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Abstract

We develop a novel peak detection algorithm for the analysis of comprehensive two-dimensional

gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) data using normal-

exponential-Bernoulli (NEB) and mixture probability models. The algorithm first performs

baseline correction and denoising simultaneously using the NEB model, which also defines peak

regions. Peaks are then picked using a mixture of probability distribution to deal with the co-

eluting peaks. Peak merging is further carried out based on the mass spectral similarities among

the peaks within the same peak group. The algorithm is evaluated using experimental data to study

the effect of different cut-offs of the conditional Bayes factors and the effect of different mixture

models including Poisson, truncated Gaussian, Gaussian, Gamma, and exponentially modified

Gaussian (EMG) distributions, and the optimal version is introduced using a trial-and-error

approach. We then compare the new algorithm with two existing algorithms in terms of compound

identification. Data analysis shows that the developed algorithm can detect the peaks with lower

false discovery rates than the existing algorithms, and a less complicated peak picking model is a

promising alternative to the more complicated and widely used EMG mixture models.
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1. Introduction

Multiple analytical approaches such as liquid chromatography mass spectrometry (LC-MS),

gas chromatography mass spectrometry (GC-MS), and nuclear magnetic resonance

spectroscopy (NMR) have been employed for the comprehensive characterization of

metabolites in biological systems. One such powerful approach is comprehensive two-

dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS).

Unlike other existing analytical platforms, GC×GC-TOF MS provides much increased

separation capacity, chemical selectivity and sensitivity for the analysis of metabolites

present in complex samples. The information-rich output content of GC×GC-TOF MS data

has huge potential in metabolite profiling, identification, quantification, and metabolic

network analysis (Castillo et al., 2011; Jeong et al., 2011; Kim et al., 2011; Pierce et al.,

2005; Sinha et al., 2004).

Metabolites analyzed on a GC×GC-TOF MS system are first separated on two-dimensional

GC columns and then subjected to a mass spectrometer, which is usually equipped with an

electron ionization (EI) ion source. The EI process fragments the metabolite’s molecular

ions and results in fragment ion mass spectrum. For metabolite identification and

quantification using the EI mass spectra, the first step is to reduce the instrument data, i.e., a

collection of EI mass spectra, to chromatographic peaks. To help readers understand the

GC×GC-TOF MS data, a brief introduction is given in the Supplementary Information.

Although numerous algorithms have been developed for peak detection in one dimensional

GC-MS data (Dixon et al., 2006; Nicolè et al., 2012; O’Callaghan et al., 2012; Yang, He,

and Yu, 2009), there are only four algorithms available for the two-dimensional GC-MS

(Peters et al., 2007; Reichenbach et al., 2005; Vivó-Truyols, 2012) including commercial

software ChromaTOF from LECO company. However, none of these software packages is

publicly available yet, except ChromaTOF that is commercially embedded in the GC×GC-

TOF MS instrument. It is therefore highly desirable to develop publicly available peak

detection methods for the analysis of GC×GC-TOF MS data. On the other hand, the existing

peak detection algorithms for the analysis of GC×GC-TOF MS data perform baseline

correction and denoising separately, which may greatly increase the risk of introducing

errors from each independent stage. In fact, Wang et al. (2008) introduced a reversible jump

Markov chain Monte Carlo (RJ-MCMC)-based peak detection algorithm to perform

simultaneous baseline, denoising and peak identification for analysis of one-dimensional

surface enhanced laser desorption/ionization (SELDI) MS data and demonstrated that the

simultaneous process reduces false discovery rate. However, in practice, the use of

applications of RJ-MCMC is limited due to that prior distributions should be appropriately

assigned in order to design an effective RJ-MCMC algorithm and make posterior

distributions of parameters computationally tractable and that constructing an MCMC chain
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is in general computationally extensive. Yang et al. (2009) compared the performance of

peak detection among several peak detection algorithms for one-dimensional matrix-assisted

laser desorption/ionization (MALDI) MS data and showed that the continuous wavelet-

based (CWT) algorithm, which has simultaneous baseline and denoising, provides the best

performance, but it is still a major challenge to compute accurate peak abundance (area),

which is very important in compound quantification, due to its model-free approach.

Furthermore, the existing algorithms require manually assigned signal-to-noise ratio (SNR)

threshold and/or denoising parameters that are usually not optimized in the existing peak

detection algorithms, resulting in a high rate of false-positive and/or false-negative peaks.

To avoid the aforementioned difficulties in analysis of GC×GC-TOF MS data, we propose a

novel peak detection algorithm using a normal-exponential-Bernoulli (NEB) model and

mixture probability models, and the developed R package msPeak is publicly-available at

http://mrr.sourceforge.net. The developed algorithm is composed of the following

components: (i) the proposed NEB model performs simultaneous baseline correction and

denoising, followed by finding the potential peak regions using a conditional Bayes factor-

based statistical test, (ii) the peak picking and area calculations are carried out by fitting

experimental data with a mixture of probability model, and (iii) the detected peaks

originated from the same compound are further merged based on mass spectral similarity.

The advantages of the proposed method are that the proposed NEB-based preprocessing

requires no manually assigned SNR threshold and denoising parameters from users, which

makes it easy to use; and, instead of searching for the potential peaks using the entire data,

the proposed algorithm reduces the entire data to peak regions using a conditional Bayes

factor of the test, eliminating the possible computational burden as well as improving the

quality of peak abundance (area). The developed algorithm is further compared with two

existing algorithms in terms of compound identification.

