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Abstract

We aimed to identify peripheral blood mononuclear cell (PBMC) gene expression profiles

predictive of poor outcomes in idiopathic pulmonary fibrosis (IPF) by performing microarray

experiments of PBMCs in discovery and replication cohorts of IPF patients. Microarray analyses

identified 52 genes associated with transplant-free survival (TFS) in the discovery cohort.

Clustering the microarray samples of the replication cohort using the 52-gene outcome-predictive

signature distinguished two patient groups with significant differences in TFS. We studied the

pathways associated with TFS in each independent microarray cohort and identified decreased

expression of “The costimulatory signal during T cell activation” Biocarta pathway and, in

particular, the genes CD28, ICOS, LCK, and ITK, results confirmed by quantitative reverse

transcription polymerase chain reaction (qRT-PCR). A proportional hazards model, including the

qRT-PCR expression of CD28, ICOS, LCK, and ITK along with patient’s age, gender, and percent

predicted forced vital capacity (FVC%), demonstrated an area under the receiver operating

characteristic curve of 78.5% at 2.4 months for death and lung transplant prediction in the

replication cohort. To evaluate the potential cellular source of CD28, ICOS, LCK, and ITK

expression, we analyzed and found significant correlation of these genes with the PBMC

percentage of CD4+CD28+ T cells in the replication cohort. Our results suggest that CD28, ICOS,

LCK, and ITK are potential outcome biomarkers in IPF and should be further evaluated for patient

prioritization for lung transplantation and stratification in drug studies.

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrosing interstitial lung

disease with an unknown etiology. Diagnosis of IPF is based on clinical and radiological

features and, when available, findings of usual interstitial pneumonia on lung biopsy. IPF

patients have an overall median survival of 3 to 3.5 years (1). The disease is more prevalent

and probably more lethal among males (2, 3). With the exception of lung transplantation, no

therapy has been proven beneficial for IPF. The course of IPF is highly variable and largely

unpredictable among individual patients. Disease progression in current clinical practice is

monitored by pulmonary function tests, including forced vital capacity (FVC) and diffusion

capacity for carbon monoxide (DLCO), high-resolution computed tomography scans, and

measures of oxygenation. Previous studies have demonstrated that changes in dyspnea score,

total lung capacity, and FVC over 12 months or scores calculated on the basis of age,

gender, FVC, and DLCO at presentation seem to correlate with disease severity or outcome

in IPF (2–6). Although these advances allow for staging of patients with IPF, they do not
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address the difficulty of predicting outcomes for patients with very similar clinical

presentation or provide insight into molecular mechanisms of disease.

Current evidence suggests that plasma protein concentrations or changes in blood cells may

be informative of disease presence, severity, and prognosis in IPF patients (7–12). Recently,

a difference in the peripheral blood transcriptome was shown between IPF patients and

healthy controls (13, 14); however, the ability of the transcriptome to predict outcome was

not assessed. Given the evidence that peripheral blood mononuclear cell (PBMC) gene

expression is informative of disease presence and outcomes in other clinical entities, such as

multiple sclerosis (15, 16), heart transplant rejection (17), pulmonary hypertension

associated with scleroderma (18), and lung cancer (19), among others, we hypothesized that

PBMC gene expression patterns may be predictive of poor outcomes in IPF patients. For this

purpose, we examined PBMC gene expression in two independent cohorts and identified a

signature of 52 genes significantly associated with transplant-free survival (TFS) in both

cohorts. Decreased expression of genes belonging to “The costimulatory signal during T cell

activation” Biocarta pathway, in particular, CD28, ICOS, LCK, and ITK, was associated

with shorter TFS, findings confirmed by quantitative reverse transcription polymerase chain

reaction (qRT-PCR). The addition of these genes to an outcome prediction model improved

its performance compared to a model that only included clinical parameters. Our findings

suggest that PBMC gene expression may improve outcome prediction in IPF.

RESULTS

Patient population and clinicopathology

IPF patients included in this prospective cohort study were followed in clinics (at 3- to 4-

month intervals) from blood draw until death or completion of the study. The time-to-event

outcome analyzed was TFS; in this analysis, transplants and deaths were both counted as

events. Figure 1 provides information regarding the cohorts and study design. The discovery

(n = 45) and replication (n = 75) cohorts were similar with respect to age, smoking status,

pulmonary function tests, diagnostic strategy, and use of immunosuppression with the

exception of gender, race, and lung transplants (table S1). Although 75.5 and 68% of

subjects in the discovery and replication cohort were Caucasian males, respectively, the

discovery cohort patients had a more diverse ethnic background. Females were more

represented in the replication than in the discovery cohort (30.7 versus 11.1%, respectively).

