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ABSTRACT The efficiency of marker-assisted prediction of phenotypes has been studied intensively for different types of plant
breeding populations. However, one remaining question is how to incorporate and counterbalance information from biparental and
multiparental populations into model training for genome-wide prediction. To address this question, we evaluated testcross
performance of 1652 doubled-haploid maize (Zea mays L.) lines that were genotyped with 56,110 single nucleotide polymorphism
markers and phenotyped for five agronomic traits in four to six European environments. The lines are arranged in two diverse half-sib
panels representing two major European heterotic germplasm pools. The data set contains 10 related biparental dent families and 11
related biparental flint families generated from crosses of maize lines important for European maize breeding. With this new data set
we analyzed genome-based best linear unbiased prediction in different validation schemes and compositions of estimation and test
sets. Further, we theoretically and empirically investigated marker linkage phases across multiparental populations. In general, pre-
dictive abilities similar to or higher than those within biparental families could be achieved by combining several half-sib families in the
estimation set. For the majority of families, 375 half-sib lines in the estimation set were sufficient to reach the same predictive
performance of biomass yield as an estimation set of 50 full-sib lines. In contrast, prediction across heterotic pools was not possible
for most cases. Our findings are important for experimental design in genome-based prediction as they provide guidelines for the
genetic structure and required sample size of data sets used for model training.

IN the context of quantitative trait locus (QTL) mapping,
multiparental populations have been suggested to be ad-

vantageous over biparental families due to their greater al-
lelic diversity and the possibility of evaluating allelic effects
in multiple genetic backgrounds (Muranty 1996; Xu 1998;
Verhoeven et al. 2006). Especially if the multiparental pop-
ulation consists of several families connected by common
parents, they can provide greater power of QTL detection
and better resolution of QTL localization compared to in-

dividual families (Rebai and Goffinet 1993; Jannink and
Jansen 2001; Blanc et al. 2006; Yu et al. 2008; Bardol et al.
2013; Mackay et al. 2014). In the context of genome-based
prediction (Meuwissen et al. 2001), accuracies achieved
within large biparental families are assumed to be the max-
imum that can be obtained with a given sample size (Crossa
et al. 2014), because of medium allele frequencies, absence of
genetic substructure, and equal linkage phases between
markers and functional polymorphisms. However, prediction
accuracies of newly generated progenies from different
crosses will be poor. This is especially true if the respective
germplasm exhibits broad allelic diversity and is unrelated to
the biparental family from which single nucleotide polymor-
phism (SNP) effects were derived. Thus, as for QTL mapping,
similar arguments in favor of multiparental populations hold
in the context of genome-based prediction.
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The accuracy of genome-based prediction based on
multiparental populations has been reported for a number
of species, traits, and statistical methods (Legarra et al. 2008;
Asoro et al. 2011; Zhao et al. 2011; Ornella et al. 2012;
Resende et al. 2012; Schulz-Streeck et al. 2012; Peiffer
et al. 2013; Albrecht et al. 2014; Scutari et al. 2014). While
these results are promising for the implementation of genome-
based prediction in breeding, the optimum design of the
population to be employed in model training is still an open
question and more research needs to be put into this direction
(Crossa et al. 2014). Recently, Riedelsheimer et al. (2013)
addressed the effect of the composition of the estimation
set on prediction of disease and kernel traits with five inter-
connected biparental maize families. They found a strong de-
crease in predictive abilities when full-sib lines were replaced
by half-sib lines in model training despite the fact that their
parental lines originated from the same breeding program
and were highly related. Thus, an emerging question from
their study was how prediction performance across full- and
half-sib lines is affected when parental lines represent a wide
spectrum of genetic diversity. It is expected that quantitative
genetic parameters relevant for prediction accuracy such as
genetic variances and heritabilities vary greatly between fam-
ilies, as has been shown for the U.S. maize nested association
mapping (NAM) population (Hung et al. 2012). Thus, the
predictive power of individual families in a half-sib design
might strongly depend on the magnitude and variation of
these parameters.

From theory and empirical studies it is known that the
sample size of the population employed in model training
(estimation set) has a strong impact on prediction accuracy
(Daetwyler et al. 2008; Lorenzana and Bernardo 2009;
Zhong et al. 2009; Albrecht et al. 2011; Guo et al. 2012;
Combs and Bernardo 2013; Wimmer et al. 2013). Restrict-
ing genome-based prediction to within biparental families
puts upper limits on sample sizes employed in model train-
ing. While sample sizes of biparental families generated in
the breeding process rarely exceed 100, the use of multi-
parental populations permits increasing the size of the esti-
mation set by adding progenies from connected crosses. To
our knowledge, the question of how many half-sib lines are
required to obtain the same predictive ability as a given
sample of full-sib lines has empirically not been addressed
in a formal manner. In addition it is not clear if all available
progenies from a few crosses or rather a small sample of
progenies from many crosses should form the augmented
training set.

Since the emergence of genome-based prediction, many
studies have focused on developing and testing different
statistical methods to obtain maximum prediction accuracy.
Genome-based best linear unbiased prediction (GBLUP)
(Habier et al. 2007) or the equivalent ridge regression
(Hoerl and Kennard 1970) are widely adapted in the con-
text of genome-based prediction. In many experimental
studies they yielded higher or equal prediction accuracies
compared to variable selection or Bayesian methods (for

review, see de los Campos et al. 2013a and Gianola 2013).
This was especially the case in plant populations with high
linkage disequilibrium (LD) (Heslot et al. 2012; Lehermeier
et al. 2013; Wimmer et al. 2013). However, it was postulated
that variable selection methods such as LASSO or BayesCp
might be advantageous when predictions are performed
across diverse genetic material and/or if large-effect QTL
are segregating (Hayes et al. 2009; Zhong et al. 2009; Lorenz
et al. 2011). Multiparental populations derived from a set of
diverse parental lines should be highly suitable for testing
differences between these approaches as they provide suffi-
cient allelic diversity and can be assumed to show segrega-
tion for large-effect QTL.

Here, we address the above-mentioned questions by
investigating the efficiency of genome-based prediction with
two diverse half-sib maize (Zea mays L.) panels representing
a broad spectrum of allelic diversity of the European dent
and flint heterotic group, respectively. The employed design
is similar to the U.S. NAM panel (McMullen et al. 2009)
except that all lines are fully adapted to the test environ-
ments and heterotic pools were kept separate to allow eval-
uation of testcrosses. The specific objectives of our study
were to (1) compare prediction within biparental families
with prediction in multiparental populations for different
traits, (2) determine the number of half-sib lines required
to obtain predictive abilities achieved within biparental fam-
ilies, (3) show the impact of relatedness on prediction in
multiparental populations, (4) assess the ability to predict
complex traits across heterotic maize pools, and (5) investi-
gate LD and linkage phases and discuss their impact on pre-
diction in multiparental populations.

Material and Methods

Plant material

Two large half-sib panels comprising a diverse set of genotypes
from each of the two important European heterotic pools
dent and flint were generated within the European PLANT-
KBBE (Transnational PLant Alliance for Novel Technologies –
towards implementing the Knowledge-Based Bio-Economy in
Europe) CornFed project (Table 1). The generation and genetic
structure of the two panels is described in detail in Bauer et al.
(2013). Briefly, in the dent panel, 10 diverse dent founder lines
were crossed to a common central dent line, F353. In the flint
panel, 11 flint founder lines were crossed to a common central
flint line, UH007. Here, we refer to each biparental family by
its specific founder line. From each cross, doubled haploid
(DH) lines were generated from F1 plants. The resulting bi-
parental families contained on average 79 DH lines, ranging
from 17 (EP44) to 133 (F283) DH lines, which were pheno-
typed and genotyped. Overall, 841 lines from the dent and 811
lines from the flint panel were used for further analyses.