Besides, we investigated the performance of several probability mixture models for peak

picking based on peak regions identified by the NEB model. It has been known that the

model-based approach measures more accurately peak abundance (area) and the

exponentially modified Gaussian (EMG) probability model performs well for fitting

asymmetric chromatographic peaks and the detection of peak position (Di Marco and

Bombi, 2011; Vivó-Truyols, 2012; Wei et al., 2012). However, to our knowledge, there is

no study to evaluate EMG model by comparing with other possible probability models in

analysis of GC×GC-TOF MS data. To address this, we employed five probability mixture

models: Poisson mixture models (PMM), truncated Gaussian mixture models (tGMM),

Gaussian mixture models (GMM), Gamma mixture models (GaMM), and exponentially

modified Gaussian mixture models (EGMM). Here PMM, GMM, and EGMM were chosen

based on Di Marco and Bombi (2011)’s work, and we proposed two new models, tGMM

and GaMM, as alternatives to GMM and EGMM, respectively.

We hope our research can provide some insight on the following computational/statistical

challenges of the current peak detection approaches: (i) baseline correction and denoising

are performed separately so that there is no way to communicate the information with each

step, (ii) user-defined input values are needed, (iii) entire data are used for peak detection

(compared to our proposed approach that finds peak regions first and then detect peaks), and
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(iv) there is no comparison analysis for the performance of different chromatographic peak

models.

The rest of the paper is organized as follows. Section 2 presents the proposed peak detection

algorithm and introduces a trial-and-error optimization of the developed algorithm. The real

GC×GC-TOF MS data is described in Section 3. In section 4, we apply the developed

algorithm to real experimental GC×GC-TOF MS data, followed by the comparison with two

existing algorithms in Section 5. In Section 6, we discuss the results and then conclude our

work in Section 7.

2. Algorithms

The proposed peak detection algorithm consists of three components with the following four

steps: finding potential peak regions, simultaneous denoising and baseline correction, peak

picking and area calculation, and peak merging (Supplementary Information Figure S1). The

first two steps are performed by hierarchical statistical models at a time, while the peak

picking and area calculation are carried out by model-based approaches in conjunction with

first derivative test. The peak merging then uses mass spectral similarities to recognize

peaks originated from the same metabolite. The selection of the cut-off value of the

conditional Bayes factor and the probability model is further optimized by a trial-and-error

optimization. On the other hand, when multiple samples are analyzed, each sample will

generate a peak list after peak detection. A cross sample peak list alignment is needed to

recognize chromatographic peaks generated by the same compound in different samples.

Current existing peak-based methods generally perform peak alignment using the mass

spectral similarity and peak position (location) distance (e.g., Kim et al., 2011). This peak

alignment process will generate a matched peak table for downstream data analysis, such as

quantification and network analysis. In this regard, the peak detection process plays an

important role in generating the peak list. It should be noted that, due to either systematic

(technical) or biological variations, some peaks (molecules) may not be detected in all

samples, resulting in an incomplete peak table. There are several remedies to deal with the

issue, such as ignoring missing data, filling in zero, or imputing/estimating missing data

(e.g., Hrydziuszko and Viant, 2012; Liew, Law, and Yan, 2011).

2.1. Finding peak regions

Newton et al. (2001) proposed a hierarchical approach to the microarray data analysis using

gamma-gamma-Bernoulli model. Their purpose was to detect the genes that are

differentially expressed. In this study, we adopted their idea to simultaneously perform

baseline correction and denoising, by replacing the gamma-gamma-Bernoulli model with the

normal-exponential-Bernoulli (NEB) model. The proposed hierarchical NEB model has

three layers. In the first layer, the observed data, Xi, are modeled through the normal

distribution with mean Θi + μ and variance σ2 for each ith total ion chromatogram (TIC),

where i = 1, ⋯, N and N is the number of TICs. Note that a TIC is a chromatogram created

by summing up intensities of all mass spectral peaks collected during a given scan (or a

given instrumental time). In other words, we assume that the noise follows the normal

distribution with mean zero and variance σ2. For simplicity, the homogeneous variance is

assumed in this model. Here Θi is the true signal of the observed signal Xi and μ is either a
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baseline or a background. The true signal, Θi, is further modeled by the exponential

distribution with mean φ in the second layer. In case that there is only noise, meaning that

no signal is present, the observed signal, Xi, is modeled only with the background and noise

signal. Consequently, Xi follows the normal distribution with mean μ and variance σ2.

In this approach, we pay attention to whether the observed TIC at a given position is

significantly different from background signal. To do this, one more layer is introduced in

the model using a Bernoulli distribution, resulting in the NEB model. The true TICs of some

proportion r are present (i.e., Θi ≠ 0), while others remain at zero (Θi = 0). For positions

where the true TIC is present, we use the following model:

(2.1)

where N D stands for a normal distribution, Xi is an observed TIC at the ith position, Θi is

the true TIC of Xi of the exponential distribution with φ, and μ is the mean background or

baseline with variance σ2. In case that no TIC is present, the background signal follows:

(2.2)

Therefore, the marginal density of Xi when i ≠ 0 is driven by

(2.3)

where Φ(·) is the cumulative distribution function (cdf) of the standard normal distribution.

When Θi = 0, the marginal density of xi becomes the probability density function (pdf) of a

normal distribution with mean μ and variance σ2. The detail derivation of Equation (2.3) can

be found in the Supplementary Information. The loglikelihood l(μ, σ2, φ, r) is

(2.4)

where yi is the value of the binary indicator variable, Yi, at the ith TIC with 0 unless there is

a true significant signal and r is the proportion of the true TICs. As a result, there are four

parameters (μ, σ2, φ, r) along with the indicator variable Yi(i = 1, ⋯, N) to estimate. The

graphical representation of the proposed NEB model is depicted in Figure 1.

