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Background: Human RPE65 has a lower retinol isomerohydrolase activity compared with chicken RPE65.
Results: Two point mutations and one short fragment substitution with counterparts of chicken RPE65 substantially enhanced
the enzymatic activity of human RPE65.
Conclusion: The activity of RPE65 is determined by a few key residues.
Significance: The highly active human RPE65 mutant can be used to improve RPE65 gene therapy.

RPE65 is the retinoid isomerohydrolase that converts all-
trans-retinyl ester to 11-cis-retinol, a key reaction in the reti-
noid visual cycle. We have previously reported that cone-domi-
nant chicken RPE65 (cRPE65) shares 90% sequence identity
with human RPE65 (hRPE65) but exhibits substantially higher
isomerohydrolase activity than that of bovine RPE65 or
hRPE65. In this study, we sought to identify key residues respon-
sible for the higher enzymatic activity of cRPE65. Based on the
amino acid sequence comparison of mammalian and other
lower vertebrates’ RPE65, including cone-dominant chicken, 8
residues of hRPE65 were separately replaced by their counter-
parts of cRPE65 using site-directed mutagenesis. The enzymatic
activities of cRPE65, hRPE65, and its mutants were measured by
in vitro isomerohydrolase activity assay, and the retinoid prod-
ucts were analyzed by HPLC. Among the mutants analyzed, two
single point mutants, N170K and K297G, and a double mutant,
N170K/K297G, of hRPE65 exhibited significantly higher cata-
lytic activity than WT hRPE65. Further, when an amino-termi-
nal fragment (Met1–Arg33) of the N170K/K297G double mutant
of hRPE65 was replaced with the corresponding cRPE65 frag-
ment, the isomerohydrolase activity was further increased to a
level similar to that of cRPE65. This finding contributes to the
understanding of the structural basis for isomerohydrolase
activity. This highly efficient human isomerohydrolase mutant
can be used to improve the efficacy of RPE65 gene therapy for
retinal degeneration caused by RPE65 mutations.

Retinal pigment epithelium (RPE)2-specific 65-kDa protein
(RPE65) is essential for metabolism of vitamin A in the eye and
for maintenance of normal vision. It is the enzyme that cata-
lyzes isomerization of all-trans-retinyl ester to 11-cis-retinol

(11cROL), the precursor of the chromophore of visual pig-
ments (see Fig. 1) (1–3). Mutations of RPE65 are associated
with inherited retinal dystrophies such as Leber’s congenital
amarousis and retinitis pigmentosa (4 –17). Previous RPE65
gene replacement therapy in RPE65 null mutants of dog and
mouse models displayed promising effects on retinal degener-
ation (18 –23). However, human RPE65 (hRPE65) has lower
specific activity than other retinoid-processing enzymes (24 –
26), and a high abundance of RPE65 in the RPE (11 �g/eye in
bovine) is thus required to generate sufficient 11-cis-retinoid
for normal vision (1, 27). This demand for high RPE65 levels
limits the efficacy of RPE65 gene therapy, and a mutant with
increased activity levels would circumvent this limitation.

Several vectors for gene delivery, such as adenovirus (28, 29),
recombinant adeno-associated virus (19, 29 –33), lentivirus (29,
34 –36), plasmid incorporated in nanoparticles (37), and plas-
mid DNA with electroporation (38, 39) have been used to
deliver intact DNA (or reporter genes) to the ocular tissues.
Particularly, gene delivery into the subretinal space using ade-
novirus and lentiviral vectors expressing GFP showed widely
distributed GFP expression (29). Recent human clinical trials
using recombinant adeno-associated virus expressing WT
hRPE65 showed encouraging results; the initial trials showed
modest improvements of vision in patients with retinitis pig-
mentosa and Leber’s congenital amarousis (40 – 43). However,
no present attempts for RPE65 gene therapy have successfully
generated full vision recovery despite successful gene delivery.
This may be due to low enzymatic activity of hRPE65, meaning
that enhancement of hRPE65 enzymatic activity should be con-
sidered as an alternative approach.

