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ABSTRACT The domesticated crop maize and its wild progenitor, teosinte, have been used in numerous experiments to investigate the
nature of divergent morphologies. This study examines a poorly understood region on the fifth chromosome of maize associated with
a number of traits under selection during domestication, using a quantitative trait locus (QTL) mapping population specific to the fifth
chromosome. In contrast with other major domestication loci in maize where large-effect, highly pleiotropic, single genes are
responsible for phenotypic effects, our study found the region on chromosome five fractionates into multiple-QTL regions, none with
singularly large effects. The smallest 1.5-LOD support interval for a QTL contained 54 genes, one of which was a MADS MIKCC

transcription factor, a family of proteins implicated in many developmental programs. We also used simulated trait data sets to
investigate the power of our mapping population to identify QTL for which there is a single underlying causal gene. This analysis
showed that while QTL for traits controlled by single genes can be accurately mapped, our population design can detect no more than
�4.5 QTL per trait even when there are 100 causal genes. Thus when a trait is controlled by $5 genes in the simulated data, the
number of detected QTL can represent a simplification of the underlying causative factors. Our results show how a QTL region with
effects on several domestication traits may be due to multiple linked QTL of small effect as opposed to a single gene with large and
pleiotropic effects.

IN evolutionary biology, quantitative trait locus (QTL) map-
ping has been used with great success to define the genetic

architecture controlling morphological differences between
species. These QTL mapping experiments have identified
many QTL with large effects in animal (White et al. 2012;
Alem et al. 2013; Miller et al. 2014) and plant systems
(Paterson et al. 1991; Xiong et al. 1999; Wills and Burke
2007; Shannon 2012). Often these experiments identify
QTL clusters in a small number of genomic regions, suggesting
an underlying genetic architecture of single pleiotropic genes
or several closely linked genes (Cai and Morishima 2002; Peng
et al. 2003; Doebley 2004; Gyenis et al. 2007; Miller et al.
2014). QTL effects have been successfully mapped to single

large-effect pleiotropic genes in many species (Frary et al.
2000; Wang et al. 2005; Konishi et al. 2006; Li et al. 2006;
Simons et al. 2006; Cong et al. 2008; Studer et al. 2011).
However, these large-effect genes explain only a portion of
the divergence between species, leaving a considerable amount
of phenotypic differences unexplained.

Domesticated crop plants and maize in particular provide
a well-suited system in which to study the evolution of new
morphologies for a number of reasons. First, maize (Zea
mays spp. mays) and its wild progenitor teosinte (Z. mays
spp. parviglumis) differ for a suite of traits commonly seen in
domesticated crop pairs. Collectively, these differences are
known as domestication syndrome and include reduced lat-
eral branching, loss of natural seed dispersal, and gigantism
of vegetative and reproductive tissues (Pickersgill 2007;
Allaby et al. 2008). Second, intense artificial selection for
desirable agronomic traits leaves a signature of selection
(reduced nucleotide diversity), allowing for identification
of putative targets of artificial selection in selective sweeps
(Wright et al. 2005). Third, maize domestication took place
in the last 10,000 years and surviving wild progenitor pop-
ulations serve as reasonable surrogates for the ancestor
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(Doebley et al. 2006). In addition, maize and teosinte are
interfertile, allowing for the use of genetic techniques and
crosses to dissect the genetic architecture underlying diver-
gent traits (Doebley and Stec 1991; Briggs et al. 2007).
Finally, researchers studying maize have the advantage of
a powerful tool in the reference maize genome sequence,
providing the ability to anchor genetic markers to physical
positions, annotate candidate genes, and characterize im-
portant genomic features (Schnable et al. 2009).

Previous work in maize and its wild progenitor suggests
the genes responsible for phenotypic change are scattered
throughout the genome, but with several concentrations of
genes (QTL) controlling large portions of the phenotypic
differences (Doebley 2004; Shannon 2012). To date, three
large-effect pleiotropic genes have been mapped to these
genomic regions of large phenotypic importance. The short
arm of chromosome one is home to grassy tillers1 (gt1), which
influences tillering (Whipple et al. 2011) and is largely respon-
sible for the concentration of seed into a single large ear (Wills
et al. 2013). The gene teosinte branched1 (tb1) is found on the
long arm of chromosome one and has a large pleiotropic
impact on plant and inflorescence branching (Doebley et al.
1997; Studer et al. 2011). Finally, the gene teosinte glume
architecture1 (tga1) liberates the kernel from its stony fruit
case in teosinte (Wang et al. 2005).

While early studies identified tb1 as the gene responsible
for much of the phenotypic effect on the long arm of chro-
mosome one (Clark et al. 2006), a more recent study has
identified at least two additional loci upstream of tb1 with
significant effects on phenotype (Studer and Doebley 2011).
These loci influence the expression of tb1-like phenotypes in
both additive and epistatic ways. The nearest of these loci
was only 5 cM away from tb1 itself and also had an effect
specific to ear traits, leaving plant architecture traits such as
tillering unaffected. This suggests secondary factors to major-
effect genes can be closely linked and can also mediate tissue-
specific effects. Similarly, the work identifying gt1 also found
evidence of a secondary factor located downstream of the
identified causative region that slightly increases prolificacy
(the number of ears) in plants carrying the teosinte allele
(Wills et al. 2013).

