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Abstract

Estrogens regulate key features of metabolism, including food intake, body weight, energy

expenditure, insulin sensitivity, leptin sensitivity, and body fat distribution. There are

two ”classical“ estrogen receptors (ERs): estrogen receptor alpha (ERS1) and estrogen receptor

beta (ERS2). Human and murine data indicate ERS1 contributes to metabolic regulation more so

than ESR2. For example, there are human inactivating mutations of ERS1 which recapitulate

aspects of the metabolic syndrome in both men and women. Much of our understanding of the

metabolic roles of ERS1 was initially uncovered in estrogen receptor α-null mice (ERS1−/−); these

mice display aspects of the metabolic syndrome, including increased body weight, increased

visceral fat deposition and dysregulated glucose intolerance. Recent data further implicate ERS1

in specific tissues and neuronal populations as being critical for regulating food intake, energy

expenditure, body fat distribution and adipose tissue function. This review will focus

predominantly on the role of hypothalamic ERs and their critical role in regulating all aspects of

energy homeostasis and metabolism.
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1. Introduction

The brain is the central integration site for body weight regulation. Within the brain, the

hypothalamus is a complex structure of nuclei, pathways and neurotransmitter systems that

controls food intake and energy expenditure [1; 2; 3; 4]. Early interest in the hypothalamus

stemmed from findings that lesioning specific hypothalamic nuclei produced dramatic

changes in food intake and energy homeostasis. In 1954, Dr. Stellar suggested the

hypothalamus was the central neural structure involved in the control of food intake [5]. The

so-called “Dual-Center Hypothesis” was based on earlier experiments by Hetherington and

Ranson where electrolytic lesions were placed in two brain regions of rats. Lesions of the

ventral medial hypothalamus (VMH) increased food intake and induced obesity [6; 7]. It

was hypothesized the lesions affected satiety, leading the VMH to be dubbed the ”satiety

center“ [8; 9]. In contrast, lesions of the lateral hypothalamic area (LHA) decreased food

intake and provoked weight loss [10]; this region became known as the ”hunger

center“ [11]. Electrical stimulation of the two hypothalamic centers supported the

hypothesis: stimulation of the VMH caused rats to stop eating [12], while stimulation of the

LHA caused sated rats to eat [13]. Thus, the Dual-Center Hypothesis became the dominant

theory of how the central nervous system (CNS) controls food intake [5; 14; 15]. Recently,

elegant studies using viral vector technology and generation of transgenic mice with

selective deletions or targets of specific brain regions have substantiated these original

findings and clearly demonstrated that the hypothalamus is one of the major brain centers

for the regulation of energy homeostasis and food intake.

The hypothalamus exerts its influence on energy homeostasis through regulation of both

anabolic and catabolic pathways [16; 17; 18]. Anabolic pathways increase food intake,

decrease energy expenditure and consequently increase body weight/adiposity. These

pathways are activated when energy stores are low (negative energy balance). Catabolic

pathways are activated by positive energy balance. These pathways decrease food intake,

increase energy expenditure and decrease body weight/adiposity. The interplay of various

hypothalamic nuclei with peripheral hormones, neuropeptides and nuclear receptors

represents a critical aspect of hypothalamic regulation of energy metabolism [16; 17; 18].

Surprisingly, despite thousands of reports published since the 1930“s investigating the role

of various hypothalamic nuclei in the regulation of food intake and body weight [19; 20;

21], studies of the effect of sex on the hormonal and neuronal pathways of energy regulation

have been sparse. However, recent data demonstrate that males and females do differ in

terms of CNS regulation of body weight and homeostasis [22; 23]. Both testosterone and

estrogens influence metabolism, energy homeostasis, food intake, and body fat distribution,

partially through hormonal receptors which are co-localized with hunger (orexic) and satiety

(anorexic)-inducing neuropeptides within the hypothalamus. This review will explore the

relationship of estrogens, estrogen receptors (ERs) and peripheral hormones in hypothalamic

regulation of energy homeostasis.
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The role of ERs and genomic vs. non-genomic signaling

The ”classical“ nuclear ER was cloned in 1985 [24] and renamed estrogen receptor alpha

(ERα/ESR1) when a second nuclear estrogen receptor (estrogen receptor beta (ERβ/ESR2)),

was discovered 10 years later [25]. The ER subtypes are expressed differentially throughout

the brain [25; 26; 27; 28; 29; 30; 31; 32; 33], and in many cases their distribution differs by

sex.