Field trial design and analysis

The DH lines were evaluated as testcrosses in the year 2011,
with the central line from the opposite pool used as tester;
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i.e., UH007 was the tester for all dent lines and F353 for all
flint lines. The dent panel field trials were conducted in four
European locations [Mons (France), Einbeck, Wadersloh,
Roggenstein (Germany)]. Trials were laid out as augmented
p-rep designs according to Williams et al. (2011). At each
location, 960 entries consisting of 841 testcrosses of DH
lines and parental testcrosses were planted with one-fourth
of the entries replicated. Trials were laid out in 120 incom-
plete blocks consisting of 10 plots each, and hybrid NK Fal-
cone was used as check. Field trials for the flint panel were
conducted at six European locations [Ploudaniel (France),
Eckartsweier, Einbeck, Roggenstein, Wadersloh (Germany),
and La Coruña (Spain)]. The field design also comprised
960 entries, consisting of 811 testcrosses of DH lines and
parental testcrosses, at each location. In the flint panel one-
third of the entries were replicated in each location. Trials
were laid out in 160 incomplete blocks consisting of eight
plots each and hybrid A287 was used as check variety. Five
phenotypic traits were recorded in both panels, namely bio-
mass dry matter yield (DMY, dt/ha), biomass dry matter
content (DMC, %), plant height (PH, cm), days to tasseling
(DtTAS, days), and days to silking (DtSILK, days). Pheno-
typic data are provided in Supporting Information, File S1.
Phenotypic data analyses were conducted separately for the
dent and flint panels. For DMY and DMC, plots containing
,70% of the median number of plants per location were
classified as missing data. Outlying observations were con-
secutively detected and removed on the basis of maximum
deviate residuals (test according to Grubbs 1950; a ¼ 0:05)

from a mixed model including genotype, location, genotype 3
location interaction, replication, and block effects. For each
trait ,0.9% of plots were discarded in the dent trials and
,1.2% in the flint trials. Individual variance components for
each family were estimated using the model

yijklm ¼ mþ faml þ gðfamlÞi þ locj þ g � locðfamlÞij þ repkðjÞ
þ blockmðjkÞ þ eijklm;

(1)

where yijklm is the plot observation for genotype i of family l
at location j in replication k in block m. The model contains
an overall mean m, the random effects faml, gðfamlÞi, locj,
g � locðfamlÞij, repkðjÞ, and blockmðjkÞ, for the lth family, for
genotype i conditional on family l, for the jth location, the
genotype 3 location interaction conditional on family l, for
the kth replication nested within locations, and the mth
block nested within replications within locations, respec-
tively. Plot specific residuals eijklm were assumed to be nor-
mally distributed with mean zero and family-specific
variance: eijklm � Nð0;s2

ðlÞÞ: For each family l unique genetic
ðs2

gðlÞÞ and genotype 3 location interaction variance compo-
nents ðs2

geðlÞÞ were modeled. Variance components and their
standard errors were obtained by restricted maximum-
likelihood estimation using the ASReml-R package (Butler
et al. 2009). Trait heritabilities on a line mean basis were
estimated within each family l according to standard proce-
dures in plant breeding using Hung et al. (2012)

Table 1 Total number of lines (n) and simple matching coefficient (SM) between parental lines for 10 dent (F353 3 founder) and 11 flint
(UH007 3 founder) families. Mean, variance components, and heritabilities (6 standard errors) of each family for the traits dry matter
yield and dry matter content

Dry matter yield (dt/ha) Dry matter content (%)

Founder n SM x s2
g s2

ge h2 x s2
g s2

ge h2

B73 64 0.608 193.35 93.82 6 27.49 112.18 6 29.01 0.65 6 0.08 33.08 1.38 6 0.36 0.96 6 0.30 0.74 6 0.06
D06 99 0.642 189.89 78.21 6 17.17 42.27 6 19.61 0.68 6 0.06 35.32 1.68 6 0.32 0.82 6 0.24 0.79 6 0.04
D09 100 0.668 187.44 31.21 6 11.05 61.90 6 19.74 0.46 6 0.10 36.36 1.07 6 0.25 1.09 6 0.30 0.65 6 0.07
EC169 66 0.617 184.18 46.49 6 18.89 82.22 6 31.01 0.49 6 0.12 36.92 2.28 6 0.53 0.84 6 0.42 0.79 6 0.05
F252 96 0.671 178.08 120.75 6 21.88 40.27 6 14.49 0.83 6 0.03 37.99 1.81 6 0.40 1.95 6 0.37 0.69 6 0.06
F618 104 0.645 194.70 20.18 6 9.96 66.15 6 20.96 0.33 6 0.12 33.10 2.25 6 0.40 1.09 6 0.26 0.82 6 0.03
Mo17 53 0.627 184.51 89.04 6 34.79 194.84 6 42.90 0.54 6 0.11 32.30 2.15 6 0.56 1.38 6 0.35 0.79 6 0.05
UH250 94 0.634 187.53 67.37 6 18.63 73.86 6 29.00 0.57 6 0.08 35.82 2.21 6 0.40 0.45 6 0.29 0.83 6 0.04
UH304 81 0.765 192.51 47.71 6 14.08 39.26 6 22.62 0.58 6 0.09 35.30 2.29 6 0.46 0.72 6 0.31 0.81 6 0.04
W117 84 0.625 176.16 76.46 6 21.51 99.73 6 27.86 0.62 6 0.08 35.66 3.10 6 0.60 0 0.84 6 0.03

D152 72 0.749 172.39 121.09 6 25.65 38.94 6 19.94 0.82 6 0.04 32.78 1.56 6 0.36 0.47 6 0.38 0.75 6 0.05
EC49A 29 0.656 186.06 57.84 6 29.06 79.69 6 48.64 0.58 6 0.14 30.64 0.99 6 0.42 1.45 6 0.54 0.68 6 0.11
EP44 17 0.615 178.99 121.83 6 57.48 35.26 6 52.58 0.78 6 0.10 29.39 0.99 6 0.53 0.68 6 0.66 0.70 6 0.13
EZ5 26 0.613 187.08 115.06 6 51.92 128.49 6 69.36 0.65 6 0.12 29.32 0.74 6 0.36 0 0.61 6 0.12
F03802 129 0.753 186.30 85.19 6 15.68 59.28 6 19.82 0.71 6 0.04 34.47 1.51 6 0.26 0.88 6 0.28 0.75 6 0.04
F2 54 0.723 176.94 123.27 6 30.78 42.88 6 26.50 0.81 6 0.05 32.66 1.36 6 0.36 0.16 6 0.39 0.76 6 0.06
F283 133 0.716 185.16 273.47 6 38.19 59.09 6 17.81 0.89 6 0.02 32.22 3.17 6 0.45 0.36 6 0.26 0.88 6 0.02
F64 64 0.621 187.62 109.11 6 27.91 97.81 6 28.29 0.72 6 0.06 29.23 1.16 6 0.30 0.73 6 0.35 0.72 6 0.06
UH006 94 0.791 179.61 152.21 6 27.49 55.04 6 19.60 0.83 6 0.03 33.49 2.82 6 0.50 0.24 6 0.35 0.85 6 0.03
UH009 98 0.815 185.55 51.53 6 12.37 30.25 6 19.19 0.64 6 0.06 33.09 0.82 6 0.19 0.31 6 0.27 0.67 6 0.06
DK105 95 0.738 188.32 230.48 6 38.86 53.33 6 20.53 0.88 6 0.02 33.45 3.19 6 0.57 0.92 6 0.38 0.84 6 0.03

Mean (x), genetic variance component (s2
g), genotype by environment variance component (s2

ge), and heritability (h2; 6SE).
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h2 ¼
s2
gðlÞ

s2
gðlÞ þ s2

geðlÞ
.
Lþ s2

ðlÞ
.
L � R

;

where s2
gðlÞ is the genotypic variance, s2

geðlÞ is the genotype
by environment (G 3 E) variation, s2

ðlÞ is the residual vari-
ance within family l, L is the number of locations (L = 4 for
dent and 6 for flint), and R is the number of replications
(R = 5/4 for dent and 4/3 for flint). Standard errors of
heritability estimates were derived from standard errors of
corresponding variance components using the delta method
(Holland et al. 2003). For calculation of adjusted means for
each trait and genotype, model (1) was modified by treating
the genotype effect as fixed and excluding family effects.

Analysis of genotypic data, relatedness, and
linkage phases

All 1652 DH lines and parental lines of the dent and flint
panel were genotyped with the Illumina MaizeSNP50 Bead-
Chip containing 56,110 SNPs (Ganal et al. 2011). Genotypic
data were deposited in a previous project (Bauer et al. 2013)
at National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus as data set GSE50558 (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50558).
As we have fully homozygous DH lines, heterozygous calls
were treated as missing values. Markers with a call frequency
,0.9, a GenTrainScore,0.7, a minor allele frequency (MAF)
,0.01, or .10% missing values were discarded. Missing val-
ues were imputed as in Lehermeier et al. (2013) based on
family information and on flanking markers using the soft-
ware BEAGLE (Browning and Browning 2009) implemented
within the R function codeGeno() from the R package syn-
breed (Wimmer et al. 2012). In the dent (flint) panel, marker
genotypes were coded based on the number of alleles that
differed from the central line F353 (UH007) with values 0 or
2. For the joint analyses of the dent and flint data set the
same SNP selection scheme was performed, which resulted in
34,116 high-quality polymorphic SNPs. Here, marker geno-
types were coded according to the number of copies of
the minor allele.