Parameter estimation—The EM algorithm (Dempster, Laird, and Rubin, 1977) is

employed to estimate the parameters of Equation (2.4) by considering the indicator variable

Yi(i = 1, ⋯, N) as the latent (or missing) variable. In the E-step, the latent variable Yi(i = 1,

⋯, N) is estimated, after fixing the parameters (μ, σ2, φ, r) at the current estimates, by

(2.5)

To simplify the M-step, the mixture structure has been separated so that the update estimate

of r is the arithmetic mean of ’s and the remaining parameters (μ, σ2, φ) are optimized by a
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numerical approach such as the R package nlminb. It should be noted that our optimization

does not guarantee a global optimum since the R package nlminb used is a local

optimization. In particular, a Beta(2, 2) is placed as a prior over r to stabilize the

computation as well as to enable a nice interpretation of the output, according to Newton et

al. (2001), resulting in the following r̂:

(2.6)

where N is the total number of TIC. After fixing , the remaining parameters are estimated

by maximizing the loglikelihood as follows:

(2.7)

Finding true signals—The true signals are found by performing the significant test based

on the posterior odds. The posterior odds of signal at the ith TIC are expressed by

(2.8)

The posterior probability of yi given the entire TIC is

(2.9)

by conditional independence of the data at different TICs given the parameter r. Using the

approach in Newton et al. (2001), the posterior odds can be approximated by

(2.10)

where w can be called conditional Bayes factors since the prior odds equal unity, P(yi = 1|x1,

⋯, xN) ≈ p1(xi)r̂ and P(yi = 0|x1, ⋯, xN) ≈ p0(xi)(1-r̂) by approximating Equation (2.9) at

the model r = r̂. According to Jeffreys (1961)’ scales, the three values of 1, 10, and 100 are

used to interpret the posterior odds, meaning that the TICs are selected using three cut-off

values. That is, if the posterior odds of a TIC are less than a selected cut-off value, then this

TIC is considered as a noise by fixing it at zero (i.e., Θi = 0). Otherwise, the TIC will be

preserved for future analysis (i.e., Θi ≠ 0).

2.2. Denoising and baseline correction

Once the significant TICs (true signals) are detected by the posterior odds, the baseline

correction and denoising are performed simultaneously based on the estimated parameters.

That is, under the assumption that the TIC is true signal (Θi ≠ 0), the convoluted TIC, x̂i, is

predicted by the expected true TIC (signal) given an observed TIC, i.e., E(Θi|xi). By doing
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the calculation described in the Supplementary Information, we can obtain the convoluted

TIC, x̂i, as follows:

(2.11)

where φ and Φ are the probability density and cumulative distribution functions of the

standard normal distribution N D(0, 1), respectively.

2.3. Peak detection and area calculation

After denoising and baseline correction, the vector of predicted TICs, , are

converted into the N1 by N2 matrix D(= [dkl]k=1,⋯,N1;l=1,⋯, N2), where N = N1 · N2. Here

the sizes of the row and column of the matrix D are the same as the intervals of the first and

the second dimension retention times, respectively. In order to detect peaks for each

significant peak region, we employ five different model-based approaches along with the

first derivative test (FDT): Poisson mixture models (PMM), truncated Gaussian mixture

models (tGMM), Gaussian mixture models (GMM), Gamma mixture models (GaMM), and

exponentially modified Gaussian mixture models (EGMM).

The peak area is calculated based on the highest probability density (HPD) regions of 95%

for model-based approaches. We assume that Dk is the kth row vector of the matrix D, where

the size of Dk is N2 and 1 ≤ k ≤ N1, and Dk = {dkl}l=1,⋯,N2. In other words, Dk is a vector of

intensities at each second dimension retention time given the kth first dimension retention

time. Then Dk is partitioned into several nonzero peak regions, i.e.,

, where 1 ≤ k ≤ N; ; 1 ≤ m ≤ M_{k_};

. It is noteworthy that  is a nonzero peak region and its intensities zkl’s

are always nonzero.

First derivative test (FDT)—FDT is used to infer the maximum number of components

(peaks) of the mixture probability models. The first derivative is calculated over the

converted nonzero vector  with respect to the second dimension retention times to find a

peak, for the given kth first dimension retention time and the mth nonzero peak region where

1 ≤ k ≤ N1 and 1 ≤ m ≤ Mk. By doing so, the local maxima are found with respect to the

second dimension retention time. That is, for each converted vector , we examine zkl

whether it is a local maximum with respect to the second dimension retention time as

follows:

(2.12)

where Ikl is the indicator variable for peaks detected using the second dimension retention

time; 1 indicates a local maximum. In fact, we observed that the first derivative test with

respect to the first dimension retention time has little information in most cases, due to the
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relatively large value of modulation period compared to the chromatographic peak width in

the first dimension GC. For this reason, we used only the second dimension retention time

for peak picking. It is noteworthy to mention again that we use the FDT only for guessing

the maximum number of the possible peaks and for an initial value of the optimization of the

model-based approach.

Model-based approach—The five different probability models including Poisson,

truncated Gaussian, Gaussian, Gamma, and exponentially modified Gaussian distributions

are employed along with mixture models. For each converted nonzero vector

, a mixture of the selected probability models are fitted to the observed,

convoluted intensities. Suppose fs(·|ξs) is a pdf with a parameter of ξs of the sth component,

where 1 ≤ s ≤ S, ξs is a scalar or a vector, and S is the number of mixture components. Then

the converted nonzero intensity zkl at the kth first dimension retention time is modeled as

follows:

(2.13)

where tl is the second dimension retention time at the lth position, ws is the nonnegative

weight factor of the sth component, , and N D stands for a normal distribution

with variance τ2. The parameters (ζ, S) are estimated by minimizing −2 times loglikelihood

function:

(2.14)

where , and  and  are the estimated parameters of the sth component. The

pdf and its parameters for Poisson, truncated Gaussian, Gaussian, Gamma, and

exponentially modified Gaussian can be found in the Supplementary Information.

