.7.2. Programs based on
fwdpp depended on boost version 0.5.3 (http://www.boost.
org), libsequence version 1.7.8 (http://www.molpopgen.
org), and the GSL (http://gnu.org/software/gsl) version
1.16. The GSL version 1.16 was also used to compile SLiM
(Messer 2013). The software versions used for all results
were fwdpp version 0.2.0, SLiM version 1.7, and sfs_code
version 2013-07-25. For all simulations, sfs_code was run
with the infinitely many-sites mutation option.

Figure 2 shows the average runtimes and memory require-
ments of sfs_code (Hernandez 2008), SLiM (Messer 2013),
and fwdpp over a variety of parameter values where the
population size, N, is small (#1000). For nearly all parameter
combinations, SLiM and fwdpp are much faster than sfs_code
and require less memory. When the total amount of recom-
bination gets very large (the locus length gets very long and/
or the recombination rate gets large), fwdpp is slower than
SLiM but still several times faster than sfs_code. Holding the
population size and recombination rate constant, fwdpp
is faster than SLiM as either the population size increases

or the mutation rate increases (two center columns of
Figure 2). Although Figure 2 suggests very large relative
differences in performance, it is important to note that
the absolute runtimes are still rather short for all three
programs.

As N becomes larger, fwdpp becomes much faster than
either sfs_code or SLiM (Figure 3). For populations as large
as N = 50,000 diploids and u = r = 100, fwdpp and
sfs_code are comparable in performance and both are sub-
stantially faster than SLiM as N increases. For u = r = 500,
fwdpp is orders of magnitude faster than either SLiM or
sfs_code.

The results in Figure 2 and Figure 3 consider only neutral
mutations. However, coalescent simulations (Hudson 2002;
Chen et al. 2009) should generally be the preferred choice for
neutral models because such simulations will typically be much
faster than even the fastest forward simulation. For forward
simulations, both the strength of selection and the proportion
of selected mutations in the population will affect performance.
Figure 4 compares the runtimes and peak memory usage of
fwdpp and SLiM for the simple case of selection against co-
dominant mutations with a fixed effect on fitness and multi-
plicative fitness across sites. Further, comparison to SLiM seems
relevant because it is an efficient and relatively easy way to use
a program that is likely to be widely used for population-
genetic simulations of models with selection. Because SLiM

Figure 3 Performance comparison for the
case of large population size (N). Shown
are the means of runtime and of peak mem-
ory use for sfs_code, SLiM, and a program
written using fwdpp. Note that the y-axis is
on a log scale. The left column is for the
case of u = r = 100 and the right column
shows u = r = 500 (u and r refer to the
scaled mutation and recombination rates,
respectively, for the entire region). The
results are based on 100 replicates of each
simulation engine for each value of N and
each replicate was evolved for 10N genera-
tions. Missing data points occurred when
a particular simulation did not complete
any replicates within 7 days, at which point
the task was set for automatic termination.
For SLiM and sfs_code, the locus length sim-
ulated was L = 105 bp and the per-site mu-
tation and recombination rates were chosen
to obtain the desired u and r for the entire
region.
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and the example programs written using fwdpp scale fitness
differently (1, 1 + sh, 1 + s and 1, 1 + sh, 1 + 2s, respectively,
for the three genotypes), I chose s and h for each program such
that the strength of selection on the three genotypes was the
same. The population size was set to N = 104 diploids and the
total mutation rate was chosen such that 2Nm = 200. The re-
combination rate was set to 0, and p, the proportion of newly
arising mutations that are deleterious, was set to 0.1, 0.5, or 1.
For each value of p, 100 replicates were simulated for 10N
generations. As p increases and selection gets weaker (2Nsh
gets smaller), fwdpp’s gamete-based algorithm gets slower
(Figure 4). The case of 2Nsh= 1 and P= 0.5 or 1 is particularly
pathological for fwdpp. However, this parameter combination

models a situation where 50% or 100% of newly arising
mutations are deleterious with sh ¼ 2 1=2N; and thus selec-
tion and drift are comparable in their effects on levels of var-
iation. In practice, many models of interest will incorporate
a distribution of selection coefficients such that this particular
case should be viewed as extreme. For SLiM, the parameters
have the opposite effect on performance; slim slows down as
selection gets stronger and there are fewer selected mutations
in the population. However, with the exception of the patho-
logical case of a large proportion of weakly selected mutations,
SLiM and fwdpp’s gamete-based sampling scheme showed sim-
ilar mean runtimes overall, suggesting that both are capable of
efficiently simulating large regions with a substantial fraction

Figure 4 Performance comparison between SLiM, fwdpp’s gamete-based sampling scheme, and fwdpp’s individual-based scheme for models involving
both neutral and codominant deleterious alleles. All results are based on 100 replicates with N = 104 and 10N generations of evolution simulated per
replicate. The total mutation rate was chosen such that 2Nm = 200 and the proportion of newly arising deleterious mutations was varied. The three
different panels represent three different strengths of selection against heterozygotes (2Nsh = 1, 10, or 100).
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of selected mutations and when selection is a stronger force
than drift. For all parameters shown in Figure 4, fwdpp’s
individual-based sampling method is much more uniform in av-
erage runtime, typically outperforming both SLiM and fwdpp’s
gamete-based method. As seen in Figure 2 and Figure 3 above
for the case of neutral models, fwdpp uses much less memory
than SLiM for models with selection (Figure 4). Finally, Figure

5 shows that SLiM and the two sampling algorithms of fwdpp
result in nearly identical deleterious mutation frequencies for
the models shown in Figure 4, implying that all three methods
are of similar accuracy for multisite models with selection. The
results in Figure 4 strongly argue that the individual-based
sampling routines of fwdpp should be preferred for models
involving natural selection.