As similarity measure between pairs of lines, the simple
matching coefficient, which counts the fraction of shared
alleles among lines, was calculated (Sneath and Sokal 1973).
To investigate the genotypic relatedness between lines, we
performed agglomerative hierarchical clustering on parental
lines using pair-group averages from the R package cluster
(Maechler et al. 2013). Principal component analysis (PCA)
was performed separately on dent and flint DH lines. For the
analyses of genotypic relatedness a subset of SNP markers
known to generate ascertainment bias (Frascaroli et al.
2013) was excluded.

The similarity of linkage phases across two populations
was calculated according to Technow et al. (2012) for SNP
pairs polymorphic in both populations under consideration.
We calculated the fraction of SNP pairs with equal sign of the
linkage disequilibrium DAB ¼ pAB2 pApB in both populations,

where pAB denotes the haplotype frequency of AB, pA the
frequency of allele A at one marker locus, and pB the fre-
quency of allele B at the other locus. DAB ¼ 0 was considered
as different linkage phase when compared to positive or neg-
ative values. As LD was calculated only for pairs of polymor-
phic SNPs, the number of cases with DAB ¼ 0 was negligible.

Genome-based prediction model

We performed GBLUP by using the model

y ¼ Xbþ Zuþ e;

where y is an n-dimensional vector of adjusted means
obtained from the phenotypic analysis for a given trait.
The vector b is c-dimensional and includes fixed population
effects (c = 10 for the dent, c = 11 for the flint, and c = 21
for the combined dent and flint data set) and u is an n-
dimensional vector of random testcross effects that is as-
sumed to be normally distributed with u � Nð0;Us2

uÞ,
where U is an n3 n realized kinship matrix calculated on
the basis of marker data following Habier et al. (2007) and
s2
u is the testcross variance pertaining to the GBLUP model.

The n-dimensional vector of residuals e is assumed to be nor-
mally distributed with equal variance: e � Nð0; Is2

e Þ, where I
denotes the n3 n identity matrix and s2

e is the residual var-
iance pertaining to the GBLUP model. The design matrices X
ðn3 cÞ and Z ðn3 nÞ assign the adjusted means to the fixed
and random effects, respectively. In addition to GBLUP, we
used the Bayesian model BayesCp for prediction of genotypic
values (Habier et al. 2011). Here, posterior means of marker
effects were estimated within R function BGLR (Pérez and de
los Campos 2014) using a chain length of 50,000 where the
first 10,000 samples were discarded as burn-in.

Validation

We performed different validation schemes to compare
prediction within biparental families with prediction across
multiparental families and to perform prediction across
heterotic pools. To assess predictive abilities within biparental
families 10 times replicated fivefold cross-validation with
random sampling (10 3 5-fold R-CV) was performed. To
assess predictive abilities within biparental families with
constant estimation set size, we performed prediction by
randomly sampling 50 lines without replacement in the es-
timation set and the rest of the lines of the same family were
used as test set (R-CV). The sampling procedure was ran-
domly repeated 50 times. The predictive ability was calcu-
lated as Pearson correlation between observed and
estimated testcross values from the test set, averaged over
all replications. In all settings where estimation set size was
restricted to a minimum of 50 lines, we excluded the three
smallest flint families with Spanish origin (EC49A, EP44,
EZ5).

Further, we performed leave-one-cross-out cross-validation
(LOCO-CV). Here, we predicted testcross values of all
individuals of one biparental family based on genotype
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(GBLUP) or SNP (BayesCp) effects derived from genotypic
and phenotypic information of DH lines of all other families
of the same heterotic pool (dent or flint, respectively). Thus,
all lines of one family formed the test set and all other lines
from the same heterotic pool formed the estimation set. Pre-
dictive ability is stated as correlation of predicted and ob-
served testcross values from the test set together with
standard errors derived from 1000 Bootstrap samples with
replacement (Efron and Tibshirani 1993). Additionally, the
sample size of the estimation set in LOCO-CV was varied
from 25 to 675 DH lines in increments of 25. Sampling in
the estimation set was performed randomly across lines
from all families and was repeated 100 times. Here, predic-
tive ability of LOCO-CV is reported as the average over 100
replications. To investigate the influence on prediction within
families if half-sib lines are added to the estimation set we
performed CV within each biparental family using 50 full-sib
lines in the estimation set as described above but additionally
included all available half-sib lines in each estimation set. For
the prediction across heterotic pools, we predicted testcross
values of the dent lines using effects estimated on the basis of
flint lines and vice versa. As in LOCO-CV, standard errors of
predictive abilities were derived from 1000 Bootstrap samples.

To investigate the impact of relatedness on predictive
ability, we performed cross-with-cross prediction (CwC). Here,
genotypic values of lines from one family were predicted
using each of the other families as estimation sets. To avoid
confounding effects due to differences in sample size of the
different families, each family was restricted to equal size by
randomly sampling 50 lines. Sampling was repeated 100
times and predictive ability is stated as mean predictive
ability from those 100 replications. Predictive abilities from
CwC prediction within each pool were compared with the
simple matching coefficient of the founder lines forming the
estimation and the test set using the Mantel test (Mantel
1967). The simple matching coefficient was calculated on
the basis of all SNPs and based on SNPs that were polymor-
phic in the two families under consideration. The Mantel
statistic is the correlation of the cðc2 1Þ=2 entries below
the diagonal of two symmetric c3 c-dimensional matrices.
The significance of the correlation is evaluated by permuting
columns and rows of the first matrix while keeping the sec-
ond matrix fix. For this purpose, predictive abilities from all
reciprocal estimation and test set pairs were averaged to
obtain a symmetric matrix of predictive abilities.

Results

Genetic diversity of multiparental populations

We investigated the marker-based similarity of the parental
lines and their progeny within and across the two half-sib
panels. Molecular analyses largely confirmed a priori expect-
ations on the diversity of the investigated material. Cluster
analysis clearly separated parental lines originating from the
dent and the flint pool (shown in Bauer et al. 2013). Within

the two heterotic pools, parental lines clustered according to
their respective origins and breeding history. Principal com-
ponent analyses on the DH lines clearly depicted the multi-
parental family structure in both panels (Figure S1). Within
the dent panel the first principal component (7.9% variance
explained) separated families descending from the breeding
program of the University of Hohenheim (founder lines D06,
D09, and UH250) from the remaining dent families. Within
the flint panel, the first principal component (7.4% variance
explained) separated the families derived from the more
recent German founder lines (UH006, UH009) from the fam-
ilies derived from French founder lines (F03802, F283) and
from DK105. The second principal component (6.0% variance
explained) separated families of Spanish (EC49A, EP44, EZ5)
and Argentinian (F64) origin from the other families.

For all pairs of the 1652 DH lines, simple matching and
realized kinship coefficients were calculated (Figure S2). On
average, the similarity among flint lines was higher than
that among dent lines as parental lines were more related
with the central line UH007. As expected, realized kinship
among full-sib lines (sharing both parents) was higher than
among half-sib lines (sharing the central line as parent).
High average similarities among half-sib lines were observed
in both panels for the material originating from the Univer-
sity of Hohenheim (dent: D06, D09, UH250; flint: D152,
UH006, and UH009). DH lines derived from the dent parent
UH304 showed a higher similarity with all other dent lines
as the founder line UH304 is related with the common dent
parent F353, both sharing an Iodent background (Bauer
et al. 2013). The genetic similarity of DH lines originating
from opposite pools (flint or dent) was low.