Then 95% highest probability density (HPD) intervals are calculated with the estimated 

and  for each kth peak, , and the length of its 95% HPD interval is assigned as

the peak area. As mentioned before, we consider the number of peaks detected by FDT as

the maximum number of peaks that can be detected. Therefore, the number of mixture

components estimated by each model-based approach ( ) always becomes less than or equal

to the number of peaks detected by FDT. Furthermore, the intensities are divided by the total

sum of nonzero intensities in a given peak region for the purpose of normalization since

each model is a probability distribution.

2.4. Peak grouping and merging

It is likely that multiple peaks detected can be from the same compound due to systemic

variations. To correct these multiple peaks, we use the mass spectrum (MS) information by

calculating the MS similarity among the peaks. Since it might be computationally expensive
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if all the pairwise MS similarities are calculated, we first group the peaks according to their

nonzero peak regions and then merge the peaks having the higher MS similarity using a

user-defined cut-off value, only if these peaks are present in the adjacent nonzero peak

region(s). For instance, assuming that two peaks zkl and zmn belong to the nonzero peak

regions  and , respectively, zkl and zmn are considered as members of the same group if

these two peak regions are adjacent to each other. Otherwise, they are assigned to different

groups. The MS similarities among all peaks within the same group are calculated, and the

peak with the highest TIC is selected as the representative peak in case that multiple peaks

have the MS similarities greater than the user defined cut-off value (e.g., 0.95) by replacing

the peak area with the sum of peak areas of all merged peaks.

2.5. Optimal selection of the cut-off value and the probability model

As can be observed in Section 3, the optimal probability mixture model can be different

according to the detected peak regions, so does the cut-off value of the conditional Bayes

factor. For this reason, we further consider a trial-and-error optimization of the developed

algorithm in order to select the optimal cut-off value of the conditional Bayes factor and the

optimal probability mixture model. To do this, three objective functions are considered,

which are mean squared error (MSE), Akaike information criterion (AIC), and Bayesian

information criterion (BIC) that were used in Section 3. That is, given a selected objective

function, we first look for the optimal probability mixture model for each detected peak

region and then find the optimal cut-off value of the conditional Bayes factor by the

minimum of the sums of all the objective functions for each cut-off value. In detail, the

optimal cut-off value  is selected by the following trial-and-error optimization:

(2.15)

where ν ∈ {1, 10, 100} is a cut-off value; βm ∈ {PMM, tGMM, GMM, GaMM, EGMM} is

a probability model; and . In particular, the function

 is varied with respect to the choice of the objective function:

(2.16)

where ;  are the parameter

estimates of a given probability model ; and  is the number of the parameters of a

given probability model. For the case that a certain probability model is preferred, we can

just optimize the cut-off value of the conditional Bayes factor by fixing  at a user-defined

model. In addition, we can also just optimize the probability model by fixing  at a certain

cut-off value. Note that the last two approaches are computationally less expensive.
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3. GC×GC-MS data and software

To evaluate the performance of the developed peak finding algorithm, an experimental data

set generated from a comprehensive two-dimensional gas chromatography time-of-flight

mass spectrometry (GC×GC-TOF MS) was used. The sample analyzed on GC×GC-TOF

MS is a mixture of 76 compound standards (8270 MegaMix, Restek Corp., Bellefonte, PA)

and C7-C40 n-alkanes (Sigma-Aldrich Corp., St. Louis, MO). The concentration of each

compound in the mixture is 2.5 μg/mL. The mixture was analyzed on a LECO Pegasus 4D

GC×GC-TOF MS instrument (LECO Corporation, St. Joseph, MI, USA) equipped with a

cryogenic modulator. All the statistical analyses were performed using statistical software R

2.13.1 (R Development Core Team, 2012), and the developed R package msPeak is

available at http://mrr.sourceforge.net.

4. Applications

We applied the developed algorithm to the two sets of the experimental GC×GC-TOF MS

data described in the previous section. The first data set is a small region selected from the

experimental data while the second data set is the entire experimental data. The developed

algorithm was further compared with the two existing algorithms, continuous wavelet-based

(CWT) algorithm and ChromaTOF, in terms of compound identification in Section 5.

4.1. Analysis of selected data

For illustration purpose, we selected a small region from the entire experimental data as

shown in Supplementary Information Figure S2(b). Upon this selected data, we performed

the process of peak finding according to the algorithm described in Section 2.

Figure S2(c) displays the results of the NEB model-based significant test as well as

denoising and baseline correction for the selected data. As described in Section 2, the

significant test is rendered by a conditional Bayes factor of the test in Equation (2.10) with

the three different odds (cut-off) values such as 1, 10, and 100. Of these, the largest cut-off

value is the strictest condition in that there are fewer significant TICs. In other words, there

are more TICs of zero in case of the odds of 100. In this figure, the black open circles

represent the original TIC, and the red cross ‘×’, green plus ‘+’, and blue open circles

indicate the convoluted TICs of the odds of 1, 10, and 100, respectively. Figure S2(d) is the

magnified plot of the green box in Figure S2(c). Clearly, we can see that the odds of 1 (red

cross ‘×’) has the most nonzero convoluted TICs as depicted in Figure S2(d). The detected

peak regions are plotted in Figure S3 of Supplementary Information. In Figure S3, the total

number of nonzero peak regions detected is 36, 28, and 27 when the cut-off value of odds is

1, 10, and 100, respectively. As expected, the odds of 1 have the most nonzero peak regions.