Once thought to function solely as genomic transcription factors [34; 35]; however, ERs

have also been shown to participate in non-genomic signaling pathways. “Classical”

genomic activity of ERs occurs over the course of hours; ligand binding induces

conformational changes of the receptor, allowing it to dissociate from chaperone heat-shock

proteins and dimerize with other ERs [36]. The ligand-dimer complex binds either directly

to estrogen response elements (ERE) in target gene promoters or indirectly to AP-1 or SP-1

response elements via protein tethering to DNA [37]. The physiologic responses mediated

by ERs vary across cell types and depend upon the presence and concentration of ER

subtypes, ligands, and co-activator and co-repressor proteins [36; 38]. Interestingly, while

highly active estrogens such as 17 beta-estradiol (E2) function as ER ligands, many

pharmacological, as well as environmental and food compounds, are capable of binding and

promoting ER activity [36]. Once ligand has bound and activated the ER, transcription

proceeds in a cyclic fashion, cycling on and off target promoters as long as ligand is present.

Non-genomic steroid/steroid receptor activation of ERs occurs more quickly than the

classical pathway, typically over the course of minutes or seconds. Extra nuclear and

membrane-associated isoforms of ESR1 and ESR2 localize to plasma membrane caveolae

and congregate with signaling molecules, including G proteins, growth factor receptors,

tyrosine kinases (Src), linker proteins (MNAR), and orphan GPCRs, facilitating interaction

and rapid intracellular signaling in the presence of ligand [39]. For example, the E2/ER

complex induces activation of the mitogen-activated protein (MAP) kinase cascade and

phosphatidylinositol 3-kinase (PI3K) pathways, causing a rise in intracellular calcium [40;

41]. ERs also activate protein kinase B (PKB/Akt) in neurons [42; 43; 44], and activation of

the PI3K/Akt cascade mediates a variety of E2“s central actions, including neuronal

excitability, neuro-protection, reductions in inflammation, and neurite outgrowth [45], as

well as body weight regulation. While E2 activates G protein-coupled estrogen receptor

(GPER; also called GPR30), the role of GPER in body weight regulation still requires

validation. In one study of female mice lacking GPER, the obesity phenotype emerged in

only one of four GPER mutant mouse lines [46; 47]. Multiple groups have described

collaboration between membrane-localized ESR1 and GPER, presumably at the membrane

of several E2-sensitive cell lines. GPER also induces the expression of ERS136, a

transcriptionally inactive and truncated version of the classical long isoform of ERS1,

ERS166 [48]; however, its function with respect to metabolism remains unclear.

In an attempt to better describe the various mechanisms of estrogenic action, Park et al.

examined whether E2 regulates body weight homeostasis through the classical or non-

classical ER signaling pathways by generating a novel mouse model with a knock-in

mutation blocking the DNA binding domain of ESR1[49]. These mice, termed NERKI
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(nuclear ESR1 knock-in mice), were leaner and had normal glucose homeostasis, insulin

sensitivity, energy homeostasis, and physical activity when compared with ERα knock-out

(ERKO) or wild-type mice. NERKI mice had lower leptin levels than ERKO and enhanced

hypothalamus-specific leptin sensitivity as measured by phospho-STAT3 activation. The

authors also found an increase in phosphorylated Akt after E2 injections in the ventral

medial nucleus. Together this data indicates that non-classical ER signaling plays a critical

role in mediating the metabolic effects of estrogens.

Hypothalamic ERs and Metabolic Regulation

ESR1 mediates the anti-obesity effects of estrogens; deletion of the receptor increases

adiposity and causes the metabolic syndrome in both male and female mice [50]. ESR2 is

less effective in this regard; its deletion does not promote obesity or any of the metabolic

consequences associated with obesity [51]. ESR1 is expressed in several different brain

regions implicated in regulating energy homeostasis, including the ventrolateral portion of

the VMH (VL VMH), the arcuate nucleus (ARC), the medial preoptic area (MPOA), and the

paraventricular nuclei (PVN) [26; 27; 28; 29; 30; 52; 53].

Early attempts to determine the influence of E2 and their receptors in regulating food intake

and body weight in the CNS were performed by intra-nuclear microinjections of estradiol

benzoate (E2) [54]. Due to the difficulty in precisely placing cannulae or producing lesions

in small, complex hypothalamic regions, findings obtained from these studies are somewhat

controversial. For example, E2 implanted in the PVN decreased food intake and body

weight in ovariectomized (OVX) rats in the absence of peripheral estrogenic stimulation.