We have previously reported that RPE65 in cone-dominant
chicken has a substantially higher isomerohydrolase activity
compared with that in rod-dominant mammals (44). We have
cloned chicken RPE65 (cRPE65) and expressed it in the same
heterologous system as that for hRPE65. Recombinant cRPE65
showed significantly higher specific isomerohydrolase activ-
ity than that of hRPE65 when the activities were normalized by
RPE65 protein levels (44), suggesting that RPE65 from cone-
dominant chicken is a more efficient isomerohydrolase, in
comparison with mammalian RPE65, probably to meet the
higher demand for 11-cis-retinal regeneration in the cone-
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dominant retina. Chicken and human RPE65 proteins share
90% sequence identity (50 different amino acid residues) at the
amino acid level (44). We hypothesized that some of the diver-
gent amino acid residues in cRPE65 were responsible for its
higher isomerohydrolase activity.

In this study, we substituted the potential key residues in
hRPE65 with their counterparts of cRPE65 and evaluated the
isomerohydrolase activities of the generated hRPE65 mutants.

EXPERIMENTAL PROCEDURES

Prediction of Candidate Residues Responsible for Higher
Enzymatic Activity of cRPE65—In order to predict the key res-
idues responsible for the higher enzymatic activity and/or pro-
tein levels of RPE65 in cone-dominant species, RPE65 amino
acid sequences from chicken (accession number NP_990215),
zebrafinch (Taeniopygia guttata, XP_002187720), and Ameri-
can chameleon (Anolis carolinensis, XP_003225885) were aligned
with other known RPE65 sequences: human (accession number
NP_000320), bovine (NP_776878), dog (NP_001003176), rat (NP_
446014), mouse (NP_084263), newt (Q8AXN9), salamander
(Q9YI25), and clawed frog (NP_001080269).

Site-directed Mutagenesis—WT hRPE65 and cRPE65 cDNAs
were subcloned into cloning vectors as described previously (1,
44). The candidate key residues in hRPE65 were replaced by
their counterparts in cRPE65 using the QuikChange site-di-
rected mutagenesis kit (Stratagene, La Jolla, CA), following the
manufacturer’s protocol. The introduced mutations were con-
firmed by sequencing from both strands using an ABI-3730
DNA sequencer (Applied Biosystems, Foster City, CA) and

subcloned into an expression vector, pcDNA3.1(�) (Invitro-
gen). Following the sequence confirmation, the expression con-
structs were purified by a QIAfilter Maxi Prep kit (Qiagen,
Valencia, CA). Further, the hRPE65 and cRPE65 cDNA were
individually subcloned into pUC18. To generate six restriction
fragments of hRPE65 and cRPE65, unique restriction enzyme
sites were introduced without changing the amino acid sequence
(see Fig. 5A). Each fragment of hRPE65 was replaced by its coun-
terpart of cRPE65 using the introduced restriction enzyme sites.
All primer sets used in this study are summarized in Table 1.

Plasmid Transfection—Constructed plasmids expressing WT
hRPE65 and cRPE65 and hRPE65 mutants were purified using a
QIAfilter Maxi Prep kit (Qiagen, Valencia, CA) and transfected
into 293A-LRAT cells, a cell line stably expressing human
LRAT (45), using Fugene 6 transfection reagent (Roche Applied
Science) or polyethyleneimine (PEI; Polysciences, Inc. (War-
rington, PA)) (1 mg/ml, pH 7.4, 2:1 PEI/DNA ratio), and the cul-
ture media were replaced at 6 h following the transfection. At 48 h
post-transfection, cells were harvested by a cell scraper and rinsed
twice with ice-cold PBS. Protein levels and enzymatic activities of
WT hRPE65 and its mutants were confirmed by Western blot
analyses and an in vitro isomerohydrolase activity assay.