Once the nonzero peak regions were detected, we searched for the significant peaks at each

nonzero peak region using five probability mixture models, PMM, tGMM, GMM, GaMM,

and EGMM. As mentioned before, the number of peaks detected by FDT is considered as

the maximum number of peaks to be fitted by each of five probability mixture models. Each

of PMM, tGMM, GMM, GaMM, and EGMM has (S · 1+1), (S · 2+1), (S · 2+1), (S · 2+1),

and (S · 3+1) parameters to estimate, where S is the number of mixture components. Note
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that the truncated Gaussian distribution has four parameters including the lower and the

upper bounds, but, in this study, these bounds are fixed with the starting and ending indices

of a given nonzero peak region. Only when the number of data points for a given nonzero

peak region is more than or equal to the required number of parameters for a selected

probability model, the normalized intensities are fitted using the probability model.

To evaluate the performance of each probability model for fitting the normalized intensities,

we consider four measures: mean squared error (MSE), −2 times loglikelihood (LL), Akaike

information criterion (AIC), and Bayesian information criterion (BIC). A probability model

is considered as performing better if its MSE, LL, AIC, or BIC is lower. It is noteworthy that

LL is given only as a reference and will not be directly used for comparison since each

model is not nested. The results of fitting the normalized intensities using the proposed five

probability mixture models are reported in Table 1.

In case of odds of 1, the MSE, LL, and AIC of EGMM are the lowest and these of PMM are

the largest. However, the lowest BIC happens with PMM that has the smallest number of

parameters to estimate. On the other hand, when the cut-off value of odds is 10, the MSEs

are dramatically reduced up to five times lower than these of odds 1. In this case, tGMM has

the lowest MSE, and the largest MSE still occurs when PMM is employed. However,

EGMM has the lowest LL, AIC, and BIC. Interestingly, the overall MSE becomes worse

than that of odds 1, when the cut-off value increases to 100. Nevertheless, its trend is similar

to that of odds 10. Overall, in terms of MSE, a better fitting is achieved when 10 is

considered as the cut-off value of odds and when the truncated Gaussian mixture model is

used.

Figure 2 shows the cases when each probability model performs best among other mixture

models in terms of MSE, when the cut-off value is 10. That is, Figures 2(a)-2(e) display the

fitted curves when PMM, tGMM, GMM, GaMM, and EGMM fit the normalized intensities

with the lowest MSE, respectively. In Figure 2(a), PMM has the largest number of peaks

detected, which is four as FDT does, while PMM has the lowest MSE (MSE (×105) = 0.06

(PMM), 0.09 (tGMM), 0.10 (GMM), 1.19 (GaMM), 0.21 (EGMM)). Although there is only

one peak in this figure, but only EGMM detected one peak. tGMM and GMM have the

peaks in the very similar position as expected. GaMM has two peaks detected with one peak

positioned at the upper bound of the second dimension retention time. This peak region

corresponds to the peak region (a) in Figure 2(f). tGMM has the lowest MSE in Figure 2(b)

(MSE (×105) = 83.01 (PMM), 3.20 (tGMM), 6.08 (GMM), 7.40 (GaMM), 5.56 (EGMM)).

In this case, all the detected peaks are located at the same position except for GaMM, which

is shifted to the left. PMM has much larger MSE, indicating the worst fitted curve to the data

points. Figure 2(c) has the similar peak shape to that of Figure 2(a), while GMM is the best

fitted model and is marginally better than tGMM at the third decimal point in this case

(MSE (×105) = 0.88 (PMM), 0.36 (tGMM), 0.36 (GMM), 0.69 (GaMM), 0.54 (EGMM)).

Likewise, all the probability models detected two or more peaks except for EGMM, even

though there is only one chromatographic peak. Its index of peak region is (c) as shown in

Figure 2(f). Three chromatographic peaks are observed in Figure 2(d). PMM and EGMM

detect no peak in the beginning of the curve while the other models correctly detect this

peak. GaMM has the lowest MSE (MSE (×105) = 1.90 (PMM), 0.75 (tGMM), 0.76 (GMM),
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0.46 (GaMM), 0.62 (EGMM)). The case that EGMM has the lowest MSE is depicted in

Figure 2(e) (MSE (×105) = 0.49 (PMM), 0.36 (tGMM), 0.35 (GMM), 0.24 (GaMM), 0.15

(EGMM)). Only tGMM and GMM resolve the peak in the middle of the curve although

their peak positions are shifted to the left. Overall, EGMM fits the normalized intensities

well with the smaller MSE, but tGMM and GMM have a better capability of detecting the

peaks that have a relatively smaller peak height.

The detected peaks are indicated in the selected GC×GC-TOF MS data as shown in

Supplementary Information Figure S4. In this figure, the dotted red box represents the

nonzero peak region detected from the proposed NEB model, and the grey contour is plotted

based on the original TIC. When the cut-off value of odds is 1, the total number of peaks

detected by PMM, tGMM, GMM, GaMM, and EGMM is 61, 53, 53, 60, and 47,

respectively, as shown in Figure S4(a). Of these probability models, PMM has the largest

number of detected peaks and EGMM has the smallest number of peaks detected. In case of

odds 10 and 100, PMM and GaMM have the largest numbers of peaks detected out of five

probability mixture models, which are 43 and 40 for odds of 10 and 100, respectively.

EGMM still has the smallest number of detected peaks of 37 as can be seen in Figures S4(c)

and S4(e). For illustration purpose, the detected peaks when the cut-off is 10 are depicted in

Figure 2(f). Comparing Figure S4(a) with Figures S4(c) and S4(e), it can be seen that the

peak regions of small sizes have vanished in Figures S4(c) and S4(e) when the odds

increase. The detected peaks after peak merging are shown in Figures S4(b), S4(d), and

S4(f). The peak merging dramatically reduced the number of detected peaks up to the one-

third of the number of peaks before peak merging.