Figure 5 (A–C) Site frequency spectra for models with codominant deleterious alleles. Plots are based on a sample of size n = 50 taken from the
simulations in Figure 4 where the proportion of newly arising deleterious mutations (p) was 1.

Figure 6 The average site fre-
quency spectrum (left column)
and the distribution of the mini-
mum number of recombination
events [Hudson and Kaplan 1985
(right column)] are compared be-
tween fwdpp and the coalescent
simulation program ms (Hudson
2002). All results are based on
1000 simulated replicates. The for-
ward simulation involved a diploid
population of size N = 104 evolv-
ing with mutation and recombina-
tion occurring at rates u and r,
respectively, for 10N generations.
All summary statistics are based
on a sample of size n = 50 and
were calculated using libsequence
(Thornton 2003).
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Applications

In this section, I compare the output of programs written
using the gamete-based sampler in fwdpp to both theoreti-
cal predictions and the output of well-validated coalescent
simulations. Each of the models below is implemented in an
example program distributed with the fwdpp code. For
results based on forward simulations, the population size
was N= 104 diploids and the sample size taken at the end of
the simulation was n= 50 (from each population in the case
of multipopulation models). All summary statistics were cal-
culated using routines from libsequence (Thornton 2003).
For all neutral models, the coalescent simulation program

used was ms (Hudson 2002). The neutral mutation rate and
the recombination rate are per region and the region is
assumed to be autosomal. These assumptions result in the
scaled mutation rate u = 4Nm, where m is the mutation rate
to neutral mutations per gamete per generation, and the
scaled recombination rate r = 4Nr, where r is the probability
of crossing over per diploid per generation within the re-
gion. All simulation results are based on 1000 replicates
each of forward and coalescent simulation.

The equilibrium Wright–Fisher model

We first consider the standard Wright–Fisher model of a con-
stant population and no selection. I performed simulations

Figure 7 Distributions of genetic variation between populations simulated under a model of recent divergence with migration. (A) A population split followed
by symmetric migration. An ancestral population of size N = 104 diploids was evolved for 10N generations with mutation rate u = 50 and recombination rate r =
50. The ancestral population was then split into two equal-sized daughter populations of size 104 (thus resulting in a population split with no bottleneck). The
two populations were evolved for another 1000 generations with symmetric migration at rate 4Nm = 1. B–D compare results based on 1000 replicates of
forward simulation using fwdpp and 1000 replicates of the coalescent simulation ms (Hudson 2002). (B) The distribution of FST (Hudson et al. 1992). (C) The
distribution of the total number of private polymorphisms. (D) The distribution of the number of polymorphisms shared between the two populations.
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for each of three parameter values (u = r = 10, 50, and
100). Figure 6 shows the first 10 bins of the site frequency
spectrum and the distribution of the minimum number of
recombination events (Hudson and Kaplan 1985) obtained
using both simulation methods. The forward simulation and
the coalescent simulation gave identical results (to within
Monte Carlo error) in all cases, and there were no significant
differences in the distributions of these statistics (Kolmogorov–
Smirnov tests, all P. 0.05). All of the results below are based
on the gamete-based portion of fwdpp as it is more efficient for
models without selection.

Population split followed by equilibrium migration

I simulated the demographic model shown in Figure 7A, us-
ing a forward simulation implemented with fwdpp. The
model in Figure 7A is equivalent to the following command
using the coalescent simulation program ms (Hudson 2002):
ms 100 1000 -t 50 -r 50 1000 -I 2 50 50 1 -ej 0.025 2 1 -em
0.025 1 2 0.

Figure 7, B–D, compares the distributions of several sum-
maries of within- and between-population variation. The
forward and coalescent simulations are in excellent agree-
ment, and no significant differences in the distribution of
these summary statistics exist (Kolmogorov–Smirnov test,
all P . 0.05).

Discussion

I have described fwdpp, which is a C++ template library
designed to help implement efficient forward-time simulations
of large populations. The library’s performance compares fa-
vorably to other existing simulation engines and has the addi-
tional advantage of allowing novel models to be rapidly
implemented. I expect fwdpp to be of particular use when very
large samples with selected mutations must be simulated, such
as case/control samples or large population-genomic data sets.
The library is under active development and future releases
will likely both improve performance as well as add new
features.