Western Blot Analysis—Total cellular protein concentrations
were measured using a Bradford assay (46). Equal amounts of
total cellular proteins (20 �g) of 293A-LRAT cells expressing
WT hRPE65 and cRPE65 and of hRPE65 mutants and bovine
RPE microsomal proteins (2.5 �g) as a positive control were
resolved by electrophoresis through 8% Tris-glycine SDS-poly-
acrylamide gel and electrotransferred onto an Immobilon
PVDF membrane (Millipore, Billerica, MA) unless specified.
The membrane was blocked with 5% (w/v) nonfat dry milk in
TBST (Tris-buffered saline with 0.1% Tween 20) for 30 min and
subsequently incubated overnight at 4 °C with a 1:1,000 dilu-
tion of an anti-RPE65 polyclonal antibody (27) to identify the
key residues and a 1:50,000 dilution of an anti-�-actin mono-
clonal antibody (Sigma-Aldrich). We used another RPE65
antibody (44) to compare the expression levels of cRPE65 and
chimeric mutants of RPE65 to avoid the immunoreactivity dif-
ference on fragment 3. After four washes with TBST, the mem-
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FIGURE 1. Diagram of the visual cycle. The chromophore, 11-cis-retinal
(11cRAL), in visual pigments is isomerized to all-trans-retinal (atRAL) by light,
which triggers the phototransduction cascade. atRAL is then released from
opsin and reduced to all-trans-retinol (atROL) by an all-trans-retinol dehydro-
genase (At-RDH). All-trans-retinol in photoreceptors is transported to the RPE
and esterified to all-trans-retinyl ester (atRE) by lecithin retinol acyltransferase
(LRAT). All-trans-retinyl ester is converted to 11cROL by the isomerohydrolase
RPE65 and further oxidized to 11-cis-retinal by an 11-cis-retinol dehydroge-
nase (11c-RDH). Finally, regenerated 11-cis-retinal is transported back to pho-
toreceptors and binds to opsin protein to form visual pigment.

TABLE 1
Primer sets in this study

Primer Sequence

Hum T39R-Fwd 5�-CCCCCTCTGGCTCCGCGGCAGTCTCCTTC-3�
Hum T39R-Rev 5�-GAAGGAGACTGCCGCGGAGCCAGAGGGGG-3�
Hum N170K-Fwd 5�-GGTTGATCTTTGCAAGTATGTCTCTGTC-3�
Hum N170K-Rev 5�-GACAGAGACATACTTGCAAAGATCAACC-3�
Hum C330T-Fwd 5�-GATTGTGGATCTCTGCACCTGGAAAGGATTTG-3�
Hum C330T-Rev 5�-CAAATCCTTTCCAGGTGCAGAGATCCACAATC-3�
Hum Q497P-Fwd 5�-GCCCAGGAGCAGGACCAAAGCCTGCTTATC-3�
Hum Q497P-Rev 5�-GATAAGCAGGCTTTGGTCCTGCTCCTGGGC-3�
Hum C106Y-Fwd 5�-CAGAATTTGGCACCTATGCTTTCCCAGATCCC-3�
Hum C106Y-Rev 5�-GGGATCTGGGAAAGCATAGGTGCCAAATTCTG-3�
Hum K297G-Fwd 5�-GCTGACAAAAAAAGGGGAAAGTACCTCAATAATAAATACAG-3�
Hum K297G-Rev 5�-CTGTATTTATTATTGAGGTACTTTCCCCTTTTTTTGTCAGC-3�
Hum L510M-Fwd 5�-CTGAATGCCAAGGACATGAGTGAAGTTGCCCGG-3�
Hum L510M-Rev 5�-CCGGGCAACTTCACTCATGTCCTTGGCATTCAG-3�
Hum S533A-Fwd 5�-GGACTGTTCAAAAAAGCTTGAGCATACTCCAGCAAGC-3�
Hum S533A-Rev 5�-GCTTGCTGGAGTATGCTCAAGCTTTTTTGAACAGTCC-3�
Hum KpnI-Fwd 5�-CAGAATTTGGTACCTGTGCTTTCCCAG-3�
Hum KpnI-Rev 5�-CTGGGAAAGCACAGGTACCAAATTCTG-3�
Hum SalI-Fwd 5�-GGGTTTCTGATTGTCGACCTCTGCTGCTGG-3�
Hum SalI-Rev 5�-CCAGCAGCAGAGGTCGACAATCAGAAACCC-3�
ChkPstI-Fwd 5�-GCAGTTCCCCTGCAGTGACAGATTTAAG-3�
ChkPstI-Rev 5�-CTTAAATCTGTCACTGCAGGGGAACTGC-3�
Chk SmaI-Fwd 5�-GTGAAGTGGCCCGGGCAGAAGTGGAGG-3�
Chk SmaI-Rev 5�-CCTCCACTTCTGCCCGGGCCACTTCAC-3�
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brane was incubated in a light-shielding container for 1.5 h with
a 1:25,000 dilution of goat anti-mouse IgG conjugated with
DyLight-549 and goat anti-rabbit IgG conjugated with DyLight-
649 (Pierce), and the bands were detected using the Fluor-
Chem Q imaging system (ProteinSimple, Santa Clara, CA). The
signal intensities were semiquantified by densitometry using
AlphaView SA software (ProteinSimple) and averaged from at
least three independent experiments.