The rate of lung transplants was higher in the replication cohort (20%) compared to the

discovery cohort (4%).

Microarray analysis of the discovery cohort

RNA was isolated from the PBMCs of patients (n = 45), labeled, and hybridized to

GeneChip Human 1.0 exon ST arrays at the University of Chicago. Using significance

analysis of microarrays (SAM), we identified 52 genes that were significantly [false

discovery rate (FDR) <5%, Cox score ≥2.5 and ≤−2.5] associated with TFS in this cohort.

Increased expression of 7 genes (genes with a Cox score ≥2.5) and decreased expression of

45 genes (genes with a Cox score ≤−2.5) were correlated with shorter TFS times (Table 1).
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To determine the pathways associated with TFS, we performed a survival gene set analysis

(GSA) in the discovery cohort. GSA identified 18 pathways (FDR <5%) associated with

TFS (table S2). Among them, “The costimulatory signal during T cell activation” Biocarta

pathway (Table 2 and table S2) was the top-ranked pathway with a maxmean score of −1.91,

indicating that lower expression of most genes in this pathway was correlated with shorter

TFS. CD28, ICOS, LCK, and ITK were the genes of this pathway with the strongest

association with TFS when underexpressed (Cox scores = −3.12, −3.01, −2.77, and −3.2,

respectively) (Table 2), and they were also part of the 52-gene outcome-associated

signature. Because GSA calculates a partial likelihood Cox score statistic for each gene after

fitting a full multivariate model, whereas SAM uses one gene at a time to estimate Cox

scores based on univariate models, we observed slight differences between the Cox scores of

CD28, ICOS, LCK, and ITK calculated by SAM from those calculated by GSA (Tables 1

and 2) in the discovery cohort; however, they fully agree in direction and magnitude.

Microarray analysis of the replication cohort

RNA isolated from PBMCs obtained from IPF patients at the University of Pittsburgh was

labeled and hybridized to Agilent whole human genome microarrays. To determine whether

the 52-gene TFS predictive signature identified in the discovery cohort predicted outcome in

the replication cohort, we used hierarchical clustering. Briefly, gene expression values in the

replication cohort, of the 52 genes derived from the discovery cohort, were used in a

hierarchical clustering algorithm that uses expression values to cluster samples. This

clustering algorithm identified two major patient clusters in the replication cohort (Fig. 2A).

The patients in the two clusters differed significantly with respect to TFS [hazard ratio, 1.96;

95% confidence interval (CI), 1.01 to 3.8] (Fig. 2B) but did not differ significantly with

respect to clinical variables (table S3). The median TFS at the conclusion of the observation

period for replication cohort patients in cluster 1 was 3.44 years compared to 1.62 years for

patients in cluster 2 (Fig. 1B and table S4).

TFS GSA was performed on the Agilent microarray gene expression data, independently

obtained from the replication cohort. This analysis yielded “The costimulatory signal during

T cell activation” Biocarta pathway as the top-ranked pathway that correlated with TFS with

a maxmean score of −1.24 (table S5). Similar to our previous observation in the discovery

cohort, CD28, ICOS, LCK, and ITK were also the genes with the lowest Cox score within

this pathway in the replication cohort (Table 3).

Association of CD28, ICOS, LCK, and ITK with poor IPF outcomes

To confirm the microarray findings in the discovery cohort, we designed a custom

SmartChip qRT-PCR assay that allowed us to simultaneously measure the expression of

CD28, ICOS, LCK, and ITK as well as housekeeping genes in multiple samples. SmartChip

expression values (reflected by 1 − ΔCt) from the discovery cohort (n = 43) were

significantly correlated with the Affymetrix microarray gene expression values for CD28 (r

= 0.71; 95% CI, 0.53 to 0.83), ICOS (r = 0.6; 95% CI, 0.38 to 0.77), LCK (r = 0.5; 95% CI,

0.23 to 0.70), and ITK (r = 0.6; 95% CI, 0.37 to 0.77) (Fig. 3).
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In the replication cohort (n = 74), decreased expression of CD28, ICOS, LCK, and ITK (split

at 4.858, 6.303, 4.333, and 5.069 cycles, respectively) was significantly associated with

decreased TFS (Fig. 4A). At the end of the observation period, TFS of patients with low

CD28 expression was 22% compared with 65% among patients with high CD28 expression.