Moreover, the anorexigenic effects of subcutaneous E2 were blunted in rats with PVN

lesions [55]. However, subsequent studies failed to reproduce these phenotypes in rats with

PVN implants of E2 [56]. Effects of E2 in the MPOA have also been controversial, with

only one report showing an anorexigenic response following sight-directed E2

administration [57], whereas several others have demonstrated E2 implanted in this nucleus

has no effect on feeding [55]. The ARC and VMH are two hypothalamic nuclei that are

relatively small structures/areas which are difficult to selectively target; therefore, earlier

microinjection studies were not able to rigorously distinguish these two regions and failed to

provide consistent results [55].

Subsequently, we have reported that site-specific reductions of ESR1 in the VL VMH using

a small hairpin (sh) interference RNA decreased sensitivity to E2-induced weight loss, as

well as decreased energy expenditure and increased visceral fat deposition, implicating VL

VMH ESR1 in energy homeostasis [58]. More recently, suppression of ESR1 expression in

neurons from the VMH using the steroidogenic factor-1 (SF1) promoter in a transgenic

mouse model produced similar results. In this model, bodyweight increased significantly in

female but not male transgenic mice. Notably, the female transgenic mice gained a

significant amount of perigonadal visceral adipose tissue and manifested dysregulated

thermogenesis, likely an effect of reduced sympathetic activity at the level of the brown

adipose tissue [58]. These findings show that activity of ESR1, specifically in the VMH, is

critical for regulation of energy expenditure in females.
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Estrogens interact with leptin

First described in 1994 [59], leptin has proven to be a key metabolic protein with actions

throughout the body. Secreted from adipose tissues in direct proportion to adiposity, leptin

crosses the blood-brain barrier and interacts with leptin receptors in the hypothalamus and

brainstem to influence food intake and energy expenditure [14; 16; 60; 61; 62; 63; 64; 65;

66; 67; 68]. Specifically, leptin provides a powerful catabolic signal to the brain, inhibiting

food intake and increasing energy expenditure [14; 16; 60; 61; 62; 63; 64; 65; 66; 67; 69;

70].

There are several splice variants of the leptin receptor: the long form (leprb) is thought to be

critical for regulating energy balance [71]. Leprb“s are localized in several brain areas

including the VMH and the ARC, and are co-localized with several other receptors and

neuronal pathways believed to be involved in controlling food intake, energy homeostasis

and reproduction [72; 73; 74]. Leptin has the ability to activate or inhibit hypothalamic

neurons [73; 75; 76]. Importantly with respect to the potential role of estrogens to regulate

energy homeostasis, leprb expression in the ARC is co-localized with ESR1 [77], and

estrogens have been reported to regulate the expression of leprb in the ARC [78], possibly

via an ERE on the leptin receptor gene [79]. Leptin levels are higher in females, even before

puberty, when compared with males, and these levels are independent of differences in body

composition [80; 81; 82]. After puberty, estrogens increase and testosterone decreases leptin

synthesis and secretion via sex steroid receptor-dependent transcriptional mechanisms [83].

Estrogens may promote leptin“s catabolic action in the brain. Higher levels of estrogens

have been associated with increased leptin sensitivity [84; 85; 86]; however, some studies

have failed to observe direct estrogen-leptin interactions [87; 88; 89]. Although circulating

leptin protein levels do not change appreciably during the estrous cycle, ARC leprb

expression is highest during estrous and metestrous [78]. In rodents food intake in females

varies across the estrus cycle; therefore, shifts in leprb receptor expression and, by

extension, leptin sensitivity, may be a potential mechanism for changes in food intake during

the cycle. Critically, OVX or removal of endogenous estrogens has been shown to decrease

sensitivity to leptin delivered to the brain, while E2 replacement following OVX restored the

anorexigenic effects of leptin [23]. Analogously, E2 administration to males increased CNS

leptin sensitivity [23]. Additionally, females displayed greater activation of markers of leptin

receptor activity as measured by c-Fos (a marker of neuronal activation) and pSTAT3 (a

marker of leptin receptor activation) immunoreactivity in the ARC than males following

intra-third ventricular (i3vt) leptin administration, suggestive of enhanced leptin sensitivity

[23].