Isomerohydrolase Activity Assay—293A-LRAT cells were
separately transfected with plasmids expressing WT human
and chicken RPE65 and hRPE65 mutants. 293A-LRAT cells
expressing red fluorescence protein (RFP) were used as a neg-
ative control. Cells were lysed by sonication in a reaction buffer
(10 mM 1,3-bis(tris(hydroxymethyl)-methylamino) propane,
pH 8.0, 100 mM NaCl). All-trans-[11,12-3H]retinol (1 mCi/ml,
45.5 Ci/mmol; American Radiolabeled Chemicals, Inc., St.
Louis, MO) in N,N-dimethyl formamide was used as the sub-
strate for the isomerohydrolase assay. For each reaction, total
cellular proteins (125 �g) were added into 200 �l of reaction
buffer (10 mM 1,3-bis(tris(hydroxymethyl)-methylamino) pro-
pane, pH 8.0, 100 mM NaCl) containing 0.2 �M all-trans-retinol,
1% BSA, and 25 �M cellular retinal aldehyde-binding protein
(47). The reaction was stopped, and retinoids were extracted
with 300 �l of cold methanol and 300 �l of hexane. The gener-
ated retinoids were analyzed by normal phase HPLC as
described previously (1). The peak of each retinoid isomer was
identified based on its characteristic retention time and absorp-
tion spectrum of retinoid standards. Isomerohydrolase activity
was calculated from the area of the 11cROL peak using Radi-
omatic 610TR software (PerkinElmer Life Sciences) with syn-
thetic 11-cis-[3H]retinol as the standard. To minimize the var-
iation of the transfection efficiency, all in vitro activity assays of
the mutants were conducted side-by-side with WT hRPE65,

and the catalytic activities were expressed as values relative to
that of WT hRPE65 unless specified.

RESULTS

Comparison of Expression and Enzymatic Activities of
Human and Chicken RPE65—Plasmids expressing RFP (nega-
tive control), hRPE65, and cRPE65 were separately transfected
into the 293A-LRAT cells and cultured for 48 h. The expression
levels and enzymatic activities of hRPE65 and cRPE65 were
verified by Western blot analysis (Fig. 2A) and an in vitro
isomerohydrolase assay. Both hRPE65 and cRPE65, but not
negative control protein, RFP, converted all-trans-retinyl ester
into 11cROL, the product of isomerohydrolase (Fig. 2, B–D).
cRPE65 produced substantially higher levels of 11cROL than
that of hRPE65 after the normalization to its RPE65 protein
level, indicating a higher enzymatic activity of cRPE65, consis-
tent with our previous report (44).

Prediction of Key Residues Responsible for Increased Isomero-
hydrolase Activity of cRPE65—Based on an amino acid
sequence alignment of vertebrate RPE65, we selected 8 residues
as the candidates that may be responsible for the difference in
the isomerohydrolase activity between hRPE65 and cRPE65
(Fig. 3). We divided the candidate residues into two groups in
this study: Group A, residues that were found to be identical in
the three cone-dominant species but were substituted in other
selected vertebrates (Thr39, Cys106, Asn170, Cys330, and Gln497

in hRPE65); Group B, residues that were conserved in lower
vertebrates but diverse in mammalians (Lys297, Leu510, and
Ser533 in hRPE65). In order to evaluate the contribution of these
residues to isomerohydrolase activity, a series of point muta-
tions of the 8 candidate residues (in Groups A and B) in hRPE65
were generated by site-directed mutagenesis. For in vitro
enzyme activity assays, we first examined the effect of 4 residues
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FIGURE 2. Expression and enzymatic activities of RPE65 from humans and chicken. Plasmids expressing WT hRPE65, cRPE65, and red fluorescence protein
(RFP, negative control) were separately transfected into 293A-LRAT cells. Expression levels and enzymatic activities of hRPE65 and cRPE65 were measured by
Western blot analysis (A, Pc, bovine RPE microsomal protein (2.5 �g); Nc, RFP; Hum, hRPE65; Chk, cRPE65; 20 �g each) and an in vitro isomerohydrolase activity
assay, respectively. All-trans-[3H]retinol (0.2 �M) was incubated with 125 �g of total cellular protein from the cells expressing RFP (B), hRPE65 (C), and cRPE65
(D) for 2 h, and the generated retinoids were analyzed by HPLC. Peak 1, retinyl esters; peak 2, 11cROL.
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(Thr39, Asn170, Cys330, and Gln497 in hRPE65) in Group A as the
first experimental set, and the remaining residues (1 residue in
Group A (Cys106) and 3 residues in Group B (Lys297, Leu510, and
Ser533)) were studied as the second experimental set.