In patients with low ICOS expression, TFS was 16% compared to 70% among patients with

high ICOS expression. In patients with low ITK expression, TFS was 24% compared to 62%

among patients with high ITK expression. In patients with low LCK expression, TFS was

30% compared to 57% among patients with high LCK expression. A decrease in CD28,

ICOS, LCK, or ITK expression was individually associated with median TFS that ranged

from 0.92 to 1.17 years, and increased expression was associated with longer median TFS,

ranging from 2.39 to 3.44 years (table S4). The unadjusted hazard ratios for CD28 (3.2; 95%

CI, 1.73 to 5.92), ICOS (4.52; 95% CI, 2.42 to 8.42), LCK (2.1; 95% CI, 1.14 to 3.86), and

ITK (2.3; 95% CI, 1.25 to 4.23) were between 2.1 and 4.5, indicating that low levels of

expression of these genes (when split by their median value) at evaluation were associated

with a two- to fourfold higher risk of dying or having a lung transplant. TFS prediction was

also significant after adjusting continuous ΔCt values of each individual gene to age, gender,

and percent predicted FVC (FVC%) (tables S6 to S9).

We compared the area under the receiver operating characteristic (ROC) curve (AUC) of a

genomic model (qRT-PCR expression of CD28, ICOS, LCK, and ITK), a clinical model

(age, gender, and FVC%), and a combined genomic and clinical model (qRT-PCR

expression of CD28, ICOS, LCK, and ITK along with age, gender, and FVC%). The highest

AUC of all tested Cox proportional hazard models was observed at 2.4 months (0.2 years).

The AUC for the combined genomic and clinical model at this time point was higher

(78.5%) than that for the genomic model alone (76.6%) or the clinical model alone (70.9%)

(Fig. 4B and table S10). The AUC differences between these models were statistically

significant.

Changes in CD4+CD28+ T cells and gene expression findings

To evaluate the potential cellular source of the PBMC gene expression changes, we

correlated the qRT-PCR expression level (reflected by 1 −ΔCt) of CD28, ICOS, LCK, and

ITK with the percentage of CD4+CD28+ T cells in PBMCs, in replication cohort patients

with simultaneous assays (n = 72). CD28 (r = 0.58; 95% CI, 0.41 to 0.72), ICOS (r = 0.54;

95% CI, 0.35 to 0.69), LCK (r = 0.39; 95% CI, 0.17 to 0.57), and ITK (r = 0.44; 95% CI,

0.23 to 0.61) were significantly correlated with the percentage of CD4+CD28+ T cells in

PBMCs (Fig. 5), suggesting that a decreased number of these cells may explain, at least in

part, the decreased expression of these genes. Along these lines, decreased percentage of

CD4+CD28+ T cells in PBMCs (split at the median percentage or 27.8%) was associated

with decreased TFS in the replication cohort (fig. S1A). TFS prediction was significant after

adjusting the CD4+CD28+ T cell percentages to age, gender, and FVC% (table S10).

Predictive models for death or lung transplant, including the percentage of CD4+CD28+ T

cells in PBMCs, demonstrated an outcome prediction that was lower than predictive models,

using qRT-PCR expression of CD28, ICOS, LCK, and ITK (fig. S1B and table S11).
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There were no statistically significant differences (P = 0.52, Fisher’s exact test) in the use of

immunosuppression between the patients with high versus low percentage of CD4+CD28+ T

cells in PBMCs (split by the median) in the replication cohort; we also did not find

immunosuppression use as an independent predictor of TFS in the discovery and replication

cohorts (P = 0.59 and 0.23, respectively, Cox proportional hazard model). CD28, ICOS,

LCK, or ITK expression levels did not correlate (P > 0.05 for each gene, Student’s t

distribution for Pearson correlation) with the absolute number of peripheral blood

lymphocytes in IPF patients (n = 35) from the discovery cohort that had this measure at the

time of PBMC extraction.

Given the reported associations of increased number of CD4+CD28null T cells in IPF

patients with poor outcomes (11), we measured the protein expression by flow cytometry of

the T cell costimulatory protein ICOS, the T cell receptor complex protein CD3ε, and the

tyrosine kinases LCK and ITK among paired autologous CD4+CD28+ and CD4+CD28null T

cells in patients with IPF from the replication cohort. Although these proteins were

significantly decreased in CD4+CD28null T cells (figs. S2 and S3), the percentage of

CD4+CD28null T cells in PBMCs was not significantly correlated with the expression of

CD28, ICOS, LCK, and ITK genes in IPF patients from the discovery cohort (n = 72) with

simultaneous assays (P > 0.05 for each gene, Student’s t distribution for Pearson

correlation).