One of the six genomic regions of large pleiotropic effect
identified in maize is on chromosome five where the genetic
architecture underlying phenotypic effects is largely unknown
(Doebley 2004). Previous work has found a number of do-
mestication QTL on chromosome five for culm diameter, ker-
nel row number, ear diameter, disarticulation, and pedicellate
spikelet length (Doebley and Stec 1991; Doebley 2004; Briggs
et al. 2007). A more recent experiment confirms QTL for these
traits on chromosome five, some of which (kernel row number,
ear diameter, and disarticulation) had particularly large effect
and LOD score (Shannon 2012). While these previous mapping
experiments found significant QTL for domestication traits on
chromosome five, they could not determine whether this region
contained a major QTL with pleiotropic effects on several traits
or multiple linked QTL.

In this article, we undertook a QTL mapping study to
better characterize the effect of chromosome five on domes-
tication traits. This experiment utilized a population of nearly
isogenic recombinant inbred lines (NIRILs) that allowed for
concentration of informative crossover events in the region of
interest (chromosome five) and replicated block experiments
to improve trait estimates. Both of these characteristics in-
crease the mapping power specifically on chromosome five in
comparison with a standard F2 mapping population. Our study
detected QTL at multiple locations on the fifth chromosome,
none of which have singularly large effect. This suggests that
unlike other regions of the maize genome with single large-
effect genes (Wang et al. 2005; Studer et al. 2011; Wills et al.
2013), chromosome five houses several linked factors influ-
encing phenotype. We also performed a simulation study to
gauge the power and precision of our mapping population.
This analysis indicates that for some traits the genetic archi-
tecture could be more complex than observed with empirical
data.

Materials and Methods

Plant material, genotypes, and phenotypes

We conducted a QTL mapping experiment to investigate the
genetic architecture of domestication traits on maize chro-
mosome five, using a collection of NIRILs in the summers of
2009 and 2010. The experimental population was built by
introgressing the majority of the short arm and part of the
long arm of chromosome five from a teosinte (Iltis and
Cochrane collection 81) into the maize inbred W22 by six
generations of backcrossing. RFLP markers (Supporting
Information, Table S1) were used during this process to
follow the desired genomic segment and eliminate teosinte
segments at other known domestication QTL identified in
a previous study (Doebley and Stec 1993). The extensive
backcrossing in tandem with tracking and eliminating teo-
sinte segments from specific regions of the genome allowed
the experiment to be focused on the segregating teosinte
introgression on chromosome five. Five BC6 individuals het-
erozygous for the target segment on chromosome five were
selfed to produce five BC6S1 families. The families were then
selfed for five additional generations to give an experimen-
tal BC6S6 population of 259 highly homozygous NIRILs,
which carried a collection of teosinte fifth-chromosome intro-
gressions in an isogenic W22 background.

Genomic DNAwas extracted with a standard CTAB protocol
from tissue collected from an average of 15 individuals from
each NIRIL in the summer of 2009. A collection of 25 insertion/
deletion and microsatellite markers (Table S2) was genotyped
across the fifth-chromosome introgression, using standard PCR
and gel electrophoresis methods. In total, there were 443 ob-
served recombination breakpoints among the NIRILs or �1.7
events per line. The range of recombination breakpoints went
from 0 to 6 with the majority of lines (51.7%) having either
0 or a single recombination event. The numbers of lines with
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numbers of breakpoints in parentheses are as follows: 56
(0 breakpoints), 78 (1 breakpoint), 49 (2 breakpoints), 48
(3 breakpoints), 19 (4 breakpoints), 7 (5 breakpoints), and
2 (6 breakpoints).

Phenotype data were collected for the experimental NIRILs
in three replicated blocks, two in the summer of 2009
and one in 2010, grown at the West Madison Agricultural
Research Station in Madison, Wisconsin. Blocks consisted of
the 259 NIRILs planted in randomized plots of 10 or 12
plants each in 2009 and 2010, respectively. Five plants from
each plot were assessed for 13 phenotypes (Table 1) repre-
senting a number of plant and inflorescence phenotypic dif-
ferences between teosinte and maize. Plant traits included
plant height, days to pollen shed, the amount of tillering,
length of the primary lateral branch, prolificacy, and culm
diameter. Inflorescence traits measured in the female inflo-
rescence (ear) were kernels per rank, kernel row number,
ear diameter, ear length, and percentage of staminate spike-
lets. Several traits from the male inflorescence or tassel were
also measured and include the pedicellate spikelet length
and tassel branch number. Genotype and phenotype data
are available from the Dryad Digital Repository: http://dx.
doi.org/10.5061/dryad.7sq67.