Impacts of Site-directed Point Mutations on Protein Levels
and Catalytic Activities of RPE65—Plasmids expressing
hRPE65 and cRPE65 and the site-directed mutants of hRPE65

were separately transfected into 293A-LRAT cells, and the
transfected cells were cultured for 48 h. Protein expression was
confirmed by Western blot analysis (Table 2), and the same
batches of total cellular proteins were used for the in vitro
isomerohydrolase activity assay. For all of the hRPE65 mutants
containing single, double, and multiple mutations, expression
levels of RPE65 were comparable (Fig. 4, A–E, Table 2), whereas
the two single point mutants N170K and K297G exhibited 1.6-
and 1.7-fold higher enzymatic activity, respectively, than WT
hRPE65 after normalization by total RPE65 expression levels
(Fig. 4, F and G). Furthermore, the tested double, triple, or mul-
tiple mutants with N170K (or K297G) in each experimental sets
did not further enhance catalytic activity of RPE65. These
results suggest that mutations of N170K and K297G in hRPE65
may be important for increasing its enzymatic activity.

Construction of Chimeric Human RPE65 and Its Impacts on
Its Protein Levels and Catalytic Activity—To further improve
the catalytic activity of hRPE65, we constructed chimeric
RPE65 by replacing a peptide fragment of hRPE65 with the
counterpart of cRPE65 (Fig. 5A, F1–F6). At 48 h post-transfec-
tion, the cells were harvested for Western blot analyses and in
vitro isomerohydrolase assays. Western blot analysis showed
that a F1 chimeric mutant (replaced fragment 1) displayed a
higher protein level of RPE65 than did WT hRPE65 and other
chimeric mutants (Fig. 5, B and C). Interestingly, F1 and F3
chimeric mutants showed �1.5–2-fold higher catalytic activity
than did WT hRPE65, whereas the F2, F4, and F5 chimeric
mutants substantially decreased the catalytic activities of
hRPE65. Following the normalization by RPE65 protein levels,
the F1 chimeric mutant showed 11cROL production (110.2% of
WT hRPE65) comparable with that of WT hRPE65, suggesting
that the enhanced catalytic activity of the F1 chimera was prob-
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FIGURE 3. Amino acid sequence alignment of RPE65 from different spe-
cies. RPE65 sequences from the human, bovine, dog, rat, mouse, chicken,
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TABLE 2
Expression levels of generated RPE65 mutants in this study
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ably due to the increased protein level of the F1 RPE65 chimera
(Fig. 5, B and C). It should be noted that the F3 chimera dis-
played higher normalized enzymatic activity than WT hRPE65,
probably due to N170K mutation (159.2% of WT hRPE65). This
is well correlated with the result of the N170K single mutation
(see Fig. 3).

Generation of Superisomerohydrolase (sIMH) by Combina-
tion of Highly Active Mutants—Finally, we combined the three
highly active mutants identified from the series of site-directed
point mutants and the chimeric mutants. As we examined ear-
lier, two single mutants (N170K and K297G) showed signifi-
cantly higher 11cROL production than did WT hRPE65 (Fig.
6B), although their expression levels were similar to that of WT
hRPE65 (Fig. 6A, Table 2). As shown in Fig. 6, a double mutant
(N170K/K297G) of hRPE65 demonstrated 3.2-fold higher
11cROL production than WT hRPE65. In addition, a combina-
tion of the F1 chimera with the N170K mutations showed even
higher protein levels (2.2-fold) and 11cROL production (2.2-
fold) than that of N170K single mutant. Finally, after com-
bining all of these three mutations, the 11cROL production
of a combined mutant, F1/N170K/K297G (sIMH), was fur-
ther increased to 4.4-fold of that of WT hRPE65, which is
comparable with the activity of WT cRPE65 (5.8-fold in the
same assay; Fig. 6B). These results indicate that the three
mutations are responsible for the higher activity of cRPE65.