Ladyman et al. characterized a form of leptin resistance in pregnancy, providing additional

evidence of leptin/estrogen interactions in the regulation of metabolism. Leptin treatment in

pregnant rats impaired activation of pSTAT3 and reduced leprb mRNA in the VMH when

compared to non-pregnant females [90]. Early in pregnancy, there was a reduction in

estrogens, supporting the idea that low levels of estrogens are associated with reduced leptin

sensitivity. However, there were no changes in leptin activation of pSTAT3 in the ARC of
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pregnant females, nor were there changes in leprb in pregnant versus non-pregnant females,

suggesting a possible tissue specific interaction between estrogens/leptin and their receptors.

Estrogens influence insulin sensitivity

In 1953, Kennedy et al. hypothesized that adipose tissues produce a hormone that functions

as part of a feedback mechanism, informing the brain of the relative amount of adipose

tissue in the periphery. He coined this the ‘adiposity theory of body weight regulation’ [91].

Initially, insulin was posited to be this hormone. Subsequently, it has been shown that

insulin is not secreted by the adipose tissues per se, but is secreted relative to overall adipose

tissue mass [92; 93; 94; 95; 96]. Obese animals and humans have higher basal insulin levels

and secrete more insulin in response to a meal than lean individuals [94; 97]. Insulin

increases during meals and other periods of positive energy balance and decreases during

fasting and periods of negative energy balance. Additionally, insulin receptors are

distributed in discrete brain areas, including the hypothalamus [98; 99; 100], and activation

of hypothalamic insulin receptors decreases food intake and body weight [16; 62; 101; 102;

103]. Manipulation of gonadal steroid levels influences insulin sensitivity [22; 23; 86],

suggesting that the relative amount of androgens and E2 are key determinants of the brain“s

sensitivity to the catabolic actions of insulin. When there is proportionally less estrogen,

CNS insulin sensitivity increases.

Estrogens interact with the melanocortin system

The arcuate nucleus (ARC) has been demonstrated to be a key site of leptin and insulin

receptor activation and activity [3; 68]. Leprb/insulin receptors reside predominately in two

populations of ARC neurons: those expressing pro-opiomelanocortin (POMC) [104; 105]

and those expressing neuropeptide Y (NPY) and agouti-related peptide (NPY/AgRP)

neurons [106]. Central administration of NPY potently increases food intake and decreases

energy expenditure and fat oxidation [107; 108; 109; 110]. AgRP is an antagonist at

melanocortin-3 and melanocortin-4 (MC3/MC4) receptors, and its administration increases

food intake. Both leptin and insulin administration decrease NPY/AgRP mRNA,

demonstrating leptin/insulin are critical determinants of ARC NPY activity [106]. POMC

neurons release cleaved products such as α-melanocyte stimulating hormone (αMSH),

which acts in the PVN and lateral hypothalamus on MC3/MC4 receptors to reduce food

intake and increase energy expenditure [14; 63; 76; 111]. Chronic administration of αMSH

reduces body weight and adiposity [112]. Leptin/insulin facilitates POMC neuronal release

of αMSH [113; 114]; this is one of the mechanisms by which leptin/insulin reduces food

intake and increases energy expenditure. Consequently, within the ARC, leptin/insulin

elicits a powerful catabolic affect by activating αMSH and simultaneously inhibiting

anabolic NPY/AgRP release [14].

Importantly, with respect to estrogenic regulation of these neuronal populations in the ARC,

ESR1 is not co-localized or expressed on NPY/AgRP neurons [115]; however, we and

others have found POMC neurons do express ESR1 [4; 116; 117]. POMC levels are also

responsive to gonadal steroids; POMC mRNA fluctuates over the course of the estrous

cycle, with the most dramatic changes during proestrus when plasma E2 peaks [114; 118;
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119; 120]. OVX with concomitant reductions in circultating E2 decreases POMC mRNA, an

effect reversed by E2 replacement [121]. Lower POMC levels are also observed in ESR1

knockout mice [122].

E2 activates POMC neurons partly via PI3K-mediated mechanisms [123; 124].

Additionally, E2 administration rapidly increases activity at incoming excitatory synapses of

POMC neurons, enhancing miniature excitatory postsynaptic current recorded from POMC

green fluorescent protein neurons [125]. These synaptic rearrangements in POMC neurons

tightly parallel the effects of E2 on food intake, energy expenditure and body weight [125].

Collectively, these findings suggest that ESR1 functions in POMC neurons to influence

energy homeostasis and may provide a mechanism for the anorexigenic effects of E2.