Mixed models and heritability

We estimated the NIRIL phenotype for all traits by fitting
a linear mixed model. Fixed effects consisted of NIRIL,
NIRIL family, and position within block, while block and
year were used as random effects. The following model was
fitted with the MIXED procedure in SAS (Littell et al. 1996)
as an initial scope:

Yijklmno ¼ mþ aið fjÞ þ fj þ bk þ clðbkÞ þ dmðbkÞ
þ   clðbkÞ : dmðbkÞ þ tn þ eijklmn þ gijklmno:

In this model, Yijklmno is the individual trait value, m is the
overall mean, fj is the family effect, aiðfjÞ is line nested in
family, bk is random block effect, clðbkÞ and dmðbkÞare hori-
zontal and vertical positions in the field nested in block,

respectively, tn is the year, eijklmn is the experimental error
(between plots), and finally gijklmno is within-plot sampling
error. Each model term was tested for significance on a trait-
by-trait basis with t-tests for fixed effects and likelihood-
ratio tests with 1 d.f. for random effects. Likelihood-ratio
and t-tests with P-values .0.05 were deemed not significant
and the corresponding terms were removed from the model.
While the initial scope of the model included a random
block and year effect, none of the random effects were found
to be significant. Following definition of appropriate models
for the studied traits (Table 2), least-squares means for each
trait were calculated and used for QTL mapping.

Broad-sense heritabilities on a plot means basis (H2)
were calculated for each of the traits. The variance compo-
nents needed for this calculation were found using a linear
mixed model with plot means as the dependent variable and
plot and line as random independent variables. Variance
components for the line or genotypic component (s2

g), the
plot (s2

p), and the residual variance due to environment (s2
e)

were extracted and the following equation was used to cal-
culate H2:

H2 ¼ s2
g

s2
g þ s2

e
:

The plot variance (s2
p) was calculated in the model as

a known source of variation in phenotype. Since this plot
variance is known, it does not contribute to unaccounted for
environmental variation as seen by the residual variance
(s2

e) and was not used to calculate heritability.

QTL mapping

We mapped QTL using a model-based approach in R/qtl
(Broman et al. 2003; Broman and Sen 2009) with pheno-
type, represented by least-squares means and 25 genetic
markers for the NIRILs. The introgression on the fifth chro-
mosome started as a heterozygous segment in the BC6 gen-
eration and segregates as an S6 population. Consequently,
we analyzed the population as a BC0S6 in R/qtl. Genotypes

Table 1 NIRIL phenotyped traits, descriptions, approximate distribution, between-year Pearson correlation coefficients,
and Pearson P-values

Trait Description Distribution Pearson coefficient Pearson P-value

CULM Diameter of culm Normal 0.688 ,0.0001
DTP Days to pollen shed Normal 0.668 ,0.0001
EARD Ear diameter Bimodal 0.907 ,0.0001
EARL Ear length Normal 0.409 ,0.0001
KPR Kernels per rank Bimodal 0.698 ,0.0001
KRN Kernel row no. Bimodal 0.718 ,0.0001
LBLH Primary lateral branch length Normal 0.519 ,0.0001
PLHT Plant height Normal 0.652 ,0.0001
PROL Prolificacy, ears on lateral branch Exponential 0.422 ,0.0001
SPLH Spikelet length Normal NA NA
STAM % staminate spikelets Exponential 0.321 ,0.0001
TBN Tassel branch no. Normal 0.691 ,0.0001
TILL Tillering index Exponential 0.346 ,0.0001

NA, not applicable.
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were first used to produce a genetic map for the teosinte
segment introgression, using the Kosambi mapping func-
tion (Kosambi 1944), with a 0.0001 genotyping error rate
as implemented in R/qtl. Genetic marker order was initially
found by BLAST to the AGPv2 genome and confirmed using
the ripple function in R/qtl with a 5-marker window. Sig-
nificant LOD score thresholds were determined for each
trait with a 5% cutoff based on 10,000 permutations of
the data.

QTL models for each phenotype were determined by
scanning for potential QTL, using the Haley–Knott regres-
sion method and testing for QTL significance one by one.
Definition of QTL models was accomplished by first scan-
ning for QTL with the R/qtl function scanone to find an
initial QTL position with a LOD score greater than the 5%
cutoff calculated by permutations. Next, we scanned for ad-
ditional QTL, using the addqtl function. If this secondary
QTL scan detected a QTL that exceeded the 5% LOD score
cutoff defined by permutations, it was added to the model
and QTL positions were refined using the R/qtl function
refineqtl. QTL were added to the model using this cycle of
(1) scanning for additional QTL, (2) adding significant QTL
to the model, and (3) refining QTL positions until no more
significant QTL could be added. Once all significant QTL
were added, pairwise interactions between QTL were tested
using the addint function of R/qtl. Significant pairwise inter-
actions (F-test, P , 0.05) were added to the model one by
one until no more significant interactions were detected.
After the model was finalized, each QTL in the final QTL
model was tested for significance with drop-one ANOVA
analysis.

Simulation experiment

To explore the theoretical maximum number of detectable
QTL possible in this study, we used a custom R script (File
S1) to map QTL in simulated trait data sets where causative
genes were randomly chosen from the genes in the teosinte
introgressed region. Simulated traits were made for 1–15
causative genes, then 20–50 genes by 5’s, and then 75 and
100 causative genes for a total of 24 different causative gene
set sizes. The 25 genotyped markers in our 259 NIRILs were

used to assign genotype probabilities to the 2576 total genes
in the introgressed segment of chromosome five based on
the genotype of flanking markers. These genotype probabil-
ities were assigned based on physical proximity to the two
flanking markers, assuming physical distance was propor-
tional to genetic distance so that a gene closely linked to
a given marker had a high probability of sharing that marker
genotype. When consecutive markers had identical geno-
types, this method resulted in all genes between them
matching the flanking genotypes.