DISCUSSION

It has been well established that RPE65 is an essential enzyme
for the normal vision because RPE65 deficiency causes blindness
and retina dystrophies, such as Leber’s congenital amarousis or
retinitis pigmentosa (4–17). In order to restore the visual function
in patients with RPE65 deficiency, RPE65 gene replacement ther-
apy has been performed (40–43). However, none of the gene
replacement trials have fully restored the visual function in RPE65-
deficient patients, although the gene delivery itself was successful
(29). The unsatisfactory efficacy may be ascribed to the weak cat-
alytic activity of RPE65 (kcat �1.45�10�4 s�1) (24) in comparison
with other retinoid-processing enzymes (25, 26). This hypothesis
is supported by the observation that endogenous RPE65 exists
at high levels in the RPE (11 �g/eye in bovine), probably to
compensate for its relatively low activity (27). It is likely that
current RPE65 gene delivery strategies cannot achieve such a
high protein level of RPE65. These studies suggest that
enhancement of catalytic activity of the delivered hRPE65 may
be a means to improve the efficacy of RPE65 gene therapies.

The present study represents the first approach to improve
the catalytic activity of hRPE65. Previously, we have shown that
RPE65 from cone-dominant chicken has substantially higher
isomerohydrolase activity than that of RPE65 from rod-domi-
nant mammalians (44). This finding suggests that there is a
potential to improve catalytic activity of hRPE65 by replacing
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FIGURE 4. Impacts of site-directed mutations on isomerohydrolase activity and protein level of RPE65. Plasmids expressing WT hRPE65 and cRPE65, and
the indicated hRPE65 mutants were separately transfected into 293A-LRAT cells and cultured for 48 h. A–D, an equal amount of total proteins from cell lysates
(20 �g) was used for Western blotting using an antibody specific for RPE65, with an anti-�-actin antibody as loading control (A, single; B, double; C, triple and
quadruple mutants in the first experimental set; D, single; E, double mutants in the second experimental set. Pc, positive control (bovine RPE microsomal
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some key residues with those of cRPE65. In order to identify the
key residues responsible for the higher enzymatic activity in
cRPE65, three cone-dominant species (two avian and one diur-
nal-type reptile) were selected as the template for amino acid
sequence comparison. Among the divergent residues, 8 amino
acid residues were selected as candidates in this study. The
residues Glu158, Lys208, and Leu408 in hRPE65 were not selected
for the study because their substitutions preserve physico-
chemical properties in other selected vertebrates (Asp158,
Arg208, and Ile408). Although Phe108 is conserved in cone-dom-
inant avian and reptile species, it was also conserved in the
clawed frog. Therefore, we did not select the Phe108 residue for
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FIGURE 6. Impacts of the site-directed mutations and fragment replace-
ment with those of cRPE65 on protein levels and enzymatic activities of
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K297G) and the F1 chimera were combined to produce sIMH (F1/N170K/
K297G). The identified point mutants and the F1 chimera of RPE65 were
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TABLE 3
Isomerohydrolase activities on I220M and N302I mutant series of
hRPE65
In vitro activity assays of the indicated mutants were performed as described under
“Experimental Procedures,” and isomerohydrolase activities were expressed as rel-
ative activity following the normalization by RPE65 levels (percentage of WT
hRPE65 activity, mean � S.E., n � 3).

Mutant name
Normalized activity

(percentage of WT � S.E.)

%
WT hRPE65 100
I220M 62.0 � 11.0
N170K/I220M 31.1 � 7.8
T39R/N170K/I220M 109.7 � 4.2
T39R/N170K/I220M/Q497P 108.6 � 10.4
N302I 124.8 � 13.3
N302I/K297G 107.7 � 6.9
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the mutagenesis study. It is noteworthy that some residue
replacements that did not fulfill the above-mentioned criteria
of residue selection (I220M and N302I) did not substantially
increase the catalytic activity of hRPE65 even in combinations

with other mutations (N170K/I220M, T39R/N170K/I220M,
and T39R/N170K/I220M/Q497P) (Table 3).