Predictive power of multiparental compared to
biparental families

First, we compared prediction of genetic values within
biparental families and in multiparental families. Predictive
abilities for DMY within the 21 biparental families using
10 3 5-fold R-CV and LOCO-CV are presented in Figure 1.
Predictive abilities from GBLUP and BayesCp differed only
marginally for both validation schemes and the different
traits (results not shown). Thus, we report only results
obtained with GBLUP in the remainder of the article. For
DMY, Figure 1 shows that prediction of the genetic values of
DH lines from a specific family was similarly efficient when
the model was trained on all their half-sib relatives (LOCO-
CV) as compared to model training on their full-sib relatives
(10 3 5-fold R-CV). To eliminate bias due to different sam-
ple sizes in estimation sets of 10 3 5-fold R-CV and LOCO-
CV, we refined this analysis. We compared prediction of
testcross performance within biparental families to predic-
tion across multiparental families by varying the sample size
of the estimation set. Predictive abilities for DMY obtained
within dent families using 50 full-sib lines as estimation set
ranged from 0.31 to 0.57, with an average value of 0.41
(Figure 2). With equal estimation set size of 50 lines, pre-
dictive abilities from multiparental family prediction reached
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an average value of 0.17. In the flint pool, predictive abilities
obtained from prediction within biparental families showed
more variation among families compared to the dent panel
(rangeflint ¼ ½0:27; 0:64�), with an average value of 0.48. By
using 50 half-sib lines instead of 50 full-sib lines in the estima-
tion set, predictive abilities were on average 0.30 in the flint
pool. With increasing estimation set size, predictive abilities
from LOCO-CV increased monotonically and reached the pre-
dictive ability achieved within biparental families for almost all
families. An exception was family UH304 in the dent pool.
Genetic values of lines derived from UH304 could not be pre-
dicted with the other dent lines, and predictive abilities stayed
slightly below zero for all estimation set sizes, whereas its
within-family predictive ability was about 0.39. For the major-
ity of families, 375 half-sib lines in the estimation set were
sufficient to reach the prediction performance of 50 full-sib
lines for DMY. For two dent (Mo17, UH304) and two flint
families (D152, DK105) the predictive power of full-sib lines
could not be reached by half-sib lines with the available num-
ber of 675 lines. However, except for UH304, predictive abili-
ties still increased with increasing estimation set size. Less than
200 half-sib lines were enough to reach the prediction perfor-
mance of 50 full-sib lines for the flint families F2 and UH006.

For DMC, the results of prediction within biparental
families and LOCO-CV are illustrated in Figure S3. Here, pre-
dictive abilities from prediction within biparental families
were on average higher than those for DMY with a mean
predictive ability of 0.58 for dent families and 0.52 for flint
families. When 50 half-sib lines were used as estimation set
instead of 50 full-sib lines, predictive ability decreased to an
average value of 0.22 for dent families and 0.25 for flint
families. For DMC, predictive abilities from LOCO-CV in-
creased for all families with increasing estimation set size,
but the high predictive power of full-sib lines could not be
reached with 675 half-sib lines for most families. On average,
LOCO-CV with estimation set size of 675 yielded predictive
abilities of 0.45 for dent families and 0.47 for flint families.

For PH and flowering time (DtTAS, DtSILK), the com-
parison of predictive abilities within biparental families and
from LOCO-CV is shown in Figure S4, Figure S5, and Figure
S6. On average, these three traits showed predictive abilities
higher than those of DMY and DMC, and the predictive
ability from LOCO-CV increased monotonically with sample

size. Further, we observed a pattern similar to that of DMY.
For the majority of families, an estimation set consisting of
675 half-sib lines reached the same predictive performance
as 50 full-sib lines.

For all five traits, we calculated predictive abilities on the
basis of estimation sets comprising a combination of 50 full-
sib and all available half-sib relatives of the lines in the test
set. Compared to prediction within biparental families,
predictive abilities increased for most families and traits
(Figure S7). On average over all traits and the 18 families
with n . 50 there was a substantial increase in mean pre-
dictive ability from 0.54 to 0.63 if in addition to full-sib rel-
atives half-sib families were included in the estimation set.

One advantage of prediction within biparental families is
that linkage phases between marker and QTL are identical
for all DH lines. To investigate the situation in LOCO-CV, we
compared linkage phases between DH lines from a given
family (test set in LOCO-CV) with DH lines from all other
families of the same heterotic group (estimation set in
LOCO-CV). For all dent (flint) families the fraction of equal
linkage phases with all other dent (flint) families was .0.95
(0.94) for neighboring SNP pairs (distance D,0.05 Mb) and
did not drop ,0.80 (0.78) with increasing distance (Figure
S8). The fraction of equal linkage phases among estimation
and test set, measured as area under the respective curve of
Figure S8, was positively correlated with predictive ability
from LOCO-CV (full sample size) averaged over all five traits
(rdent ¼ 0:48, rflint ¼ 0:53); however, correlations were not
significant, most likely due to a lack of statistical power.

Relationship between quantitative genetic parameters
and predictive ability

The diversity of the parental lines was also reflected in
significant mean differences and differences in genetic vari-
ance and trait heritability between families within the two
half-sib panels. Results for DMY and DMC are shown in Table
1, for the other traits in Table S1, Table S2, and Table S3. The
genetic variance of a specific family or trait could not be pre-
dicted from the simple matching coefficient of the respective
parental line with the central line (Table 1 and Figure S9).

The genetic and genotype3 environment interaction var-
iance as well as family-specific trait heritabilities varied sub-
stantially among families for all five traits. We investigated

Figure 1 Mean predictive ability
obtained with GBLUP for dry
matter yield from 10 3 5-fold
random cross-validation (R-CV)
within biparental families and
from leave-one-cross-out cross-
validation (LOCO-CV) for dent
and for flint families. Vertical
lines indicate the standard devia-
tions of the 50 CV folds (R-CV)
and Bootstrap standard errors
(LOCO-CV), respectively, and n
is the number of lines per family.
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the influence of the family-specific trait heritability on pre-
dictive abilities within biparental families for DMY. High and
significant ðP, 0:01Þ correlations were observed for both
half-sib panels (rdent ¼ 0:86; rflint ¼ 0:93). For all other
traits, correlations were .0.47 for dent families and
.0.70 for flint families. However, correlations were not sig-
nificant for DMC and the flowering traits, except for DtTAS
within flint families. Additionally we calculated prediction
accuracy as approximation of the correlation of predicted
values with true genetic values by dividing predictive abili-
ties with the square root of the heritability within the family
of the respective test set (Dekkers 2007). As expected, the
correlation between family-specific heritability and accuracy
generally decreased compared to the correlation with pre-
dictive ability due to a high negative autocorrelation be-
tween the two parameters. For dent families, correlations
were no longer significant. For flint families significant
ðP, 0:01Þ correlations persisted for DMY, PH, and DtTAS
(rDMY ¼ 0:89, rPH ¼ 0:92, rDtTAS ¼ 0:90).

We also investigated if the magnitude of the family-specific
trait heritability had an impact on the ability of this family to
predict genetic values of DH lines of a different family (CwC).
We averaged predictive abilities from CwC prediction ob-
tained with a given family and correlated it with its respective

trait heritability. Figure 3 shows the results for DMY for both
half-sib panels. For flint families the correlation was high with
0.84 ðP, 0:01Þ. A nonsignificant correlation of 0.32 was ob-
served for dent families. For all other traits correlations were
positive, for dent families between 0.13 and 0.74 and for flint
families between 0.17 and 0.82 (Figure S10). However, cor-
relations were significant ðP, 0:05Þ only for DtSILK in both
panels and for DMC in the flint panel. Here, correlations
changed only marginally when prediction accuracies instead
of predictive abilities were considered.

Impact of relatedness between parental lines on
predictive ability

The impact of the genetic similarity between parental lines
of half-sib families on their mutual predictive ability was
inferred from their respective CwC predictions. Figure 4 shows
the heatmap of predictive abilities for DMY from CwC pre-
diction, with families ordered on the basis of the dendrogram
of parental lines. Predictive abilities varied strongly (20.34–
0.61) and were generally higher for highly related families
(parental lines close to each other in the dendrogram). We
compared predictive abilities from CwC prediction within
each pool with the simple matching coefficient between
pairs of founder lines. Correlations of predictive abilities

Figure 2 Mean predictive ability
of dry matter yield (DMY) from
leave-one-cross-out cross-validation
(LOCO-CV) for increasing estima-
tion set size. Mean predictive ability
from prediction within biparental
families (R-CV) is shown by differ-
ent colored horizontal lines. (A)
Dent. (B) Flint. The dashed vertical
lines label predictive abilities at an
estimation set size of 50.
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of DMY with marker-based genetic similarity of founder
lines were weak and nonsignificant (P. 0.05) in both panels
when all SNPs were included in the analysis. When the sim-
ilarity between founder lines was calculated on the basis of
SNP markers segregating in either or both of the two families
of the CwC prediction, the correlation between predictive
ability and founder line similarity increased substantially
in both panels ðrdent ¼ 0:39; rflint ¼ 0:47Þ but correlations
in the dent panel were mainly driven by the high simple
matching coefficient of the related parental lines D06, D09,
and UH250 (Figure S11). A similar relationship between ge-
netic similarity and predictive ability was observed for all other
traits (data not shown).