Phenotypic trait values are based on both the underlying
genetic contributions of genes and random environmental
noise, which together define the heritability of a trait. The
genetic values in the simulated data were set as follows.
For each simulated data set, the randomly chosen caus-
ative genes were assigned a genotype based on the pre-
viously derived genotype probabilities and two effect types:
equal and random gamma distributed (a = 1.36 and b = 1)
(Orr 1998). The effect types for each gene were given
a positive, zero, or negative value, depending on whether
the assigned genotype was homozygous maize, hetero-
zygous, or homozygous teosinte, respectively. Thus, each
simulated causative gene had two numeric values (one for
equal and one for gamma-distributed effects) represent-
ing the magnitude and direction of effect on the trait. The
total genetic contribution to NIRIL phenotype was then
found by simply summing the gene values (equal and
gamma effects kept separate) for all simulated causative
genes.

Environmental noise was added to the summed NIRIL
genetic phenotype values by taking random draws from
a normal distribution with variance equal to the additional
variance needed to reach the desired level of heritability.
Two levels of heritability were simulated (67% and 90%) to
mimic the heritabilities of two actual traits, the moderately
heritable culm diameter and highly heritable ear diameter.
Heritability of the simulated traits was required to be within
2.5% of the desired heritability; otherwise the normal
distribution was resampled. This process resulted in each
set of simulated causative genes having four states for the
NIRILs: equal effect 67% H2, equal effect 90% H2, gamma
effect 67% H2, and gamma effect 90% H2.

We simulated 24 causative gene set sizes with two
effect types and two heritabilities for a total of 96 distinct
simulated states. Each of these states was replicated 1000
times, resulting in 96,000 simulated sets of phenotypes
for the 259 NIRILs. These phenotype values were then
used with actual NIRIL genotypes to map QTL in the
R/qtl software, using the same method as described in
the previous section. Pairwise QTL interactions were not
tested for in the simulated data sets because interactions
were not part of the simulated conditions. Mapping of
QTL for thousands of simulated traits could not be
accomplished manually and consequently was done with
a custom R script (File S1) that automated the addition
of QTL and saved summary information, including QTL

Table 2 Final models selected for the 13 NIRIL phenotypes

Trait Model

CULM Line(family) + family + x(plot) + y(plot)
DTP Line(family) + family + x(plot) + y(plot) + x:y(plot)
EARD Line(family) + family + x(plot) + y(plot) + x:y(plot)
EARL Line(family) + family + x(plot) + y(plot) + x:y(plot)
KPR Line(family) + family + x(plot) + y(plot) + x:y(plot)
KRN Line(family) + family + x(plot)
LBLH Line(family) + family + x(plot) + y(plot) + x:y(plot)
PLHT Line(family) + family + x(plot) + y(plot)
PROL Line(family) + family + x(plot)
SPLH Line(family) + family + x
STAM Line(family) + family + x(plot) + y(plot) + x:y(plot)
TBN Line(family) + family + x(plot) + y(plot) + x:y(plot)
TILL Line(family) + family + y(plot)
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estimated effect, QTL position, LOD scores, and number
of QTL.

Results

QTL mapping

Previous work has shown chromosome five to be home to
several high-LOD score and large-effect size QTL for a
number of inflorescence and plant architecture domestica-
tion traits (Doebley 2004; Shannon 2012). We undertook
a high-resolution mapping experiment with a population of
NIRILs with fifth-chromosome teosinte introgressions in
a primarily W22 maize inbred background. In the summers
of 2009 and 2010, the 259 NIRILs were grown in random-
ized plots arranged in three replicated blocks. Phenotype
data for 13 traits were collected for five plants per plot.
Spikelet length was collected only for a single block in the
summer of 2010. We analyzed trait measurements from all
three growth environments together in a single linear mixed
model with block and year as random effects and position,
NIRIL, and family as fixed explanatory variables. Least-
squares means were estimated from the mixed models and
later used for QTL mapping.

Least-squares mean histogram plots show several distribu-
tion types, including normal, bimodal, and exponential (Figure
S1). NIRILs genotyped as 100% maize (29 lines) and 100%
teosinte (27 lines) were used to determine whether traits be-
haved as expected, with the full teosinte introgression lines
having more teosinte-like phenotypes. Several traits believed
to not be primary targets of selection during domestication
such as days to pollen shed and plant height appear to have
little or no overall difference between NIRILs containing the
maize and teosinte introgression, while traits that were the
primary focus of selection during domestication including ker-
nel row number (KRN) and ear diameter (EARD) have a sub-
stantial phenotypic difference between homozygous maize and
teosinte NIRILs. For all domestication traits, we observed a dif-
ference (sometimes quite small) between the least-squares
means for maize and teosinte NIRILs, consistent with the
expected effect of domestication. Particularly large differences
are seen for EARD and KRN traits, where the maize genotype
is 17.3% and 14.8% larger than the teosinte genotype, respec-
tively. Also of interest is the diameter of culm (CULM) trait,
where the maize genotype was 6.5% larger than teosinte.