DISCUSSION

Here, we identified changes in the expression of genes and pathways in PBMCs that

correlated with poor IPF outcomes in two independent cohorts from different academic

institutions, using different microarray platforms. We initially identified a signature of 52

genes as significantly associated with shorter TFS in the discovery cohort. Using this

signature, we clustered the patients in the replication cohort to look for TFS differences

between the patients in the major clusters and identified two clusters of patients with

significant differences in TFS. Analysis of gene sets associated with shorter TFS showed

decreased expression of most of the genes of “The costimulatory signal during T cell

activation” Biocarta pathway in both cohorts. The genes CD28, ICOS, LCK, and ITK were

members of the 52-gene signature and had the lowest Cox score when performing GSA, thus

having the highest association with shorter TFS in this pathway when underexpressed. qRT-

PCR confirmed that IPF patients with decreased expression of CD28, ICOS, LCK, and ITK

had shorter TFS. A combined genomic and clinical prediction model including ΔCt

expression of CD28, ICOS, LCK, and ITK along with age, gender, and FVC% provided

better outcome prediction than using the clinical predictors alone.

Recognition that the course of IPF is variable and unpredictable has generated substantial

interest in molecular biomarkers. Increases in the concentrations of peripheral blood proteins

such as Krebs von den Lungen-6 (KL-6), surfactant protein A (SP-A), chemokine ligand 18

(CCL18), matrix metalloproteinase 7 (MMP7), intercellular adhesion molecule 1 (ICAM),

and interleukin-8 (IL-8) (7, 10, 12, 20) have all been associated with decreased survival in

IPF patients. However, these studies rarely contained a replication cohort and were limited

in their discovery potential because they only tested a small, predefined set of markers.
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Recently, a study reporting a comparison of whole-blood transcriptomes of patients with IPF

to healthy controls demonstrated the potential wealth of information available in the

peripheral blood of patients with IPF (13); however, this study did not contain any

information about outcome-associated genes or the potential cellular source of the gene

expression changes. Thus, the attributes that distinguish our study from previous work are

the focus on an unbiased genome-scale screening for predictors of outcomes, the use of a

discovery and a replication cohort, and the attempt to outline the cellular source of the

signature. Our unbiased screen led us to discover that decreases in molecules and pathways

rarely studied in IPF, such as the T cell costimulatory proteins CD28 and ICOS, the tyrosine

kinases LCK and ITK, as well as other members of the Biocarta pathway “The

costimulatory signal during T cell activation,” are indicative of more severe outcomes in

IPF. Decreases in gene expression of CD28, ICOS, LCK, and ITK may be related to a

decrease in the number of CD4+CD28+ T cells in the peripheral blood—a finding that has

not been previously reported in IPF and warrants detailed mechanistic follow-up.

The clinical implications of predicting outcome in IPF are substantial. The only effective

therapy currently available for IPF patients is lung transplantation. The timing of

transplantation is determined by the clinical evaluation, combined with the lung allocation

score (21). Pretrans-plant evaluations are cost-intensive and not accurate enough to establish

optimal timing (22). Shortage of organs is also a limitation. Hence, adding information

about the expression of CD28, ICOS, LCK, and ITK to clinical parameters could be useful in

determining who should be referred for pretransplantation assessments and specifically,

given the ability of the model to predict early outcomes, to prioritize organ allocations to

those who have been evaluated. The ability to predict TFS is also important for drug studies

in IPF. In a relatively uncommon disease, to show an effect of a drug on mortality,

investigators need to recruit patients who are likely to progress during the course of the

study. It is possible that patients from a certain risk strata end up randomly and

disproportionately assigned to one of the experimental groups, leading to spurious results.

The significantly increased AUC of the combined genomic and clinical model in

comparison to the clinical model alone may suggest that adding CD28, ICOS, LCK, and ITK

expression levels to clinical parameters may help recruiting patients who are likely to

progress.

It is important to consider several limitations of our study. First, despite the inclusion of two

independent cohorts, the size and diversity of our cohorts are limited. Larger studies on

more ethnically and clinically diverse populations will be required to determine the

applicability of our markers to the general IPF population. Second, our study was designed

to capture only mortality or transplant as outcomes. It would be beneficial to include in the

model other IPF outcomes, such as acute exacerbations and disease progression, as reflected

by declines in pulmonary functions. In this context, assessing gene expression changes

during disease progression would be a highly useful tool to evaluate shifts in their patient

risk profiles. Finally, although our study supports the emerging notion that proteins, gene

transcripts, and cells in the blood are informative with regard to pathogenesis and outcomes

in IPF—a disease previously considered to be limited to the lung—it does not provide

information whether changes in peripheral blood gene expression have an added or different
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utility than bloodstream proteins. Future work should assess all likely markers in parallel

and determine their relative value as biomarkers.