Among the tested mutants, we successfully identified two
point mutations, N170K and K297G, which significantly
increased 11cROL production compared with that of WT
hRPE65. The double mutant that combined these mutations
(N170K/K297G) showed a further enhanced 11cROL produc-
tion (3.2-fold that of WT RPE65) of hRPE65. Furthermore,
11cROL production of this double mutant was even more
enhanced by the replacement of the F1 fragment with that of
cRPE65 (Met1–Arg33; containing 3 divergent residues: S2Y,
I3S, and L26V). As a result, this superisomerohydrolase mutant
(sIMH; F1/N170K/K297G) showed an approximately 4.4-fold
higher 11cROL production than did WT hRPE65 under the
same experimental conditions. Production of 11cROL by sIMH
was near the level of WT cRPE65 (5.8-fold that of WT hRPE65).

As further confirmation of enhanced enzymatic activity of
sIMH, we evaluated catalytic efficiencies of WT hRPE65 and
sIMH (Fig. 7). sIMH showed a Vmax value �3-fold higher than
that of WT hRPE65 (Fig. 7, B and C). It is noteworthy that the
estimated concentration of substrate, retinyl esters, in the
mouse RPE is �500 �M (48 –50), which is much higher than Km
for both WT RPE65 and sIMH (Fig. 7, B and C). In this case, Km
is not an important factor because the enzyme is saturated by
substrate at this concentration.

v �
Vmax � S

�Km � S	
(Eq. 1)

Km can be neglected in the formula when S 

 Km.
The rate of the enzyme reaction is actually equal to Vmax in

the RPE, meaning that Vmax of RPE65 plays a major role in
physiological conditions (Fig. 7, B and C).
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To understand the potential contribution of the identified
key residues to higher catalytic activity of cRPE65, we analyzed
the three-dimensional structure of bovine RPE65 (Protein Data
Bank entry 3FSN) by the SwissPDB Viewer version 4.01 (51)
and displayed the results by POV-Ray version 3.61. In the three-
dimensional model, both Asn170 and Lys297 residues are local-
ized on the surface of the RPE65 molecule (Fig. 8, A and B) and
distant from the co-factor iron in the RPE65 catalytic site (Fig.
8C), suggesting that these two residues are unlikely to directly
participate in the catalysis of the substrate. We speculate that
these residue substitutions might improve RPE65 membrane
association for more efficient substrate intake and/or product
(11cROL) release. Alternatively, these two residues might con-
tribute to proper folding of RPE65 to achieve its active confor-
mation upon association with the membrane. Interestingly, the
F1 chimera also revealed a significant improvement of the cat-
alytic activity of hRPE65 due to increased protein levels of
RPE65. Unlike the other two residue substitutions, the F1 chi-
mera in which only the F1 fragment is replaced with that of
cRPE65 showed a catalytic activity similar to that of WT
hRPE65 after normalization by RPE65 protein level. The F1
fragment contains 33 amino acids and only 3 residues that differ
between hRPE65 and cRPE65. These residues in the F1 frag-
ment might contribute to proper folding to enhance protein
stability of the hRPE65 mutant. Another possibility is the con-
tribution of the nucleotide sequence difference. Among the 99
base pairs encoding the 33 amino acids in the F1 fragment,
there are 19 different nucleotides between hRPE65 and cRPE65.
These nucleotide substitutions might improve the stability of
the hRPE65 mRNA or contribute to more efficient codon usage,
leading to higher levels of expression.

In summary, this study generated a highly active hRPE65
mutant, termed sIMH, by replacing only 5 residues with those
of cRPE65. This sIMH displayed higher catalytic activity (4.4-
fold higher than WT hRPE65) after normalization by the total
cellular protein levels. Although further studies are necessary to
clarify how these mutations increase the catalytic activity and
protein level of RPE65, the sIMH obtained in this study can be
used for the next generation of RPE65 gene replacement ther-
apy and may be more effective than WT hRPE65 in the treat-
ment of retinal dystrophies. These results will also contribute to
the understanding of structural basis for the isomerohydrolase
activity of RPE65.

Note Added in Proof—Table 2 was inadvertently omitted from the
Papers in Press version.
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