There was a balanced representation of maize and teosinte
genotypes with a high degree of homozygosity in the QTL
mapping population. Overall genotypes of the NIRILs were
48.3% maize, 48.2% teosinte, and 3.5% heterozygous. The
NIRIL population included lines with teosinte introgressions
across 162.24 Mbp, from position 6,985,619 to 169,231,037
on the maize reference genome (AGPv2). This introgression
includes 74.47% of the �218-Mbp fifth chromosome. Of the
4503 fifth-chromosome genes in the Filtered Gene Set (ver-
sion 5b), 411 genes on the tip of the small arm and 1516
genes on the long arm were not included in the teosinte

introgressions used in this study. The genetic map generated
in R/qtl was calculated to be 86.64 cM, giving an average
megabase pair to centimorgan ratio of 1.873 Mbp/cM.

We analyzed 13 traits and identified 24 QTL (Figure 1,
Table 3) with a broad range of LOD scores ranging from
2.70 [kernels per rank (KPR)] to 47.22 (KRN). A single
epistatic interaction was detected between the two kernel
row number QTL, suggesting epistasis is minimal. QTL 1.5-
LOD support intervals ranged from 2.3 cM (KRN) to 50.6 cM
(KPR) with an average value of �12.5 cM. Heritability on
a plot mean basis (Table 3) for each trait varied with an
average H2 of 63% and range of 23% [prolificacy, ears on
lateral branch (PROL)] to 90% (EARD). Five QTL clusters,
defined as contiguous regions with five or more QTL 1.5-
LOD support intervals, were found in the mapping region on
chromosome five near 2, 51, 61, 70, and 84 cM (Figure 1).
There is no clear single concentration of QTL, suggesting
this genomic region lacks a single gene of large, pleiotropic
effect and that multiple linked factors spread across the fifth
chromosome are responsible for the previously identified
influence of chromosome five on domestication traits.

Simulation experiment

We performed a simulation experiment to determine the
power and precision of our mapping population. Using
causative genes projected onto actual NIRIL genotypes,
a total of 96 distinct simulated states in terms of number
of genes (between 1 and 100), heritability (67% and 90%),
and effect type (equal and gamma) were replicated 1000
times for a grand total of 96,000 simulated NIRIL trait data
sets. Histograms of simulated traits with 90% heritability
were clearly bimodal when one causative gene was simu-
lated and progressively moved toward a normal distribution
as more and more causative genes were simulated. In compar-
ison, simulated traits with 67% heritability lack a clear bimodal
distribution even when only a single causative gene was
simulated and are approximately normal when 100 genes are
simulated (Figure S2).

Since calculating significant LOD score thresholds via
permutations for all 96,000 simulated trait data sets would
have taken weeks of computation time, we first calculated LOD
score cutoffs in the first 50 replicates of the 96 states. The
average cutoff was lower for 90% heritability than for 67%
heritability with no clear difference in threshold caused by the
effect type of causative genes. Simulated phenotypes with few
causative genes had a lower threshold on average with this
effect more pronounced for the gamma-distributed effect type.
The range of LOD score thresholds determined was quite
narrow (2.37–2.59 for gamma-distributed and 2.38–2.60 for
equal effects). Consequently, we chose the maximum of the 5%
cutoffs found in the first 50 replicates of each of the 96 states
as a conservative cutoff for mapping all simulated traits.

After simulated phenotypes were generated and signifi-
cance thresholds were set, QTL were mapped using the
96,000 simulated data sets with actual genotypes for the
NIRILs in this study. Increasing the number of simulated
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causative genes from 1 to 100 caused the mean number of
detected QTL to rise from 1 to �4.5 or �3 for simulated
traits with 90% or 67% heritability, respectively (Figure 2).
Thus, heritability was an important factor in determination
of the number of detectable QTL in our experiment. The sim-
ulated gamma effects, as opposed to equal effects, appeared
to cause the maximum number of detectable QTL to be
reached at a larger number of simulated causative genes,
but there was no difference in the overall maximum number
of QTL detected.

Our results show that QTL 1.5-LOD support intervals
quickly become associated with multiple genes when many
causative genes are simulated (Figure 3). In the case of five
causative genes with equal effect and 67% heritability, the
chance of a QTL support interval containing a single causa-
tive gene has already dropped to �50%. Similar patterns
are seen for gamma-simulated phenotypes (Figure S3). This
suggests that when making decisions about fine mapping of
QTL, researchers would be well advised to consider factors
such as trait heritability and the power of their mapping
population to identify QTL support intervals that contain
single genes.