In summary, in our study, a microarray-derived 52-gene expression profile or qRT-PCR of

CD28, ICOS, LCK, and ITK, members of this signature, was sufficient to identify IPF

patients destined for poor outcomes. Combining gene expression data with clinical

parameters enhanced outcome prediction; thus, our results could have considerable value in

clinical evaluations and management of patients with this devastating lung disease.

Naturally, despite the reproducibility of our findings across two cohorts, additional and

larger studies focused on validating our results will be required before PBMC gene

expression can be used clinically for prognosis in IPF.

MATERIALS AND METHODS

Study design: Patients and cohorts

Patients were recruited from the University of Chicago (discovery cohort; n = 45) and the

University of Pittsburgh (replication cohort; n = 75). IPF diagnosis was established by a

multidisciplinary group at each institution with the American Thoracic Society/European

Respiratory Society criteria (23) and was consistent with recent guidelines (24). Patients

were excluded in the study if they had evidence of autoimmune syndromes, malignancies,

infections, drugs, or occupational exposures known to cause lung fibrosis. The studies were

approved by the institutional review boards at the two institutions, and informed consent

was obtained from all patients. Demographic and clinical information was collected in all

patients at the time of blood draw. Spirometric data and diffusion capacity of the lung for

carbon monoxide (DLCO) obtained within 3 months of blood draw were available, with the

exception of four IPF patients of the replication cohort who did not have DLCO values

available within this time range.

The time-to-event outcome analyzed was TFS. Patients were followed in clinics (at 3- to 4-

month intervals) from blood draw until death or completion of the study on 5 February

2011. In this analysis, transplants and deaths were both counted as events. Transplant and

vital status could not be confirmed in three patients evaluated at the University of Pittsburgh

who were lost to follow-up; these patients were censored at their last visit day.

Microarray experiments and data preprocessing

Microarray expression was determined in two cohorts: a discovery cohort of IPF patients

evaluated at the University of Chicago (n = 45) and a replication cohort of IPF patients

evaluated at the University of Pittsburgh (n = 75). Microarray experiments were compliant

with MIAME (Minimum Information About a Microarray Experiment) guidelines. The

complete data sets are available in the Gene Expression Omnibus database (http://

www.ncbi.nlm.nih.gov/geo/) under accession number GSE28221. For the discovery cohort,

PBMC samples were obtained by density centrifugation. RNA was extracted with TRIzol

(Invitrogen), and labeling reactions were performed with GeneChip WT cDNA Synthesis

and Amplification Kit, followed by hybridization with GeneChip Human 1.0 exon ST arrays

(Affymetrix) following the manufacturer’s protocol. A microarray experiment was run for
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every subject’s sample in the discovery cohort, and these experiments were performed at the

University of Chicago. Data were processed and normalized with dChip software (25). For

the replication cohort, PBMC samples were obtained by density centrifugation. Total RNA

was extracted with QIAzol (Qiagen), and labeling reactions were performed with Agilent

Quick Amp labeling kit, one-color, followed by hybridization with Whole Human Genome

Oligo Microarray, 4 × 44K (G4112F, Agilent Technologies) following the manufacturer’s

protocol. A microarray experiment was run for every subject’s sample in the replication

cohort, and these experiments were performed at the University of Pittsburgh. To normalize

the gProcessedSignal, we performed cyclic loess as previously described (26). Please see

Supplementary Methods for more information regarding sample collection, RNA extraction,

and microarray experiments.

Given the differences in microarray technologies between the studied cohorts (discovery

cohort used Affymetrix, replication cohort used Agilent), we matched the gene probes

across platforms in each microarray expression data set. In brief, after each microarray

platform normalization, we matched the Affymetrix gene probes (n = 44,280 probes) with

the Agilent gene probes (n = 29,807 probes) by their corresponding gene IDs (http://

www.ncbi.nlm.nih.gov/gene). Because there are multiple replicated probes for the same

gene in each platform studied, we selected only the unique probes with the highest

interquartile range variation across the arrays and generated two independent data sets

(Affymetrix and Agilent), each with n = 17,417 unique gene symbols. Last, for univariate

gene selection and GSA in the discovery cohort, we applied a minimum fold change filter to

the previously matched Affymetrix data set (n = 17,417) to exclude noninformative gene

probes; for this step, we selected only the Affymetrix gene probes where 10% of the

expression values of a given gene probe had at least a fold change of 1.25 from the median

expression value of that probe, resulting in a set of n = 11,991 unique gene probes. The

corresponding n = 11,991 unique gene probes in the Agilent data set were used for analyses

in the replication cohort. SAM was used to test the association between PBMC microarray

gene expression and TFS in IPF patients from the discovery cohort, as described in

Supplementary Methods.