Recently, we reported that knock down of ESR1 from POMC neurons in female mice

caused significant increases in food intake and body weight gain; however, these effects did

not occur in male knockdown mice [4]. Female knockdown mice also had increased plasma

E2 levels, suggesting the POMC neuronal population is an important area for regulation of

the negative feedback loop and the hypothalamic pituitary gonadal axis (HPG).

In an additional experiment, ESR1 knockdown in both POMC and SF1 neurons exacerbated

both previously described phenotypes: female mice had significantly greater overall body

weight gain due to both increased food intake and reductions in energy expenditure, as well

as increased visceral adiposity in the perigonadal depot [4]. Hart-Unger and Korach

summarized these findings [126], indicating that E2 acts on hypothalamic POMC neurons to

suppress food intake and maintain the negative feedback loop. In SF1 neurons of the VMH,

E2 increases energy expenditure through activation of the sympathetic nervous system in

brown adipose tissue (BAT) as well as regulates the deposition of fat within the visceral

depot.

Furthermore, E2 opposes the orexigenic effect of certain neuropeptides. For example, while

NPY promotes food intake and body weight gain [110], E2 suppresses NPY release. NPY

increases following OVX with concomitant reduction of E2, and administration of E2 to the

ARC reverses this increase [84; 127]. Similarly, increased NYP resulting from food

deprivation can be reversed by administration of E2 in OVX mice. Lastly, chronic E2

treatment decreases NPY levels and its release in the PVN [128]. These important findings

show that E2 strongly impacts the CNS to regulate food intake, energy expenditure, body fat

distribution, and the reproductive axis.

Estrogens interact with cholecystokinin (CCK)

As chyme passes from the stomach to the duodenum, duodeonal I cells synthesize and

release the peptide cholecystokinin (CCK). CCK slows gastric emptying and intestinal

motility [129], as well as increases satiation by activating subdiaphragmatic vagal afferent

neurons [130; 131]. CCK antagonists increase food intake by increasing meal size [132].

Several experiments have highlighted the interactions between E2 and CCK. CCK-A

antagonists decreased food intake to a greater extent in E2-treated OVX mice and intact

females in proestrus, and this effect was lessened in rats with low E2 levels [133; 134; 135;

136].
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CCK satiation relies on vagal afferents [137; 138; 139], and upregulation of CCK receptors

in terminals of vagal afferent fibers increases CCK sensitivity. Evidence for this comes from

in vitro quantitative autoradiography which measured the effects of E2 on the binding

characteristics of CCK receptors in the nucleus of the solitary tract (NTS), a brain area that

receives terminal projections of abdominal vagal afferent fibers [137], as well as in two

interconnected areas, the area postrema and the VMH. Other evidence suggests E2 increases

the sensitivity of vagal CCK-A receptors [140; 141; 142], providing another plausible

explanation for the anorexigenic effect of E2.

Estrogens interact with ghrelin

Ghrelin is produced in the stomach and acts on growth hormone secretagogue receptors

(GHSRs) in the hypothalamus to increase food intake. While mainly synthesized by the

stomach, ghrelin is also found in the hypothalamus and several other brain areas [143; 144;

145]. E2 influences ghrelin efficacy. Exogenous ghrelin stimulated food intake less strongly

in intact females than in males or OVX female rats [146]. Peripheral or CNS-delivered

ghrelin increased feeding in intact male and OVX females rats [147; 148; 149; 150; 151;

152; 153]; however, the same hyperphagic levels were not achieved when administered to

the intact/proestrus phase females [146]. In further support of a potential inhibitory effect of

estrogens on ghrelin activation, OVX rats treated with E2 no longer had ghrelin-induced

hyperphagia. Furthermore, E2 reduced the orexigenic effects of ghrelin delivered directly

into the ARC in male rats, suggesting that E2 suppresses ghrelin-induced hyperphagia [146].

To further explore the ghrelin/E2 interaction, mice lacking GHSR (Ghsr−/−) received

bilateral OVX. While the control/wild type mice increased food intake following the

surgery, the Ghsr−/− mice did not, suggesting E2 tonically inhibits endogenous ghrelin

signaling [146]. Additionally, female Ghsr−/− mice were leaner than males, and accumulated

less body weight and adiposity following exposure to an obesigenic high-fat diet [154]. In

contrast, Currie et al. failed to observe any sex difference following direct ghrelin

microinjections into the ARC or PVN [155]; however, in these experiments ovarian cycling

was not monitored, negating any potential hormonal influence and its impact on ghrelin

activity.

Estrogens interact with melanin-concentrating hormone (MCH)

MCH is an orexigenic hormone and important regulator of energy homeostasis [156].