In our simulation experiment, increasing the number of
causative genes also led to an increase in the average estimated
effect size of detected QTL (Figure 2). We interpreted this as the
effects of multiple underlying causative genes being combined
into a single detected QTL with a cumulative effect, consistent
with the Beavis effect where multiple small-effect loci are

detected as single QTL of larger effect (Beavis 1998). On aver-
age, the total additive effect for each simulated phenotype should
be the product of the total number of simulated causative genes
and the average effect size. We found this expected relationship
between number of detected QTL, average estimated additive
effect of detected QTL, and expected total additive effect for both
equal and gamma-distributed effects and both heritabilities.

Our mapping results using empirical, measured traits,
found three QTL for a trait with heritability of 90% (ear
diameter) and a single QTL for a trait with 67% heritability
(culm diameter). Comparison of these results with the simu-
lations shows that for simulated traits with 90% heritability,
when three or more QTL are detected, there are likely to be
anywhere from four to six underlying causative genes, making
a 1:1 relationship between number of QTL and causative
genes uncertain (Figure 2). In contrast to this result, simu-
lated traits with heritability of 67% and a single causative
gene averaged a single detected QTL that contained the
causative gene 90–95% of the time. These observations have
implications for future fine-mapping efforts to identify the
causative gene underlying QTL.

Discussion

Previous studies in maize have found single genes un-
derlying genomic regions of large effect on multiple domes-
tication traits (Wang et al. 2005; Clark et al. 2006; Studer
et al. 2011; Hung et al. 2012; Wills et al. 2013). This is in

Figure 1 Cumulative plot of QTL detected in the
mapping experiment. Molecular marker positions
are shown in centimorgans at the bottom. QTL
names consisting of an abbreviated trait name,
chromosome number, and QTL number are located
on the left side. The 1.5-LOD support intervals for
QTL are indicated by horizontal bars and peak LOD
scores by vertical lines. Hatched bars indicate inter-
acting QTL while solid bars are noninteracting QTL.
In total, 24 QTL were identified across the fifth
chromosome with a variety of confidence interval
sizes, maximum LOD scores, and effect sizes (Table
3). Five QTL clusters with contiguous regions of five
or more QTL 1.5-LOD support intervals are indicated
by gray shading. A grayscale heat map depicting
number of QTL 1.5-LOD support intervals across
the entire mapping interval from white (0) to black
(8) is located at the top.
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stark contrast to our work on chromosome five, where the
previously observed large effect of chromosome five on sev-
eral domestication traits in maize (Doebley 2004; Shannon
2012) is caused by multiple regions spread across the chro-
mosome. This suggests the nature of genetic factors controlling
domestication traits on chromosome five of maize is different
from that of other large domestication loci in maize. Whether
the situation of chromosome five in maize is unique in maize
or crop plants is yet to be seen, but several loci identified in
this study suggest that in addition to effectively acting on
highly pleiotropic, large-effect single genes, the domestication
process also has the capacity to work on several linked genes
of variable effect to produce a chromosomal region of large
QTL effect.

Although our results show that several regions on chro-
mosome five contain QTL affecting different traits, this
chromosomal region was initially defined as several tightly
clustered QTL in F2 crosses between teosinte and a small-
eared primitive Mexican landrace (Doebley and Stec 1993).
In contrast, our NIRIL population was developed from a cross
of teosinte by a modern agronomic maize inbred and is
expected to harbor domestication QTL as well as improve-

ment QTL selected on during the past 9000 years since
maize was domesticated. Thus, while results from this anal-
ysis suggest chromosome five houses a complex made of
multiple linked factors, we cannot discount the possibility
that a simpler genetic architecture would have been ob-
served had we used a primitive maize landrace rather than
the W22 maize inbred line.

One potential use of QTL mapping results is interrogation
of the genes within QTL for likely candidates. The marker
density in our experiment leads to most QTL 1.5-LOD
support intervals containing hundreds of annotated genes.
However, two QTL had a narrow confidence interval for
which a relatively small number of genes fall within the 1.5-
LOD support interval. These two QTL were krn5.2 and
eard5.3, which colocalize to the same �2.3-cM region.
When expanded to the nearest genetic markers, these QTL
support intervals fell between umc1348 and um1966, which
span a 4.81-cM region (2.654 Mbp) with 54 genes from the
maize Filtered Gene Set (AGPv2). One interesting candidate
that falls in this range is AC212823.4_FG003, which enco-
des a MADS box transcription factor previously cataloged as
MADS-transcription factor 65 (mads65) in the GRASSIUS
transcription factor database (Yilmaz et al. 2009). Initially
identified in plants as important floral organ identity regu-
lators (Schwarz-Sommer et al. 1990; Yanofsky et al. 1990),
the MADS-box family of transcription factors has since been
shown to be involved in a wide variety of developmental
programs in various organs and stages of plant development
(Smaczniak et al. 2012). This particular MADS-box gene has
high sequence similarity to the rice gene OsMADS57, a type
II MIKCC MADS gene. The large subclass of MIKCC MADS
genes is quite diverse with members involved in floral spec-
ification, phase transition, and root development among
other developmental functions (Smaczniak et al. 2012). This
gene was also found to be selected during crop improvement
by a recent study (Hufford et al. 2012) and has fairly high
expression in many tissues as described in the maize gene
expression atlas (Sekhon et al. 2011). All of these factors
make AC212823.4_FG003 an attractive candidate in future
studies to fine map the causative gene for kernel row num-
ber and ear diameter on chromosome five.