Hierarchical clustering of samples by TFS-associated genes identified in the discovery

cohort microarrays was performed in the replication cohorts’ microarrays with Cluster 3.0

software (27). The samples were hierarchically clustered with median normalization of the

genes and centroid linkage, and the similarity metric used was Pearson correlation.

Statistical analyses

Differences between IPF patients—Differences in age and pulmonary function tests

between IPF patients were evaluated with an unpaired, two-tailed t test. Differences in

gender, smoking status, diagnostic strategy, and use of immunosuppressive therapy were

evaluated with Fisher’s exact test. Significance was defined as P < 0.05.

qRT-PCR—Discovery cohort—Affymetrix log2-transformed microarray gene

expression values were correlated with their corresponding SmartChip qRT-PCR expression
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levels (1 − ΔCt) with Pearson correlation. P values were derived with Student’s t

distribution. Significance was defined as P < 0.05.

TFS analyses—Replication cohort—For the qRT-PCR outcome cohort analyses, we

used the survival (28) and risksetROC (29) packages of the R environment (30). When

performing Cox proportional hazard models, we applied the stepAIC (31) approach for

variable selection and included all variables as continuous covariates with the exception of

gender. In brief, qRT-PCR ΔCt values of CD28, ICOS, LCK, and ITK as well as the

percentage of CD4+CD28+ T cells in PBMCs were split by their median value into high-

and low-risk ranges, and TFS differences were calculated with Kaplan-Meier curves and the

log-rank test. The predictive significance of each gene as well as the percentage of

CD4+CD28+ T cell for TFS was evaluated with Cox proportional hazard models after

adjusting for clinical covariates known to be associated with poor IPF outcomes (age,

gender, and FVC%). Finally, to evaluate which Cox proportional hazard model resulted in

higher outcome prediction, we fit five different Cox proportional hazard models in subjects

with all available variables (n = 72), as follows: genomic and clinical (ΔCt of CD28, ICOS,

LCK, ITK, age, gender, and FVC%), genomic (ΔCt of CD28, ICOS, LCK, and ITK), clinical

(age, gender, and FVC%), CD4+CD28+ % (percentage of CD4+CD28+ T cells), and

CD4+CD28+ % and clinical (percentage of CD4+CD28+ T cells, age, gender, and FVC%).

To plot the differences between the analyzed Cox proportional hazard models, we used

time-dependent ROC for censored data (32) and AUC. When deriving the AUC estimates,

we performed a 10-fold cross-validation procedure to handle any potential bias. In addition,

we compared prediction accuracies (bias-controlled AUCs) of any two Cox regression

models with a Wilcoxon signed rank test. Significance was defined as P < 0.05.

Flow cytometry analyses—Replication cohort—The correlation between 1 −ΔCt

expression of CD28, ICOS, LCK, and ITK with the percentage of CD4+CD28+ T cells in

PBMCs in the replication cohort was performed with Pearson correlation. P values were

derived with Student’s t distribution. The comparison of the T cell costimulatory protein

ICOS, the T cell receptor complex protein CD3ε, and the tyrosine kinases LCK and ITK

between CD4+CD28+ and CD4+CD28null cells was performed with the Wilcoxon test for

paired samples. Significance was defined as P < 0.05.

Cross-validation for AUC—Replication cohort—For the 10-fold cross-validation, the

whole data set was randomly divided in data sets (folds) of similar size. A test set was

randomly selected among one of the 10 folds, and the remaining nine sets were used to train

the validation model. Subsequent iterations of training and validation were performed, and

within each iteration, a different fold of the data was held out for validation, whereas the

remaining folds were used for learning, a procedure that was repeated for a total of 10 times,

thus estimating 10 AUCs from each test data set. The final AUC value was estimated from

the average of the 10 resulting AUCs at each specific time point. The SE was calculated

from the variation of the 10 resulting AUCs at each time point.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Study design and cohorts
The outline summarizes the studied cohorts, the experiments performed in each cohort, and

the statistical analyses used. The horizontal arrows represent the confirmation of microarray

and qRT-PCR experiments in both cohorts.
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Fig. 2. Hierarchical clustering discriminates subgroups with outcome differences in the
replication cohort
(A) Hierarchical clustering of IPF patients from the replication cohort (n = 75) based on the