Furthermore, three interesting points can be observed. One is that the cut-off value has little

effect on the overall performance of peak detection, although the odds of 10 give us the best

average performance. The second is that the peaks detected by each probability model

become similar to each other after peak merging. The last is that the detected peaks by

EGMM are very similar to these by PMM, after peak merging, although PMM has the worst

MSE as can be seen in Table 1. That is, the peak merging makes all probability models

comparable to each other in terms of the position of peaks detected.

4.2. Analysis of entire data

We here applied the proposed peak detection algorithm to the entire data. Before using the

entire data, we removed the uninteresting areas that were produced due to experimental

noise. This can be seen in Supplementary Information Figures S5(a) and S5(b). Then, we

found the nonzero TICs by the proposed NEB model as depicted in Supplementary

Information Figure S5(c). Similarly to the selected data in the previous section, we selected

the nonzero peak regions and then detected the peaks using the proposed methods with the

three cut-off values, 1, 10, and 100, of odds. In case of the cut-off value of odds 10 (1 and

100, respectively), the numbers of detected peaks are 230 (263 and 215), 223 (249 and 211),

225 (254 and 211), 229 (265 and 213), and 215 (230 and 201), for PMM, tGMM, GMM,

GaMM, and EGMM, respectively, before peak merging, while the numbers of detected peak

after peak merging are 97 (104 and 96), 99 (107 and 97), 99 (105 and 96), 99 (106 and 96),
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and 96 (103 and 92), respectively. As before, the peak merging reduces the variation in the

number of detected peaks among different methods.

We further evaluated the performance of peak finding by compound identification using

Person’s correlation. To standardize the comparison, we focused on the identification of the

76 compound standards from the peak list generated by each method. Since we knew that 76

compound standards should be present in the sample, we examined the quality of detected

peaks by each mixture model through counting the number of 76 compound standards that

were identified out of the detected peaks. Table 2 shows the results of the comparison.

As expected, the odds of one have the most peaks detected for every model. After peak

merging, the total number of detected peaks decreased up to more than 50%, while the

number of unique compounds identified and the number of 76 compound standards

identified have little variation. Interestingly, the difference among models disappears when

we consider the total number of 76 compound standards identified, which ranges from 30 to

32 across all the models.

The trial-and-error optimization was also applied to the entire data using Equation (2.15).

The last three rows of Table 2 show the results of the optimization with the three different

objective functions, MSE, AIC, and BIC. The optimal cut-off values of odds with MSE,

AIC, and BIC are 10, 1, and 1, respectively, which is consistent with the results of the

selected data (Table 1). Since the optimization with either AIC or BIC selects the cut-off

value of one, they detects more peaks than that with MSE. The results are shown in Figure 3

when the objective function is MSE. Overall, the optimization with MSE performs best in

the sense that it finds the smallest number of peaks but the same number of 76 compound

standards. The peak detection results of the trial-and-error optimization using another

replicated data set can be found in the Supplementary Information Figures S7 and S8.

5. Comparison with existing algorithms

We further evaluated the developed algorithm by comparing with existing algorithms in

terms of compound identification. To do this, we employed the two algorithms, continuous

wavelet-based (CWT) algorithm and ChromaTOF. As mentioned earlier, there is no publicly

available software for GC×GC-TOF MS data and most existing algorithms used one-

dimensional approach for denoising and baseline correction, so we employed CWT, which

was the best-performing method based on Yang et al. (2009)’s work. Note that ChromaTOF

is the only commercial software embedded in GC×GC-TOF MS instrument. To avoid bias

in peak merging, we used the peak list generated by each method before peak merging. We

examined the performance of CWT with the three different signal-to-noise (SNR) ratios, 1,

2, and 3, using the R/Bioconductor package MassSpec Wavelet. As for ChromaTOF, we

used the SNR threshold of 100. It should be noted that the unit of the SNR threshold of

ChromaTOF is different from that of CWT, so the SNR thresholds cannot be compared

directly with each other. For example, the CWT detected no peak with SNR of 100.

Table 3 shows the results of compound identification of the entire data using CWT and

ChromaTOF before peak merging. For ease of comparison, we added the results for the

MSE-based trial-and-error optimization of Table 2, which performs best in Section 4.2, into
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the table and measured the ratios (%) of the number of Standard compounds to the number

of Unique compounds (SUR), the number of Standard compounds to the number of detected

peaks (SPR), and the number of Unique compounds to the number of detected peaks (UPR).

CWT detects the largest number of peaks before compound identification, but it detects the

smallest number of unique compounds as well as the smallest number of the 76 compound

standards (the true positive compounds) identified by compound identification, resulting in

the highest false discovery rate. The commercial software ChromaTOF detects the largest

number of unique compounds and the largest number of 76 compound standards. On the

other hand, although the developed algorithm finds the smallest number of peaks, the

identified number of 76 compound standards is comparable to that of ChromaTOF.

Furthermore, the highest SUR and the highest SPR are achieved by the developed algorithm,

while the highest UPR is carried out by ChromaTOF. It suggests that the developed

algorithm greatly reduces false discovery rate in terms of SPR. In addition, the number of

detected peaks of CWT is very sensitive to the choice of SNR threshold, while the

developed algorithm has little effect of the cut-off value of odds on peak detection as can be

seen in Table 2. Overall, the comparison analysis shows that ChromaTOF has much worse

specificity than our algorithm although it has better sensitivity. Moreover, CWT has the

similar specificity to the developed algorithm, but the developed algorithm has better

sensitivity,

6. Discussion

To analyze GC×GC-TOF MS data, we developed a new peak detection algorithm. Unlike

the existing peak detection algorithms, the proposed algorithm performs baseline correction

and denoising simultaneously using the NEB model without any input, such as manually

assigned SNR threshold and denoising parameters, from users. In particular, the proposed

NEB model has the ability to remove the background noise (the series of black dots in the

middle of the plot) from the raw signal as shown in Supplementary Information Figure

S5(d). Another advantage is that it can reduce the entire data into a set of peak regions using

a statistical test of conditional Bayes factors. This is an important aspect on peak detection

because the information-rich output of MS data is usually enormous and so the processing

time is one of key bottlenecks in data analysis.