Central administration of MCH promotes feeding [157; 158], while genetic ablation of the

Mch gene produces a lean phenotype [159; 160]. In addition, Mch is upregulated by fasting

[158], and MCH neurons in the lateral hypothalamic area (LHA) receive inputs from NPY/

AgRP neurons in the ARC [16; 63; 161; 162; 163; 164]. Estrogens influence food intake

through their interactions with MCH activity as demonstrated by Messina et al. [165].

Central injection of MCH in E2 or vehicle-treated OVX and male rats suppressed MCH-

induced feeding following E2 treatments regardless of sex. When endogenous estrogens

were monitored in intact females, MCH induced food intake when estrogens were lower.

Overall, E2 decreased the orexigenic effect of MCH, leading the authors to speculate that

changes in food intake across the estrus cycle may be mediated by changing MCH signaling
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[165]. E2 could decrease MCH signaling in the LHA and zona incerta (ZI) [31]. In support

of this hypothesis, physiological doses of E2 decreased pre-pro MCH mRNA expression in

the ZI of OVX rats [166] and the LHA of obese male rats [167]. In addition, chronic E2

treatment in male rats blocked increases in LH MCH mRNA expression induced by fasting

[167]. In contrast, pharmacological doses of E2 in male mice increased MCH mRNA within

hypothalamic tissue punches [168]. These discrepancies emphasize the need for additional

research to resolve the role of endogenous E2 in regulating MCH expression. E2 may affect

the expression of MCH-1 receptors [26; 169], an idea supported by work demonstrating

LHA neurons containing MCH-1 receptors have ERs in close proximity [170].

Concluding Remarks

The pace of research on metabolism has been extraordinary over the last decade. The

explosion in our knowledge has been driven in part by the multitude of new tools available

to investigators and by the overwhelming clinical need to address the epidemic of obesity

that confronts the developed world. To address this, we not only have to understand the

neuroscience of how food intake and energy expenditure are controlled, but how the body

weight regulatory system interfaces with other critical functions such as arousal, reward,

sensation, emotion and memory. The important point is that the control of energy balance is

not an isolated function but rather an integrated part of how an animal survives.

Another key challenge is to accurately model how sex hormones influence metabolism. This

review has begun to address the issue; however, we must cultivate a more nuanced

understanding. Taken together, the evidence that ERs and estrogens mediate significant

metabolic effects in vivo is substantial; however, the fact that men and women differ with

respect to metabolism and energy homeostasis is often underappreciated in biological

research. Failure to take into account sexual differences in metabolism hinders the correct

design and interpretation of metabolic experiments. By better incorporating the effect of sex

in our designs, we will generate experimental models with higher physiologic fidelity, thus

leading to treatment modalities with a greater impact.
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Highlights

• ERs regulate key features of metabolism

• ERS1 mutations recapitulate aspects of the metabolic syndrome

• ERS1 in female SF1 neurons regulates energy expenditure and fat distribution

• ERS1 in female POMC neurons regulates food intake and negative feedback

• What remains is dissecting the contribution of brain-specific ERs
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Table 1

Table of Abbreviations

AgRP agouti-related peptide

Akt/PKB protein kinase B

ARC arcuate nucleus

CCK cholecystokinin

CNS central nervous system

E2 17β-estradiol

ER estrogen receptor

ERE estrogen response element

ERS1 ER alpha

ERS1−/− ER alpha null mouse

ERKO ER knock-out mouse

ERαKO ER alpha knockout mouse

ERS2 ER beta

HPG hypothalamic pituitary gonadal axis

Ghsr−/− GHSR null mice

GHSRs growth hormone secretagogue receptors

GPCR G protein-coupled receptor

GPER G protein-coupled ER

i3vt intra-third ventricular

leprb long form of the leptin receptor

LHA lateral hypothalamic area

αMSH alpha melanocyte stimulating hormone

MAP mitogen-activated protein

MC3/MC4 melanocortin-3, -4 receptors

MCH melanin-concentrating hormone

MNAR modulator of nongenomic activity of ER

MPOA medial preoptic area

NERKI nuclear ERα knock-in mouse

NPY neuropeptide Y

NTS nucleus of the solitary tract

OVX ovariectomy

PI3K phosphatidylinositol 3-kinase

POMC pro-opiomelanocortin

PVN paraventricular nucleus

SF1 steroidogenic factor-1

sh short hairpin

VMH ventromedial hypothalamus
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ZI zona incerta
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