52-gene signature found in the discovery cohort to be associated with TFS (FDR <5%, Cox

score ≥2.5 and ≤−2.5). Two major clusters of IPF patients were identified. Every row

represents a gene, and every column, a patient. Color scale is shown adjacent to heat map in

log2 scale; generally, yellow denotes increase over the geometric mean of samples, and

purple, decrease. (B) TFS differs between clusters in the replication cohort; the median

survival of each group is depicted in dotted vertical lines; n at risk is the number of IPF

patients at risk of death or lung transplant at the beginning of each time point. P value was

determined by the log-rank test.
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Fig. 3. qRT-PCR confirms microarray findings in the discovery cohort
Correlation between log2-transformed microarray gene expression values and corresponding

SmartChip qRT-PCR expression levels for CD28, ICOS, LCK, and ITK in patients (n = 43)

from the discovery cohort. P values were determined by Student’s t distribution for Pearson

correlation.
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Fig. 4. CD28, ICOS, LCK, and ITK are potential IPF outcome biomarkers
(A) TFS analysis in the replication cohort (n = 74) with available qRT-PCR data for CD28,

ICOS, LCK, and ITK. In the Kaplan-Meier plots for each gene, the red lines are patients with

expression levels above the ΔCt median value (representing a decrease in gene expression);

the black lines are patients with expression levels below the ΔCt threshold (representing an

increase in gene expression); the median survival of each group is depicted in dotted vertical

lines. P values were determined by the log-rank test. (B) AUC of time-dependent ROC

analysis for TFS based on clinical and/or genomic models in replication cohort subjects with

all available variables (n = 72). Genomic model included continuous ΔCt values of CD28,
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ICOS, LCK, and ITK. Clinical model included age, gender, and FVC%. P values were

determined by the Wilcoxon signed rank test.

Herazo-Maya et al. Page 18

Sci Transl Med. Author manuscript; available in PMC 2014 September 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 5. Expression levels of CD28, ICOS, LCK, and ITK correlate with the number of circulating
CD4+CD28+ T cells
Correlation between the percentage of CD4+CD28+ T cells in PBMCs and their

corresponding 1 − ΔCt SmartChip qRT-PCR expression levels of CD28, ICOS, LCK, and

ITK in (n = 72) patients from the replication cohort. P values were determined by Student’s t

distribution for Pearson correlation.
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Table 1
A 52-gene signature associated with TFS in the discovery cohort

Expression data were collected for genes with a Cox score ≥2.5 and ≥−2.5 (FDR <5%). A positive Cox score

indicates that higher expression correlates with shorter TFS, whereas lower expression indicates longer TFS

time. A negative score indicates that higher expression correlates with longer TFS time, whereas lower

expression correlates with shorter TFS time.

Gene Gene symbol Cox score

Phospholipase B domain containing 1 PLBD1 3.32

Tyrosylprotein sulfotransferase 1 TPST1 3.25

Chromosome 19 open reading frame 59 (mast cell–expressed membrane protein 1) C19orf59 (MCEMP1) 3.13

Interleukin-1 receptor, type II IL1R2 3.05

Haptoglobin HP 2.91

FMS-related tyrosine kinase 3 FLT3 2.90

S100 calcium-binding protein A12 S100A12 2.89

Lymphocyte-specific protein tyrosine kinase LCK −2.50

Calcium/calmodulin-dependent protein kinase IIδ CAMK2D −2.50

Nucleoporin 43 kD NUP43 −2.51

SLAM family member 7 SLAMF7 −2.52

Leucine-rich repeat containing 39 LRRC39 −2.52

Inducible T cell costimulator ICOS −2.53

CD47 molecule CD47 −2.54

Limb bud and heart development LBH −2.55

SH2 domain containing 1A SH2D1A −2.55

CCR4-NOT transcription complex, subunit 6–like CNOT6L −2.56

Methyltransferase-like 8 METTL8 −2.56

V-ets erythroblastosis virus E26 oncogene homolog 1 ETS1 −2.58

Chromosome 2 open reading frame 27A C2orf27A −2.60

Purinergic receptor P2Y, G protein–coupled, 10 P2RY10 −2.60

T cell receptor–associated transmembrane adaptor 1 TRAT1 −2.61

Butyrophilin, subfamily 3, member A1 BTN3A1 −2.62

La ribonucleoprotein domain family, member 4 LARP4 −2.63

Tandem C2 domains, nuclear TC2N −2.63

G protein–coupled receptor 183 GPR183 −2.65

MORC family CW-type zinc finger 4 MORC4 −2.67

Signal transducer and activator of transcription 4 STAT4 −2.67

Lysophosphatidic acid receptor 6 LPAR6 −2.67

Chromosome 7 open reading frame 58 (cadherin- like and PC-esterase domain containing 1) C7orf58 (CPED1) −2.68