The limits of a QTL experiment in terms of power and
resolution are important factors to consider when under-
taking an experiment in any mapping population. To inform
our QTL results with empirically measured traits, we explored
the computational limits of the experimental mapping
population, using simulated-trait data sets. In this exper-
iment, we never detected more than eight QTL for any of
the simulated conditions with heritability being the most
important characteristic in determining number of detected
QTL. As expected, when the number of underlying causa-
tive genes increased to a high level, we saw the effect of
multiple causative genes being rolled into single detected
QTL, consistent with the Beavis effect (Beavis 1998). If
these polygenic QTL, which can have quite high LOD score
and effect size, were chosen for fine mapping, we would be

Table 3 Detected QTL for the T5S mapping population with LOD
score, position, and heritability

QTL LOD 1.5-LOD SI Peak location % variation % H2

culm5.1 13.5 58.9–69.3 65.3 21.30 66.50
dtp5.1 16.36 0.0–11.7 2.3 20.10 —

dtp5.2 18.76 75.7–80.0 77.4 23.60 —

dtp_model 28.93 — — 40.10 67.30
eard5.1 3 0.0–24.2 12.9 1.70 —

eard5.2 17.99 50.1–54.4 51.9 11.70 —

eard5.3 33.76 82.9–85.9 84.4 25.60 —

eard_model 65.62 — — 69.00 90.00
earl5.1 12.38 0.0–5.4 1.9 19.70 49.10
kpr5.1 2.7 0.0–50.6 2.2 3.00 —

kpr5.2 6.8 44.9–64.8 63.2 7.90 —

kpr5.3 4.11 76.0–86.2 80.9 4.60 —

kpr_model 27.41 — — 38.50 72.70
krn5.1 6.22 18.8–24.7 21.5 4.80 —

krn5.2 47.22 82.6–84.9 83.8 53.40 —

krn5.1:2 3.32 — — 2.50 —

krn_model 50.56 — — 59.20 73.70
lblh5.1 24.61 75.0–81.1 79 35.30 53.50
plht5.1 7.64 0.0–2.4 0 11.30 —

plht5.2 2.89 24.3–39.2 31.7 4.10 —

plht_model 14.06 — — 22.00 63.10
prol5.1 8.38 56.9–71.6 64.2 13.80 22.90
splh5.1 9.14 0.0–18.7 13 10.20 —

splh5.2 7.16 65.7–68.4 67.7 7.90 —

splh5.3 2.78 74.3–86.6 78 2.90 —

splh_model 30.6 — — 41.80 88.30
stam5.1 6.5 50.7–86.6 83.8 10.90 25.90
tbn5.1 8.28 0.0–4.0 0.3 13.10 —

tbn5.2 4.6 43.6–53.2 47.3 7.10 —

tbn_model 10.46 — — 16.90 69.90
till5.1 7.21 44.1–62.9 58.7 9.80 —

till5.2 3.22 77.2–85.9 81.8 4.20 —

till_model 18.61 — — 28.10 34.30

SI, support interval.
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unlikely to find a single underlying causative polymorphism.
Consequently, when considering QTL for fine-mapping pur-
poses, researchers would be well advised to choose QTL
from mapping populations with sufficient power to define
QTL containing single causative genes. It is important to
realize that the simulation results reflect the specific markers,
genotypes, and mapping population used in this study.
While some results are likely generally applicable to other
QTL experiments, simulations using mapping population-
specific parameters will provide the best insight into poten-
tial genetic architectures and information on population
power and precision.

QTL mapping has been used to great effect to characterize
the genomic regions controlling traits selected on during
domestication in maize. These studies have shown that while
genetic factors controlling domestication traits are spread
throughout the genome, there are concentrated genomic
regions where QTL for several domestication traits are in close
proximity to each other (Doebley 2004; Shannon 2012). In this
study, we use a QTL mapping population of NIRILs with teo-
sinte introgressions specific to chromosome five to closely ex-
amine previously mapped QTL for a number of domestication
traits. We confirmed QTL for these traits exist on chromosome