Prediction across maize heterotic pools

As differences in linkage phases between markers and QTL
are known to affect predictive ability, we compared linkage
phases of SNP pairs for dent and flint DH lines (Figure S12).
Among neighboring SNP pairs a fraction up to 81% showed
equal linkage phases across both pools. However, for SNPs
further apart the fraction of equal linkage phases dropped
rapidly ,0.6 for a distance .0.25 Mb and was close to 0.5
for a distance of 1 Mb. When comparing linkage phases of
each dent with all flint families individually for 5 – 10 Mb
distant marker pairs, the fraction of equal linkage phases
varied from 0.49 to 0.63 (Figure S13).

Predictive abilities across pools, defined as correlations
between observed and predicted testcross values of dent lines
(flint lines) when flint lines (dent lines) were in the esti-
mation set, are reported in Table 2 with Bootstrap standard
errors obtained from 1000 random samples. Generally, pre-
diction across pools was not possible. Only for the flowering
traits predictive abilities were slightly higher than zero for

both comparisons. We evaluated correlations between ob-
served and predicted genotypic values from across pool pre-
diction for each family individually (Table S4). We observed
that for DMY, lines from family UH304 could be better pre-
dicted with families from the opposite pool than with dent
families and showed quite high across pool predictive abilities
over all traits (0.18–0.39). For most other families, predictive
abilities across pools were close to zero or even negative.

Discussion

We analyzed the prediction of testcross performance in
a large maize data set consisting of 21 biparental families
from two distinct maize pools, dent and flint, arranged in
two half-sib panels. This comprehensive new data set allowed
us to address important questions relevant for genome-based
prediction of testcross performance for highly relevant agron-
omic traits in multiparental populations. We investigated the
impact of linkage phases, quantitative genetic parameters,
and relatedness on the optimal design of estimation sets for
multiparental families and across heterotic pools.

Overall, observed levels of predictive abilities within
heterotic pools were in a medium range for all five traits.
For complex traits such as biomass yield, predictive abilities
within pools ranging from 0.4 to 0.6 were satisfactory,
indicating that for most families the sample size was suf-
ficiently large to obtain meaningful results. Similar predictive
abilities within biparental maize families were observed for
kernel and resistance traits in Riedelsheimer et al. (2013).
Crossa et al. (2014) also reported for grain yield predictive
abilities of 0.4, when prediction was performed within bipa-
rental maize populations.

LD structure and relatedness within biparental and
multiparental families

We investigated LD and linkage phases for our set of multiple
biparental families, because the consistency of marker-QTL
linkage phases between estimation set and selection candi-
dates is a crucial assumption for efficient genome-based
prediction (Goddard and Hayes 2007; De Roos et al. 2009;
Hayes et al. 2009). In biparental and multiparental popula-
tions, different factors contribute to the creation of LD. Within
a single biparental DH family, population structure is absent
and LD is purely generated by linkage. For DH lines derived
from the same cross of two homozygous parents the LD DAB

between two polymorphic loci can be calculated on the basis
of the recombination frequency r as 60:25ð12 2rÞ with the
sign depending on the linkage phase of the parents (same
linkage phase of both parental gametes returns a positive
value). Thus, DAB can take values 0.25 or 20.25 if no recom-
bination takes place ðr ¼ 0Þ. If at least one locus is mono-
morphic or if recombination frequency is at its maximum
value of 0.5, DAB ¼ 0. Thus, two biparental families with
one common parent (half-sib lines) are expected to have
equal linkage phases because only gametes with the same
linkage phase will show polymorphism with the common

Figure 3 Predictive ability from cross-with-cross prediction (CwC) for dry
matter yield (DMY) averaged over all combinations involving the same
full-sib family in the estimation set compared to the heritability of this
family. Colors indicate the founder line of the family in the estimation set.
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parent at both loci. In our data this was seen in the compar-
ison of linkage phases between two families from the same
heterotic pool, where as expected all SNP pairs had equal
linkage phases (results not shown).

If two biparental families are combined, the arising LD is
calculated as the weighted mean of the LD within each
family plus the LD that arises due to admixture because of
differences in allele frequencies (Nei and Li 1973),

DAB ¼ p1DAB1 þ p2DAB2 þ p1p2ðpA1 2 pA2ÞðpB1 2 pB2Þ;

where p1 (p2) is the frequency of family 1 (2) in the
admixed population, DAB1 (DAB2 ) is the value of LD in family
1 (2), and pA1 (pA2) and pB1 (pB2) are the frequencies of
alleles A and B in family 1 (2), respectively.

According to this, if two half-sib families are combined,
the sign of DAB can change only compared to a third half-sib
family if allele frequencies differ between the two families
because DAB1 and DAB2 have equal sign. Allele frequencies
within biparental families are expected to be 0.5 for segregat-
ing loci, but main differences emerge if one family segregates

Figure 4 Heatmap of predictive ability of dry matter yield from cross-with-cross prediction (CwC). Families are ordered by the dendrogram of founder
lines. Asterisks indicate predictive abilities .2 standard deviations derived from 100 replicated samplings.
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whereas the other family does not segregate for specific loci.
If multiple families (say K families) are combined, as in the
estimation set of LOCO-CV in our study, with frequencies
pk ðk ¼ 1; :::;K;

PK
k¼1pk ¼ 1Þ, the above formula for the LD

in the combined population can be extended according to
Charcosset and Essioux (1994) to
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Here,
P

pkpAk and
P

pkpBk are the allele frequencies pA and
pB in the combined population. If A and B denote the alleles
at locus 1 and locus 2 of the common parent of K half-sib
families, all families have LD value of DABk $0 (k= 1, . . ., K)
and the allele frequencies pA and pB are expected to be
.0.5. Thus, for loci in linkage equilibrium within every fam-
ily ðDABk ¼ 0; for all k) or with low LD, DAB can become
negative if at least one family does not segregate for one
locus ðpAk ¼ 1 and pBk ¼ 0:5; or vice versa). This leads to
differences in allele frequencies for the different families and
consequently to creation of negative LD in a combination of
multiple half-sib families due to admixture. However, if
there is strong LD within families, the probability that link-
age phases change from one full-sib family compared to
a combination of connected full-sib families is low. By in-
vestigating the linkage phases of each dent (flint) family
compared to the combination of all other dent (flint) fami-
lies, we observed that the concordance of linkage phases
varied for individual families but was in general very high
for SNP pairs ,5 Mb apart (.0.8; Figure S8). This variation
of linkage phases is related to the genetic similarity of
a founder line with all other founder lines. The average
simple matching coefficient of one dent (flint) founder line
with the other dent (flint) founder lines was highly corre-
lated with the respective area under the curve of Figure S8
ðrdent ¼ 0:96; rflint ¼ 0:96Þ reflecting the relationship be-
tween the variation in linkage phases and SNP allele fre-
quencies in the admixed estimation sets. As expected from
the high correlation of the mean simple matching coefficient
between founder lines and the fraction of equal linkage
phases, both factors were similarly associated with predic-
tive abilities from LOCO-CV.

The impact of relatedness of the founder lines contribut-
ing to estimation and test set was further investigated using

results from CwC prediction within both half-sib panels. Here,
as shown by theory, linkage phases are identical between
estimation and test set. As a general trend we found that high
relatedness tended to result in high prediction performance
and low relatedness to yield low prediction performance.
However, association between relatedness and predictive
ability was generally quite weak. This confirms results from
Daetwyler et al. (2013) who found associations between re-
latedness and accuracy at the “macro level” but not at the
“micro level.” Interestingly, we observed in the CwC proce-
dure that prediction was higher than expected across families
derived from lines originating from the same breeding pro-
gram, although lines belonged to distant genetic pools and
despite only little relatedness could be observed with marker
data. This could be due to similar selection strategies and
adaptation to similar environmental conditions within one
breeding program. Therefore, there might be other factors
that affect prediction performance, which cannot be explained
or captured by SNP markers alone.

Prediction across multiparental families compared to
within biparental families

Due to the advantages of high LD and absence of population
structure, Crossa et al. (2014) considered accuracies from
prediction within biparental families as the maximum ob-
tainable. On the other hand, maximum allelic diversity is sam-
pled on diversity panels as described for maize by Rincent
et al. (2012) and Riedelsheimer et al. (2012). Multiparen-
tal populations combine the advantages of both approaches
as (i) the superiority of marker-based over pedigree-based
prediction capitalizes on capturing the Mendelian sampling
term within families, and (ii) by combining several bipa-
rental families in the estimation set, the chance that there
is segregation for QTL that are relevant for the family in the
test set is higher.