In this work, we marginalized the MS information and then detected the peaks using the

marginalized chromatogram data (i.e., TIC). In our proposed peak detection, the

marginalization of the MS data is used only for the peak detection. As for the metabolite

identification, we used the non-marginalized mass spectrum for each metabolite. In the ideal

case, each peak of chromatogram (marginalized MS data, i.e., TIC) should represent a

unique metabolite (compound or peak) in GC×GC-TOF MS data. However, there are still

co-eluting metabolites from GC×GC-TOF MS due to limited separation power. For this

reason, to resolve the co-eluting metabolites, ChromaTOF uses the non-marginalized MS

data (i.e., Single Ion Chromatogram: XIC). A key objective of using XICs of ChromaTOF is

to resolve the co-eluting metabolites, so, if there is no co-eluting peak, we think TIC should

be sufficient to detect the peaks. Furthermore, there is much less amount of metabolites co-

eluting from GC×GC than GC does owing to the increased separation power. For these
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reasons, we tried to resolve the co-eluting metabolites based on TIC along with a mixture

model in the proposed approach. By doing so, although there is a certain degree of

information loss due to marginalization, we could also see several benefits from this

marginalization: (i) it reduced the size of data, (ii) consequently, it spent the less

computational expense, and (iii) it made the data much smoother (Morris et al., 2005).

Furthermore, in comparison analysis, our approach is comparable with ChromaTOF, which

uses no marginalization of the MS data. It should be noted that neither the commercial

software ChromaTOF nor our developed method completely detected all of the known

compounds. There could be many reasons for this, including low concentration, low

ionization frequency, inaccuracy of the peak detection algorithms, etc.

It is a challenge to estimate the unknown number of components for a mixture model,

especially, under the presence of many local optima. To circumvent this potential issue, the

developed algorithm uses the number of peaks detected by FDT as the upper bound of the

number of components. Although this saves the computation time as well as removes the

potential difficulty, it can be a potential drawback of the proposed algorithm when the true

number of components is larger than the number of peaks detected by FDT. However, since

the FDT used in this study was very sensitive to noise, we observed, with limited testing

data, that FDT overestimates the number of peaks in most cases (e.g., Figure 2).

The most dominated parametric model to describe the shape of chromatographic peaks in

GC-MS and LC-MS data is an exponentially modified Gaussian (EMG) function (Di Marco

and Bombi, 2001). In this work, four mixture models were compared with the EMG model

as can be seen in Tables 1 and 2. EMG model shows the least MSE and the least number of

detected peaks. However, there is no performance difference between the mixture models in

terms of metabolite identification and detected peaks, implying that the less complicated

model has an advantage on the computation.

As mentioned, Table 2 shows no preference among different mixture models on compound

identification, although there is a clear difference in fitting the intensities (Table 1). For this

reason, we analyzed the MS similarity within a peak region displayed in Figure 2(e). The

results of MS similarity analysis are depicted in Supplementary Information Figure S6. In

this analysis, we calculated the pairwise MS similarities among the data points, and then

displayed the pairwise MS similarities for each data point in Figure S6(a). For example, a

dotted line represents the MS similarities between the ith point and all other jth points, j ≠ i,

given the ith data point. Therefore, the ith data point must have the MS similarity of one at

the ith point in the plot since it is the MS self-similarity. In this figure, we can cluster the

MS similarity lines into three groups which are the same as the number of apparent local

maxima. Furthermore, although a data point is located far from its local maximum, its MS

similarity is more than 0.8, demonstrating that the peak region plays a more important role

in compound identification than the peak position. A similar trend can be seen in the

heatmap depicted in Figure S6(b). This can not only explain why we observe no difference

among the different models in compound identification, but also give an insight that MS

similarity-based peak detection is a promising approach.
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Since the proposed model-based algorithms require a fitting of the peak shape, the peak

finding procedure would run long time. To evaluate the running time, we compared the

computation time between CWT with the cut-off of 1 and the proposed algorithm with/

without optimization with odds of 10, on a desktop with Intel Core 2 Duo CPU 3.00 GHz.

The running time of CWT was 0.24 minutes, while the proposed algorithms with PMM and

optimization took 6.86 minutes and 14.10 minutes, respectively. The full optimization

version of the proposed algorithm further took 33.37 minutes. Although the proposed

algorithms relatively take more running time than CWT, it still finds peaks in a reasonable

time frame. The running time of the full optimization approach may be a bottleneck

compared to CWT, however. One solution to speed up the computation time is to rely on

parallel computation. In general, the parallel computation is more e cient when a lot of

independent calculations are required, and the peak shape fitting of the proposed method can

be performed independently using parallel computation for each of the peak region.

Even though there is not much of a difference between the developed algorithm and the only

commercial software available for GC×GC-TOF MS in terms of the number of 76

compound standards identified, the total number of peaks detected by the proposed

algorithm is about 100 peaks less than that of ChromaTOF (e.g., 230 vs. 391 in Table 3).