Importantly, users of forward simulations should appreci-
ate that there may be no single software solution that is ideal
for all purposes. For example, users wishing to evaluate the
population-genetic properties of relatively small samples (say
n # 100) under standard population genetic fitness models
would perhaps be better served by SLiM or sfs_code, as such
scenarios can be simulated effectively with either program in
a reasonable time (Figure 2 and Messer 2013) by keeping the
population size (N) small. Further, SLiM and sfs_code already
implement a variety of relevant demographic models such as
migration and changing population size. The intent of fwdpp
is to offer a combination of modeling flexibility and speed not
currently found in existing forward simulation programs and
to provide a library interface to that flexibility. There are
several scenarios where fwdpp may be the preferred tool.
First, for models requiring large N and selection, fwdpp
may be the fastest algorithm (Figure 3 and Figure 4). Second,

when nonstandard fitness models and/or phenotype-to-
fitness relationships are required (such as in Thornton et al.
2013), fwdpp provides a flexible system for implementing
such models while also allowing for complex demographics,
complementing existing efforts in this area (Neuenschwander
et al. 2008; Peng and Amos 2008; Pinelli et al. 2012; Kessner
and Novembre 2014). Finally, fwdpp is likely to be useful
when the user needs to maximize runtime efficiency for a par-
ticular demographic scenario and does not require the flexi-
bility of a more general program.
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KTfwd::mutation_base
1. position
2. count in population
3. Am I neutral?

KTfwd::mutation
1. selection coefficient
2. dominance

typedef 
linked_list<KTfwd::mutation> mlist

1. Generic template for a gamete
2. Records count in population
3. Gametes are containers of objects of type 
mlisttype::iterator

KTfwd::gamete_base<mtype,mlisttype>

1.  Types mtype and mlisttype are replaced with 
KTfwd::mutation and mlist by the compiler.
2.  The gamete type now contains vectors of mlist::iterator,
which act as "pointers" to mutations.

typedef KTfwd::gamete_base<KTfwd::mutation,mlist> 
gtype

typedef linked_list<gtype> glist

vector_type< pair< glist::iterator, 
glist::iterator > > diploids;

<<Public Inheritance>>
<<Template instantiation>>

<<Contains objects>>

<<Contains objects>>

<<Contains iterators>>

<<Contains iterators>>

Mutations Gametes Legend

Attributes
fwdpp type

Container type
from another library

Relationship between types. 
Label indicates details (inheritance, template, etc.)
Relation between a container and object contained.
Labelled by the data type contained.

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
Figure	  S1	  	  	  Detailed	  relationships	  between	  data	  types	  used	  for	  individual-‐based	  forward	  simulation.	  The	  first	  data	  type	  defined	  
by	  the	  library	  is	  mutation_base,	  which	  contains	  three	  data	  attributes	  (position,	  number	  of	  occurrences,	  and	  whether	  or	  not	  the	  
mutation	  is	  neutral).	  The	  library	  also	  provides	  the	  data	  type	  mutation,	  which	  extends	  mutation_base	  by	  adding	  selection	  and	  
dominance	  values.	  Users	  may	  provide	  their	  own	  extensions	  of	  mutation_base.	  Gametes	  are	  implemented	  using	  gamete_base,	  
which	  is	  a	  template	  data	  type	  whose	  template	  argument	  mtype	  must	  be	  mutation_base	  or	  a	  type	  derived	  from	  mutation_base	  
(this	  requirement	  is	  enforced	  at	  compile-‐time).	  The	  template	  argument	  mlisttype	  is	  the	  type	  of	  container	  in	  which	  the	  
simulation	  will	  store	  mutations	  (this	  container	  must	  be	  a	  doubly-‐linked	  list).	  Gametes	  are	  essentially	  containers	  of	  objects	  called	  
iterators,	  which	  point	  to	  the	  mutations	  carried	  by	  the	  gamete.	  (In	  C++,	  an	  iterator	  is	  a	  data	  type	  abstracting	  the	  concept	  of	  a	  
pointer	  (Josuttis,	  1999,	  p.	  83)	  and	  is	  required	  because	  many	  of	  the	  storage	  containers	  used	  in	  fwdpp	  are	  not	  simple	  random-‐
access	  containers.)	  In	  this	  example,	  our	  gamete	  type	  is	  a	  container	  of	  pointers	  to	  objects	  of	  type	  mutation.	  The	  collection	  of	  
mutations	  and	  gametes	  currently	  in	  the	  population	  are	  stored	  in	  separate	  doubly-‐linked	  lists.	  The	  pointers	  stored	  by	  gametes	  
point	  to	  elements	  within	  the	  list	  of	  mutations.	  Finally,	  diploids	  are	  pairs	  of	  pointers	  to	  gametes	  and	  the	  “individuals”	  in	  the	  
population	  are	  stored	  in	  a	  vector	  of	  such	  pairs.	  Because	  of	  the	  template-‐based	  implementation	  of	  fwdpp,	  the	  list	  and	  vector	  
types	  may	  come	  either	  from	  the	  C++	  standard	  library	  (Josuttis,	  1999,	  p.	  76	  and	  79)	  or	  from	  any	  other	  library	  providing	  
compatible	  containers.	  
	  