Our results showed that for a given family, similar
predictive abilities could be obtained by combining several
half-sib families in the estimation set as compared to
predicting within this family, but only with an increase in
estimation set size. When testcross performance of a family
was predicted with all available half-sib lines (LOCO-CV),
predictive abilities over all traits and families were on
average 0.50, whereas with full-sib lines in the estimation
set (R-CV) predictive abilities were 0.54. This prediction
performance could be further increased to an average value
of 0.63 by adding all additional available half-sib families to
the estimation set consisting of 50 full-sib lines. One possible

Table 2 Predictive abilities (6 Bootstrap standard error from 1000 Bootstrap samples) for the five
traits dry matter yield (DMY), dry matter content (DMC), plant height (PH), days to tasseling (DtTAS),
and days to silking (DtSILK) when dent lines are in the estimation set (ES) and flint lines are in the
test set (TS), and vice versa

ES/TS DMY DMC PH DtTAS DtSILK

Dent/flint 20.072 6 0.030 0.136 6 0.034 0.197 6 0.036 0.098 6 0.034 0.186 6 0.037
Flint/dent 0.010 6 0.033 20.119 6 0.036 20.134 6 0.036 0.194 6 0.034 0.075 6 0.043
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reason why the prediction with multiple half-sib families
worked equally well with a sufficient estimation set size is
that the probability of changing linkage phases between
estimation and test set is low if several half-sib families are
combined into one estimation set. For practical applications
it is appealing that our results show that new crosses can be
predicted with high accuracy if multiple half-sib families are
used in the estimation set as long as they share one common
parent, and thus linkage phases between markers and QTL
are largely consistent. Predictive abilities did not signifi-
cantly change if four, six, or nine half-sib families constituted
the estimation set of size n = 200 (data not shown). Includ-
ing additional lines from the opposite pool (i.e., unrelated
families with different linkage phases) to the estimation set
of LOCO-CV had no impact on predictive abilities in our
study (results not shown). This might be surprising as one
might expect that including unrelated families to the esti-
mation set should lead to a decrease of prediction perfor-
mance as different linkage phases between markers and QTL
might exist that in turn lead to wrongly estimated marker
effects (Riedelsheimer et al. 2013). However, as the relation-
ship between dent and flint lines observed by markers is
close to zero, as seen on the heatmap of the realized kinship,
the GBLUP model does not borrow information from lines of
the other pool for prediction of lines from the same pool.
Accordingly, it was also stated by de los Campos et al.
(2013b) that data from unrelated individuals contribute lit-
tle to prediction performance.

In the dent panel, the prediction performance of LOCO-CV
relative to R-CV differed for the investigated traits. For DMY,
predictive abilities obtained with R-CV were �0.4 and the
same prediction performance could be reached with half-sib
lines in LOCO-CV. For DMC however, predictive abilities within
families were much higher (0.48–0.77) and could generally
not be reached with the full set of half-sib lines in LOCO-CV.
The substantially decreased prediction performance of LOCO-
CV compared to prediction within families for DMC might in-
dicate that there are specific genetic factors contributing to
variation in DMC within each biparental family.

In our data, an outlier was found with dent family UH304
for the trait DMY, but not for the other traits. Lines of this
family could not be predicted on the basis of other dent
families for DMY in the LOCO-CV scenario. As all dent
families are equally connected through one common parent,
no relevant differences in linkage phases were observed
between UH304 and the other dent families. Thus, differ-
ences in linkage phases as it has been suggested in other
outlying cases of low prediction performance (Riedelsheimer
et al. 2013; Würschum et al. 2013) cannot be a reason for the
poor prediction performance here. UH304 was the only
Iodent founder line within the dent pool and thus less re-
lated to the other founder lines. Additionally, UH304 is
a more recently developed line compared to the other
founder lines and may have experienced different selection
pressure, especially for DMY. DH lines of this family had
a higher genetic similarity among each other compared to

the other dent families, as the two parental lines UH304 and
F353 have both an Iodent background and showed high
relatedness. However, despite the low genotypic variation
observed from marker data, family UH304 showed an in-
termediate variation of phenotypic values, which may have
contributed to the low predictive ability for this family.

Prediction across maize heterotic pools

One of the most extreme settings in maize is the prediction
across heterotic pools that are used for hybrid production; in
Central Europe these are mainly dent and flint. Generally,
the prediction across the two maize pools failed in our study
with predictive abilities close to zero. This can be readily
explained by the missing relatedness and inconsistent
linkage phases between the pools (Figure S12 and Figure
S13). Recently, Technow et al. (2013) investigated predic-
tive abilities across dent and flint lines for line per se perfor-
mance of the trait Northern corn leaf blight resistance. They
obtained slightly higher predictive abilities than those ob-
served in our study, with a predictive ability up to 0.25 for
the prediction of line per se performance across flint and
dent heterotic pools. Their findings are in line with our
observation of slightly increased prediction performance
across pools for flowering traits. In breeding, selection of
lines is mainly based on their testcross performance for yield
and heterosis is maximized if opposite alleles are fixed in
each pool. Thus, dent and flint lines are assumed to differ
mainly at QTL affecting yield related traits. A companion
study on QTL mapping using the same data detected ,15%
common QTL for both pools across the five traits and no
overlapping QTL in dent and flint for DMY, indicating that
selection favored different alleles in the two pools (H. Giraud,
C. Lehermeier, E. Bauer, M. Falque, V. Segura, C. Bauland,
C. Camisan, L. Campo, N. Meyer, N. Ranc, W. Schipprack,
P. Flament, A. E. Melchinger, M. Menz, J. Moreno-González,
M. Ouzunova, A. Charcosset, C.-C. Schön, L. Moreau, unpub-
lished results).

To date, predicting completely distinct genetic material is
not possible. Further research would be necessary to de-
velop new models adapted to such prediction scenarios. It
has been assumed that Bayesian and variable selection
models rely more on information from LD whereas GBLUP
mainly uses information from relatedness (Habier et al.
2007). Thus, it was assumed in the literature that sparse
models can be used in a broader sense and are superior to
GBLUP for across family prediction or prediction across gen-
erations (Meuwissen 2009; Daetwyler et al. 2013). Gener-
ally, variable selection methods did not improve prediction
performance across pools in our data and results from
BayesCp were highly similar compared to results from
GBLUP (results not shown).

Impact of quantitative genetic parameters on
prediction performance

We observed a strong association between family-specific her-
itability and predictive abilities obtained with R-CV within
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biparental families. Here, heritability is equal for estima-
tion and test set and higher prediction performance comes
from a higher signal-to-noise ratio within both the estima-
tion and the test set. To account for the signal-to-noise
ratio within the phenotypic values in the test set, a common
approach is to calculate prediction accuracies by dividing
the predictive ability by the square root of the heritability
within the test set (Dekkers 2007; Daetwyler et al. 2013).
However, this introduces a high negative autocorrelation
between family-specific heritability and accuracy, which
needs to be taken into account when interpreting results.
In within-family prediction of the flint pool, the significant
association between family-specific trait heritabilities and
prediction performance persisted when based on predic-
tion accuracies, thus indicating a significant effect of the
trait heritability of the estimation set on prediction perfor-
mance. This was not the case in the dent families, which
were evaluated in fewer locations and had a much larger
range of family-specific heritabilities. However, for both
half-sib panels we also observed a positive correlation of
predictive ability (and accuracy) with family-specific trait
heritabilities in the estimation set of CwC, which confirms
the desirability to use estimation sets with high heritability
and high genetic variance (Guo et al. 2014). However, it was
not possible to predict the genetic variance of the progenies
of a specific cross from the molecular similarity of the re-
spective founder and the central line. This is in accordance
with observations of Hung et al. (2012) based on the U.S.
NAM population and numerous other studies investigating
the relationship between genetic similarity and variance in
various crops (Helms et al. 1997; Burkhamer et al. 1998;
Melchinger et al. 1998; Gumber et al. 1999). Thus, the ap-
propriate choice of parental lines for new crosses yielding
large genetic variance and an efficient estimation set for
prediction remains a challenge.