This is because ChromaTOF uses XIC, while the developed algorithm uses total ion

chromatogram (TIC). The XIC-based approach requires more computation since it

independently deals with each XIC of m/z values, while the TIC-based approach needs a

one-time computation. The use of XIC on the developed algorithm is left as future work.

7. Conclusions

We developed a novel, publicly-available algorithm to identify chromatogram peaks using

GC×GC-TOF MS data, which includes three components: simultaneous baseline correction

and denoising by the NEB model, peak picking with various choices of mixture models, and

peak merging. The proposed algorithm requires no SNR threshold and denoising parameters

from users to perform baseline correction and denoising. The data analysis demonstrated

that the NEB model-based method can detect the peak regions in the two dimensional

chromatogram that have chromatographic peaks, with a simultaneous baseline removal and

denoising process. Furthermore, the comparison analysis with limited data shows that the

developed algorithm can greatly reduce false discovery rate in terms of compound

identification. Among the model-based approaches for peak picking, PMM and GMM detect

more peaks, while tGMM and EGMM have smaller MSE. However, there is no apparent

preference among the five model-based approaches in terms of compound identification, and

the peak shape is data-dependent. For this reason, we further introduced a trial-and-error

optimization into the proposed algorithm to select a proper peak shape model according to a

different peak region. Among the four measures (MSE, LL, AIC, and BIC), MSE will be

considered to find an optimal peak shape model in terms of the compound identification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1.
The graphical representation of a normal-exponential-Bernoulli (NEB) model.
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Fig 2.
The fitted peak regions and the detected peaks when the cut-off value of odds is 10. The

detected peak positions are indicated by black circle (FDT), red triangle (PMM), green ‘+’

(tGMM), blue ‘×’ (GMM), sky-blue rhombus (GaMM), and purple inverted-triangle

(EGMM). ‘Obs’ means the observed intensities. The detected nonzero peak regions and

peaks before peak merging are in (f). The indices (a)-(e) in (f) indicate the peak region

corresponding to each of the fitted plots (a)-(e).
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Fig 3.
The detected nonzero peak regions and peaks by the trial-and-error optimization with MSE

before (a)/after (b) peak merging.
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Table 1
Results of fitting the normalized intensities using five probability models

Odds Measure PMM tGMM GMM GaMM EGMM

1 MSE1 41.34 30.35 28.29 33.85 15.63

(15.03) (19.65) (15.21) (15.92) (9.64)

LL −285.42 −324.10 −322.91 −320.51 −371.78

(41.38) (41.27) (41.66) (41.24) (46.43)

AIC −277.42 −313.76 −312.57 −308.51 −358.92

(40.89) (40.81) (41.21) (40.43) (46.01)

BIC −116.04 −112.24 −111.05 −61.99 −110.92

(18.08) (17.01) (17.42) (18.07) (20.20)

10 MSE 38.34 2.72 6.41 7.39 5.54

(10.52) (0.64) (1.95) (2.52) (2.00)

LL −255.80 −310.07 −305.90 −301.83 −336.24

(39.72) (39.88) (40.63) (39.57) (44.09)

AIC −248.98 −300.51 −296.34 −292.05 −324.98

(39.28) (39.36) (40.11) (38.91) (43.67)

BIC −119.43 −119.40 −115.23 −101.50 −121.72

(18.77) (15.84) (16.56) (17.26) (17.19)

100 MSE 53.75 11.94 19.25 21.05 18.03

(13.52) (7.73) (9.70) (10.54) (9.77)

LL −223.97 −279.79 −277.68 −272.47 −313.56

(36.80) (39.20) (39.85) (37.51) (44.15)

AIC −218.05 −271.12 −269.01 −263.58 −302.60

(36.46) (38.63) (39.30) (36.92) (43.48)

BIC −113.46 −113.01 −112.45 −101.47 −107.04

(18.06) (16.28) (15.65) (14.15) (15.20)

The values in parentheses are empirical standard errors.
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Table 2
Results of compound identification of peaks detected before/after peak merging

Before peak merging After peak merging

Odds Model Standard
1

Unique
2

Peak
3

Standard Unique Peak

1 PMM 32 72 263 32 64 104

tGMM 32 72 249 32 64 107

GMM 32 72 254 31 63 105

GaMM 32 73 265 31 64 106

EGMM 32 69 230 32 63 103

10 PMM 32 68 230 31 61 97

tGMM 32 70 223 31 62 99

GMM 32 70 225 31 61 99

GaMM 32 71 229 31 63 99

EGMM 32 67 215 32 61 96

100 PMM 31 66 215 30 60 96

tGMM 31 67 211 31 60 97

GMM 31 65 211 30 58 96

GaMM 31 68 213 30 60 96

EGMM 31 64 201 30 58 92

10
OPT-MSE

4 32 69 230 31 61 97

1 OPT-AIC 32 71 255 32 64 104

1 OPT-BIC 32 70 240 32 64 104

1
the number of 76 compound standards present in the list of ‘Unique’ peaks;

2
the number of unique compound names in the list of peaks detected by each method;

3
the number of peaks detected by each method;

4
the trial-and-error optimization.
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Table 3
Results of compound identification of peaks detected by the developed, algorithm, CWT,
and ChromaTOF before peak merging

Before peak merging

Method (Cut-off) Standard Unique Peak SUR
1
 (%) SPR

2
 (%) UPR

3
(%)

OPT-MSE (10) 32 69 230 46.38 13.91 30.00

CWT (1) 25 61 1242 40.98 2.01 4.91

CWT (2) 22 50 880 44.00 2.50 5.68

CWT (3) 26 43 618 37.21 2.59 6.96

ChromaTOF (100) 34 178 391 19.1 8.7 45.52

1
Standard/Unique;

2
Standard/Peak;

3
Unique/Peak.
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