five; however, in our population these QTL further fractionate
into multiple QTL. This is in contrast to other genomic regions
of large effect in maize where single pleiotropic genes were
identified as the causative factor underlying genomic regions
of large effect (Wang et al. 2005; Studer et al. 2011; Hung et al.
2012; Wills et al. 2013). The presence of multiple QTL in
several locations on chromosome five suggests the existence
of a linked complex of multiple genes controlling various
aspects of domestication traits. This apparent complexity
of the chromosome five locus is consistent with results from
our simulation experiment, where we show that traits with
multiple mapped QTL likely have a more complicated un-
derlying genetic architecture than is indicated by the initial
QTL mapping results.
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Figure S1   Histograms of the least squared means for phenotyped traits from the QTL mapping population.  Several of these 
distributions are approximately normal, but other traits take on an exponential distribution.  The average least squared mean 
for NIRILs with 100% maize and teosinte genotypes is indicated with an arrow and “M” for maize and “T” for teosinte. 
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Figure S2   Example histograms of simulated traits for several different conditions in terms of number of causative loci, effect 
size, and heritability.  Histograms from traits with equal effects ‐ 67% H2, equal effects ‐ 90% H2, gamma distributed effect ‐ 
67% H2 and gamma distributed effect ‐ 90% H2 are shown in different columns from left to right.  Histograms from simulated 
traits with one, five, ten, twenty, fifty, seventy‐five, and one hundred causative loci are shown from top to bottom.  The 
average simulated phenotype value for NIRILs that are 100% maize and teosinte are indicated with arrows labeled by “M” for 
maize and “T” for teosinte. 
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Figure S3   Proportion of detected QTL with zero, one, or multiple causative genes in the 1.5 LOD support interval.  As seen in 
the equal effect simulations, a high number of gamma distributed causative genes leads to detected QTL with multiple 
causative factors.  There is a relatively high percentage of detected QTL in the simulations containing a single causative gene 
when few (less than 4) causative genes are simulated, but as the number of simulated causative genes increases we quickly lose 
the power to distinguish between closely linked causative genes and they become lumped into single detected QTL. 
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Table S1   RFLP Markers used during backcrossing of QTL mapping population. 

Marker   Chromosome   Marker   Chromosome   Marker   Chromosome  

bnl5.62   1   umc121   3   bnl7.71   5  

umc157   1   php20042   3   npi412   5  

umc37b   1   umc42b   3   umc54   5  

npi255   1   umc161   3   umc127b   5  

BZ2   1   umc18   3   umc104a   5  

bnl8.10   1   TE1   3   bnl6.29   6  

npi615   1   bnl5.37   3   umc65   6  

umc107   1   bnl8.01   3   umc21   6  

npi225   1   umc60   3   umc46   6  

bnl8.45   2   bnl12.97   3   umc132   6  

umc53   2   php10080   3   umc62   6  

npi320   2   npi425   3   npi114   8  

npi421   2   umc2a   3   bnl9.11   8  

umc6   2   php20725   4   umc117   8  

umc34   2   umc19   4   umc7   8  

umc134   2   umc127a   4   npi253   9  

umc131   2   bnl10.17b   4   umc113   9  

umc2b   2   umc15   4   umc81   9  

umc5a   2   bnl8.23   4   umc95   9  

php20005   2   bnl8.33   5   bnl3.04   10  

umc122   2   bnl6.25   5   umc130   10  

umc49a   2   umc90   5   umc49b   10  

umc36   2   umc27   5   umc117b   10  

umc32   3   umc166   5   bnl7.49   10  
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Table S2   Marker information including physical position, genetic position, percent maize, teosinte, heterozygous, and 

missing. 

Marker  Physical Start  Physical End 

Genetic

Position 

Percent 

Maize 

Percent 

Teosinte  Percent Heterozygous 

Percent 

Missing 

umc2036  6985542  6985695  0.00 49.2% 48.1% 2.3%  0.4%

bnlg565  8492860  8492883  6.54 48.5% 47.3% 3.8%  0.0%

bnlg105  13812577  13812596  20.90 36.9% 51.2% 0.4%  11.2%

phi008  14072711  14072799  21.54 46.9% 51.2% 1.5%  0.0%

umc2293  15110042  15110066  25.26 48.1% 49.6% 1.9%  0.0%

umc2060  16462679  16462822  27.79 48.1% 49.2% 1.9%  0.4%

bnlg1046  18701271  18701478  31.75 46.2% 49.6% 3.1%  0.8%

umc2035  23891636  23891586  42.17 51.5% 45.8% 2.3%  0.0%

umc1705  28196232  28196255  45.36 51.2% 45.8% 2.7%  0.0%

umc1056  32035997  32036018  48.10 51.2% 45.0% 3.5%  0.0%

umc2294  33783040  33783128  48.43 51.9% 44.6% 3.1%  0.0%

umc1935  51438478  51438621  53.24 49.2% 46.2% 4.2%  0.0%

umc1850  54416864  54416984  54.79 49.2% 45.8% 3.8%  0.8%

mmp58  74916757  74916904  61.98 48.1% 46.9% 4.2%  0.4%

GRM116761  82236265  82236067  63.55 48.1% 45.8% 5.0%  0.8%

umc2298  84800673  84800762  65.07 47.7% 47.3% 4.6%  0.0%

umc1110  84825350  84825468  65.39 47.3% 46.9% 5.4%  0.0%

umc1224  92368559  92368676  66.70 46.2% 48.5% 5.0%  0.0%

umc1283  111997810  111997925  67.52 46.9% 47.7% 5.0%  0.0%

bnlg1287  121583928  121584076  67.69 47.7% 47.7% 4.2%  0.0%

dupssr10  142483339  142483503  68.70 47.3% 48.5% 3.8%  0.0%

bnlg2323  151717740  151717922  74.26 47.7% 49.2% 1.5%  1.2%

ZHL0301  159447674  159447786  77.01 48.1% 49.2% 2.3%  0.0%

umc1348  166576570  166576708  81.83 46.5% 43.8% 5.8%  3.5%

umc1966  169230959  169231115  86.64 48.1% 46.2% 5.4%  0.0%

 

 