Conclusions

We showed that if several half-sib families are combined,
linkage phases between markers and QTL can change only
slightly and thus, half-sib lines are beside full-sib lines an
appropriate basis for the construction of an estimation set.
Our findings have an important impact on the experimental
design of estimation sets used for genome-based prediction
in breeding programs for crops. Instead of relying on pre-
diction within families, we can construct larger estimation
sets by including half-sib lines. With only a few hundred
half-sib lines, reasonable predictive abilities could be obtained
for prediction of testcross performance in maize—an order of
magnitude that is available in commercial breeding pro-
grams. Additionally, adding half-sib lines to an estimation
set consisting of full-sib lines could further increase predic-
tion performance. It was shown that without relatedness the
prediction of complex traits across distinct heterotic groups
is not possible. In cross-with-cross prediction, no strong lin-
ear association between relatedness of founder lines and

predictive ability could be observed. Our results indicated
that prediction performance is higher among lines that orig-
inate from the same breeding program, even if no related-
ness could be observed on the basis of marker data.
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Figure S1     Principal component analysis of dent and flint  lines. First and second principal component of dent  lines (A) and of 
flint lines (B). Colors indicate DH lines belonging to different full‐sib families. 
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Figure S2   Heatmap of kinship U according to Habier et al. (2007) (blue, upper diagonal) and of simple matching coefficient (red, 

lower diagonal) among DH lines. * ESP denotes the three smallest families with Spanish origin (EC49A, EP44, EZ5). Lines separate 

different families. 
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Figure  S3     Mean  predictive  ability  of  dry matter  content  (DMC)  from  LOCO‐CV  for  increasing  estimation  set  size. Mean 

predictive ability from prediction within biparental families is shown by different colored horizontal lines. A) Dent. B) Flint. The 

dashed vertical lines label predictive abilities at an estimation set size of 50. 
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Figure S4   Mean predictive ability of plant height (PH) from LOCO‐CV for increasing estimation set size. Mean predictive ability 

from prediction within biparental families  is shown by different colored horizontal  lines. A) Dent. B) Flint. The dashed vertical 

lines label predictive abilities at an estimation set size of 50. 
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Figure S5   Mean predictive ability of days to tasseling (DtTAS) from LOCO‐CV for increasing estimation set size. Mean predictive 

ability  from prediction within biparental  families  is shown by different colored horizontal  lines. A) Dent. B) Flint. The dashed 

vertical lines label predictive abilities at an estimation set size of 50. 
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Figure S6   Mean predictive ability of days to silking (DtSILK) from LOCO‐CV for increasing estimation set size. Mean predictive 

ability  from prediction within biparental  families  is shown by different colored horizontal  lines. A) Dent. B) Flint. The dashed 

vertical lines label predictive abilities at an estimation set size of 50. 
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Figure S7   Mean predictive abilities from cross‐validation within biparental families (R‐CV) for all five traits compared to mean 
predictive abilities when additionally families of the same heterotic pool (all half‐sib families) were  included  in the estimation 
set. Colors indicate different traits. 
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Figure S8     Fraction of equal  linkage phases according to distance between SNP pairs  in mega basepairs (  Mb). A: Each  line 

shows the comparison of one dent family with the other 9 dent families. B: Each line shows the comparison of one flint family 

with the other 10 flint families. 
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Figure S9     Genetic variance within biparental families compared to simple matching coefficient between central and founder 
line. A) Dry matter yield (DMY). B) Dry matter content (DMC). 
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Figure S10   Predictive ability from cross‐with‐cross prediction (CwC) averaged over all combinations involving the same full‐sib 

family  in  the estimation  set  compared  to  the heritability of  this  family. Colors  indicate  the  founder  line of  the  family  in  the 

estimation set. A) Dry matter content (DMC). B) Plant height (PH). C) Days to tasseling (DtTAS). D) Days to silking (DtSILK). 
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Figure S11     Predictive ability of dry matter yield (DMY) from cross‐with‐cross prediction  (CwC) averaged over both reciprocal 

estimations compared to simple matching coefficient between founder lines of crosses. Colors indicate the founder line of the 

family in the estimation and test set, respectively. A) Dent. B) Flint. 
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Figure  S12      Fraction of  equal  linkage phases  among dent  and  flint  lines  according  to distance between  SNP pairs  in mega 

basepairs (Mb). 
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Figure S13   Heatmap showing the fraction of equal linkage phases of 5‐10 Mb distant SNP pairs among dent and flint families.  
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Table S1   Total number of lines (n) and simple matching coefficient (SM) between parental lines of 10 dent (F353 x founder) 

and 11  flint  (UH007 x  founder)  families. Mean  ( x ), genetic variance  component  (
2
g ), genotype by environment variance 

component (
2
ge ), and heritability (h2; ± standard error) of dent and flint families estimated  for plant height (PH).  

Founder  n  SM  x  
2
g  

2
ge   2h  

B73  64  0.608  294.80 ± 1.09 60.66 ± 13.43 24.59 ± 7.66  0.84 ± 0.04

D06  99  0.642  292.18 ± 0.83 53.05 ± 9.78 19.15 ± 7.08  0.80 ± 0.04

D09  100  0.668  284.39 ± 0.92 69.51 ± 12.11 0  0.84 ± 0.02

EC169  66  0.617  283.51 ± 1.11 64.75 ± 14.05 8.26 ± 9.53  0.84 ± 0.04

F252  96  0.671  285.70 ± 0.93 65.79 ± 12.17 22.44 ± 8.62  0.81 ± 0.04

F618  104  0.645  291.36 ± 0.76 44.87 ± 8.37 5.1 ± 8.64 0.79 ± 0.05

Mo17  53  0.627  292.84 ± 1.22 58.87 ± 15.74 33.17 ± 13.30  0.76 ± 0.06

UH250  94  0.634  287.76 ± 0.92 65.53 ± 11.89 12.40 ± 8.32  0.83 ± 0.03

UH304  81  0.765  288.50 ± 0.82 37.35 ± 8.5 20.89 ± 8.20  0.73 ± 0.06

W117  84  0.625  273.78 ± 1.25 108.76 ± 20.47 24.16 ± 12.35  0.86 ± 0.03

D152  72  0.749  281.09 ± 0.97 56.73 ± 11.41 5.97 ± 8.04  0.85 ± 0.03

EC49A  29  0.656  288.71 ± 1.50 54.65 ± 17.58 21.96 ± 10.64  0.85 ± 0.05

EP44  17  0.615  292.29 ± 2.04 57.65 ± 24.39 0  0.85 ± 0.05

EZ5  26  0.613  296.48 ± 1.48 42.23 ± 16.17 28.16 ± 14.57  0.77 ± 0.08

F03802  129  0.753  292.93 ± 0.54 27.48 ± 4.78 12.75 ± 5.60  0.75 ± 0.04

F2  54  0.723  285.38 ± 0.97 38.55 ± 9.83 0  0.79 ± 0.04

F283  133  0.716  288.40 ± 0.96 108.89 ± 14.91 5.46 ± 6.59  0.91 ± 0.01

F64  64  0.621  299.27 ± 1.08 63.57 ± 13.40 14.97 ± 7.49  0.87 ± 0.03

UH006  94  0.791  288.09 ± 0.90 63.96 ± 11.16 16.70 ± 6.86  0.86 ± 0.03

UH009  98  0.815  287.88 ± 0.65 31.20 ± 6.07 7.87 ± 6.18  0.77 ± 0.04

DK105  95  0.738  291.70 ± 1.17 118.87 ± 18.86 0  0.93 ± 0.01
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Table S2   Total number of lines (n) and simple matching coefficient (SM) between parental lines of 10 dent (F353 x founder) 

and 11  flint  (UH007 x  founder)  families. Mean  ( x ), genetic variance component  (
2
g ), genotype by environment variance 

component (
2
ge ), and heritability (h2; ± standard error) of dent and flint families estimated for days to tasseling (DtTAS).  