Dedicator of cytokinesis 10 DOCK10 −2.69

Rho GTPase-activating protein 5 ARHGAP5 −2.71

Major histocompatibility complex, class II, DPα1 HLA-DPA1 −2.72

Baculoviral IAP repeat containing 3 BIRC3 −2.73

G protein–coupled receptor 174 GPR174 −2.73
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Gene Gene symbol Cox score

CD28 molecule CD28 −2.73

Utrophin UTRN −2.76

CD2 molecule CD2 −2.76

Major histocompatibility complex, class II, DPβ1 HLA-DPB1 −2.77

ADP-ribosylation factor–like 4C ARL4C −2.78

Butyrophilin, subfamily 3, member A3 BTN3A3 −2.79

Chemokine (C-X-C motif) receptor 6 CXCR6 −2.81

Dynein cytoplasmic 2 light intermediate chain 1 DYNC2LI1 −2.84

Butyrophilin, subfamily 3, member A2 BTN3A2 −2.84

IL-2–inducible T cell kinase ITK −2.85

Small nucleolar RNA host gene 1 SNHG1 −2.94

CD96 molecule CD96 −3.03

Guanylate binding protein 4 GBP4 −3.03

Sphingosine-1-phosphate receptor 1 S1PR1 −3.06

Nucleosome assembly protein 1–like 2 NAP1L2 −3.10

Kruppel-like factor 12 KLF12 −3.15

Interleukin-7 receptor IL7R −3.48
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Table 2
Genes in “The costimulatory signal during T cell activation” Biocarta pathway associated
with TFS in the discovery cohort

A positive Cox score indicates that higher expression correlates with shorter TFS time, whereas lower

expression indicates shorter TFS time. A negative Cox score indicates that higher expression correlates with

longer TFS time, whereas lower expression correlates with shorter TFS time.

Gene Gene symbol Cox score

Growth factor receptor–bound protein 2 GRB2 1.08

CD80 molecule CD80 0.10

Interleukin-2 IL2 −0.81

Protein tyrosine phosphatase, nonreceptor type 11 PTPN11 −0.92

Cytotoxic T lymphocyte–associated protein 4 CTLA4 −1.85

CD3 molecule, ε (CD3-TCR complex) CD3E −1.90

CD3 molecule, δ (CD3-TCR complex) CD3D −1.99

Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α PIK3CA −2.06

Major histocompatibility complex, class II, DRα HLA-DRA −2.22

T cell receptor α locus TRA@ −2.35

Major histocompatibility complex, class II, DRβ1 HLA-DRB1 −2.37

Phosphoinositide-3-kinase, regulatory subunit 1 (α) PIK3R1 −2.37

CD247 molecule CD247 −2.45

CD3 molecule, γ (CD3-TCR complex) CD3G −2.59

CD86 molecule CD86 −2.68

Lymphocyte-specific protein tyrosine kinase LCK −2.77

Inducible T cell costimulator ICOS −3.01

CD28 molecule CD28 −3.12

IL-2–inducible T cell kinase ITK −3.20
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Table 3
Genes in “The costimulatory signal during T cell activation” Biocarta pathway associated
with TFS in the replication cohort

A positive Cox score indicates that higher expression correlates with shorter TFS time, whereas lower

expression indicates shorter TFS time. A negative score indicates that higher expression correlates with longer

TFS time, whereas lower expression correlates with shorter TFS time.

Gene Gene symbol Cox score

Growth factor receptor–bound protein 2 GRB2 1.76

Protein tyrosine phosphatase, nonreceptor type 11 PTPN11 0.71

Major histocompatibility complex, class II, DRα HLA-DRA 0.13

CD86 molecule CD86 0.11

Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α PIK3CA −0.38

Phosphoinositide-3-kinase, regulatory subunit 1 (α) PIK3R1 −0.47

Major histocompatibility complex, class II, DRβ1 HLA-DRB1 −0.52

CD247 molecule CD247 −0.71

Interleukin-2 IL2 −0.71

CD3 molecule, γ (CD3-TCR complex) CD3G −0.81

CD80 molecule CD80 −0.91

T cell receptor α locus TRA@ −1.39

CD3 molecule, δ (CD3-TCR complex) CD3D −1.64

CD3 molecule, ε (CD3-TCR complex) CD3E −1.67

Cytotoxic T lymphocyte–associated protein 4 CTLA4 −2.09

IL-2–inducible T cell kinase ITK −2.38

Lymphocyte-specific protein tyrosine kinase LCK −2.66

Inducible T cell costimulator ICOS −2.77

CD28 molecule CD28 −2.99
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