Founder  n  SM  x  
2
g  

2
ge   2h  

B73  64  0.608  83.61 ± 0.16 0.78 ± 0.31 2.23 ± 0.39  0.50 ± 0.11

D06  99  0.642  81.39 ± 0.13 1.07 ± 0.23 0.96 ± 0.2  0.71 ± 0.05

D09  100  0.668  80.52 ± 0.15 1.54 ± 0.31 1.62 ± 0.24  0.73 ± 0.05

EC169  66  0.617  81.66 ± 0.12 0.68 ± 0.18 0.23 ± 0.21  0.71 ± 0.07

F252  96  0.671  80.12 ± 0.13 0.90 ± 0.24 2.00 ± 0.27  0.58 ± 0.08

F618  104  0.645  83.81 ± 0.14 1.12 ± 0.27 1.65 ± 0.32  0.62 ± 0.07

Mo17  53  0.627  84.63 ± 0.25 2.44 ± 0.67 1.45 ± 0.60  0.74 ± 0.07

UH250  94  0.634  82.07 ± 0.13 1.12 ± 0.24 0.85 ± 0.25  0.71 ± 0.06

UH304  81  0.765  81.70 ± 0.12 0.72 ± 0.18 0.65 ± 0.21  0.67 ± 0.07

W117  84  0.625  80.69 ± 0.14 1.04 ± 0.25 0.82 ± 0.26  0.70 ± 0.06

D152  72  0.749  79.63 ± 0.13 0.81 ± 0.21 1.22 ± 0.23  0.68 ± 0.06

EC49A  29  0.656  82.39 ± 0.24 1.17 ± 0.47 1.89 ± 0.47  0.70 ± 0.09

EP44  17  0.615  84.85 ± 0.51 3.74 ± 1.55 1.23 ± 0.79  0.87 ± 0.06

EZ5  26  0.613  84.26 ± 0.41 3.80 ± 1.24 2.02 ± 0.50  0.88 ± 0.04

F03802  129  0.753  81.08 ± 0.12 1.52 ± 0.24 1.16 ± 0.18  0.81 ± 0.03

F2  54  0.723  79.45 ± 0.20 1.62 ± 0.41 1.37 ± 0.28  0.80 ± 0.05

F283  133  0.716  81.15 ± 0.18 3.96 ± 0.55 1.14 ± 0.22  0.90 ± 0.01

F64  64  0.621  84.72 ± 0.27 4.14 ± 0.85 1.30 ± 0.42  0.88 ± 0.03

UH006  94  0.791  80.17 ± 0.15 1.79 ± 0.33 1.09 ± 0.22  0.83 ± 0.03

UH009  98  0.815  80.10 ± 0.12 1.07 ± 0.20 0.84 ± 0.17  0.79 ± 0.04

DK105  95  0.738  81.15 ± 0.23 4.55 ± 0.74 1.04 ± 0.27  0.91 ± 0.02
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Table S3   Total number of lines (n) and simple matching coefficient (SM) between parental lines of 10 dent (F353 x founder) 

and 11  flint  (UH007 x  founder)  families. Mean  ( x ), genetic variance component  (
2
g ), genotype by environment variance 

component (
2
ge ), and heritability (h2; ± standard error) of dent and flint families estimated for days to silking (DtSILK). 

Founder  n  SM  x  
2
g  

2
ge   2h  

B73  64  0.608  85.59 ± 0.20 1.57 ± 0.43 1.66 ± 0.39  0.70 ± 0.07

D06  99  0.642  82.85 ± 0.18 2.72 ± 0.47 0.95 ± 0.24  0.85 ± 0.03

D09  100  0.668  81.93 ± 0.21 3.74 ± 0.61 0 0.89 ± 0.02

EC169  66  0.617  83.02 ± 0.14 0.95 ± 0.24 0.44 ± 0.23  0.75 ± 0.06

F252  96  0.671  81.41 ± 0.18 2.38 ± 0.44 0.87 ± 0.32  0.80 ± 0.04

F618  104  0.645  85.57 ± 0.19 2.91 ± 0.52 0.97 ± 0.35  0.82 ± 0.03

Mo17  53  0.627  87.3 ± 0.33 4.93 ± 1.11 1.09 ± 0.43  0.89 ± 0.03

UH250  94  0.634  83.54 ± 0.18 2.71 ± 0.48 1.05 ± 0.24  0.85 ± 0.03

UH304  81  0.765  82.70 ± 0.16 1.59 ± 0.33 0.83 ± 0.24  0.79 ± 0.04

W117  84  0.625  82.30 ± 0.23 3.59 ± 0.68 0.92 ± 0.40  0.85 ± 0.03

D152  72  0.749  82.88 ± 0.15 1.23 ± 0.26 0.67 ± 0.20  0.81 ± 0.04

EC49A  29  0.656  85.89 ± 0.30 2.21 ± 0.69 0.60 ± 0.38  0.87 ± 0.04

EP44  17  0.615  88.41 ± 0.52 4.14 ± 1.66 1.93 ± 0.57  0.89 ± 0.04

EZ5  26  0.613  88.05 ± 0.36 2.92 ± 0.97 1.69 ± 0.43  0.86 ± 0.04

F03802  129  0.753  84.31 ± 0.14 2.12 ± 0.30 0.46 ± 0.15  0.89 ± 0.02

F2  54  0.723  82.25 ± 0.18 1.39 ± 0.34 1.38 ± 0.21  0.81 ± 0.04

F283  133  0.716  84.67 ± 0.23 6.46 ± 0.84 0.93 ± 0.17  0.95 ± 0.01

F64  64  0.621  88.41 ± 0.27 3.91 ± 0.81 2.00 ± 0.36  0.87 ± 0.03

UH006  94  0.791  83.16 ± 0.17 2.46 ± 0.41 0.83 ± 0.17  0.89 ± 0.02

UH009  98  0.815  82.50 ± 0.12 1.07 ± 0.20 0.96 ± 0.15  0.79 ± 0.04

DK105  95  0.738  84.19 ± 0.26 5.86 ± 0.91 0.96 ± 0.19  0.95 ± 0.01
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Table S4   Predictive abilities (± standard error from 1000 Bootstrap samples) when flint lines are in the test set and dent lines 
are in the estimation set, and vice versa. Predictive ability is evaluated within each family separately. 

  DMY  DMC  PH  DtTAS  DtSILK 

B73   ‐0.218 ± 0.101  ‐0.311 ± 0.097 ‐0.319 ± 0.096 0.006 ± 0.142  0.228 ± 0.148

D06   0.118 ± 0.099  0.212 ± 0.091 ‐0.102 ± 0.106 ‐0.218 ± 0.100  0.030 ± 0.109

D09   0.072 ± 0.126  0.072 ± 0.097 ‐0.145 ± 0.089 ‐0.173 ± 0.094  ‐0.285 ± 0.091

EC169   ‐0.235 ± 0.113  ‐0.008 ± 0.112 0.044 ± 0.132 ‐0.159 ± 0.143  ‐0.151 ± 0.170

F252   ‐0.107 ± 0.100  0.252 ± 0.099 0.138 ± 0.091 0.086 ± 0.100  ‐0.028 ± 0.091

F618   ‐0.069 ± 0.100  0.095 ± 0.093 0.245 ± 0.112 0.230 ± 0.087  0.156 ± 0.088

Mo17   0.131 ± 0.119  ‐0.223 ± 0.113 ‐0.202 ± 0.114 ‐0.01 ± 0.169  ‐0.044 ± 0.141

UH250   0.046 ± 0.104  0.109 ± 0.118 ‐0.343 ± 0.099 ‐0.194 ± 0.088  ‐0.290 ± 0.084

UH304   0.183 ± 0.109  0.232 ± 0.114 0.308 ± 0.097 0.276 ± 0.106  0.391 ± 0.090

W117   0.135 ± 0.104  ‐0.215 ± 0.092 ‐0.224 ± 0.104 ‐0.048 ± 0.133  ‐0.149 ± 0.123

D152   ‐0.409 ± 0.105  0.078 ± 0.109 ‐0.275 ± 0.11 ‐0.099 ± 0.098  ‐0.057 ± 0.132

EC49A   0.123 ± 0.179  ‐0.198 ± 0.162 0.210 ± 0.168 0.149 ± 0.189  0.156 ± 0.153

EP44   0.173 ± 0.260  0.242 ± 0.175 0.275 ± 0.212 0.273 ± 0.234  0.262 ± 0.225

EZ5   ‐0.143 ± 0.229  0.002 ± 0.197 ‐0.040 ± 0.168 0.207 ± 0.145  0.468 ± 0.087

F03802   ‐0.036 ± 0.084  ‐0.187 ± 0.077 0.059 ± 0.081 ‐0.049 ± 0.072  0.199 ± 0.088

F2   ‐0.379 ± 0.095  0.363 ± 0.099 ‐0.167 ± 0.104 ‐0.316 ± 0.128  ‐0.160 ± 0.114

F283   0.053 ± 0.077  0.178 ± 0.084 0.385 ± 0.072 0.050 ± 0.073  0.066 ± 0.081

F64   0.011 ± 0.114  0.009 ± 0.116 0.039 ± 0.114 0.153 ± 0.111  0.309 ± 0.113

UH006   ‐0.217 ± 0.094  ‐0.174 ± 0.112 0.329 ± 0.094 ‐0.099 ± 0.106  ‐0.173 ± 0.104

UH009   ‐0.080 ± 0.108  ‐0.028 ± 0.097 0.036 ± 0.096 ‐0.083 ± 0.103  ‐0.111 ± 0.092

DK105   ‐0.138 ± 0.099  ‐0.024 ± 0.102 0.141 ± 0.104 ‐0.028 ± 0.084  0.098 ± 0.098


