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Abstract

Species-specific genes play an important role in defining the phenotype of an organism. However,

current gene prediction methods can only efficiently find genes that share features such as

sequence similarity or general sequence characteristics with previously known genes. Novel

sequencing methods and tiling arrays can be used to find genes without prior information and they

have demonstrated that novel genes can still be found from extensively studied model organisms.

Unfortunately, these methods are expensive and thus are not easily applicable, e.g., to finding

genes that are expressed only in very specific conditions.

We demonstrate a method for finding novel genes with sparse arrays, applying it on the 33.9 Mb

genome of the filamentous fungus Trichoderma reesei. Our computational method does not

require normalisations between arrays and it takes into account the multiple-testing problem

typical for analysis of microarray data. In contrast to tiling arrays, that use overlapping probes,

only one 25mer microarray oligonucleotide probe was used for every 100 b. Thus, only relatively

little space on a microarray slide was required to cover the intergenic regions of a genome. The

analysis was done as a by-product of a conventional microarray experiment with no additional

costs. We found at least 23 good candidates for novel transcripts that could code for proteins and

all of which were expressed at high levels. Candidate genes were found to neighbour ire1 and cre1

and many other regulatory genes. Our simple, low-cost method can easily be applied to finding

novel species-specific genes without prior knowledge of their sequence properties.
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1. Introduction

Recent progress in sequencing technology is increasing rapidly the number of available

genomes. Consequently, efficient discovery of basic functional elements, such as all protein

or RNA encoding genes, from newly sequenced genomes is becoming a crucial bottleneck

in the use of genomics to explore biological diversity. Automatic sequence-based prediction

methods are very good at finding genes that have homology to known genes or have

sequence features such as translation initiation and splice sites that are common to many

genes of the organism (reviewed in (Brent, 2008)). Typically, a combination of approaches

is used. Candidate genes are found by de novo gene prediction programs that are trained on

the known genes of the organism. Alternatively, some programs can both learn typical

characteristics of the genes and predict candidate genes in an iterative fashion given only the

genome and an initial gene model (Ter-Hovhannisyan et al., 2008). In parallel, the genome

is aligned to ESTs from the organism and related organisms and genomes of other

organisms to find genes based on expression and/or conservation.

The pitfall of this otherwise successful strategy is that it is biased towards finding things that

resemble what we already know. When sequencing new genomes, it is also important to find

those genes that are truly different from what has been observed before. Recent study of

prokaryotic genomes, with far simpler gene structure, suggests that current gene prediction

methods may miss hundreds of conserved gene families (Warren et al., 2010). Thus, there is

a need for complementary approaches that only utilize the genomic sequence and functional

data from the organism in question to predict new genes. Dense tiling arrays (Selinger et al.,

2000; Bertone et al., 2004; David et al., 2006) and direct transcript sequencing (Miura et al.,

2006; Wilhelm et al., 2008; Nagalakshmi et al., 2008) are such methods, but their high cost

limits expansion of their usage to the hundreds of less studied organism for which genome

sequences are or will be available. In addition, finding an interesting novel transcript might

require analysis of large amounts of samples, such as dense time series under different

experimental conditions.

The fungal kingdom includes various industrially, medically and agriculturally important

species and major model organisms such as Saccharomyces cerevisiae. Sequencing of

fungal genomes allows us to tap into their diverse metabolism, such as lignocellulose or

pectin degradation, and synthesis of antibiotics or other secondary metabolites. Many of the

fungi with a large impact on society come from the phylum Ascomycota, such as the protein

and citric acid producing Aspergillus niger, rice blast fungus Magnaporthe grisea, human

pathogens Aspergillus fumigatus and phCandida albicans and baker’s yeast S. cerevisiae.

However, in particular genes related to the interesting metabolic functions mentioned earlier

appear to be under fast evolution in Ascomycota (Arvas et al., 2007) and thus likely to give

rise to lineage-specific or orphan genes. Lineage specificity has been proposed to arise in

fungi, for example through duplication and divergence (Fedorova et al., 2008), accelerated

evolutionary rates (Cai et al., 2006; Kawahara and Imanishi, 2007) and horizontal gene
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transfer (Khaldi et al., 2008; Lieckfeldt et al., 2000). Lineage-specific genes are also

considered particularly important for virulence of human and plant pathogens.

In this work we studied the Ascomycota fungus Trichoderma reesei (Hypocrea jecorina), an

important model organism for lignocellulose degradation. T. reesei is used for commercial

production of its native enzymes such as various cellulases and heterologous proteins. It can

achieve protein yields above 100 g/l in industrial fermentations, a quantity not reported for

any other organism (Cherry and Fidantsef, 2003). Degradation of lignocellulose from

agricultural crop residues, grasses, wood and municipal solid waste by cellulases and other

enzymes is a crucial step in transforming these biomasses to second generation biofuels.

Hence, there is a dire need for understanding the protein-secretion process.

Typical oligonucleotide microarray slides can accommodate hundreds of thousands of

probes. However, for example with 60mer probes, only 1 or 2 probes per transcript are

routinely utilised. Fungi typically have from 5000 to 20,000 predicted genes, thus extra

space is often available on a microarray to search for novel transcripts. To test this concept

we covered the intergenic regions of the plus strand of the T. reesei genome with 187,641

25mer probes with approximately 100 b gap between two consecutive probes. In addition,

our microarray contained 25mer probes also for the previously predicted genes, as in a

conventional oligonucleotide microarray expression profiling experiment. In comparison,

6.5 million probes were used previously (David et al., 2006; Juneau et al., 2007) to study S.

cerevisiae, whose genome size is roughly a third of the T. reesei genome size.

‘Tiling array’ refers to an array design where the probe positions overlap, we call our design

a ‘sparse array’. The low signal-to-noise ratio of the sparse microarray data makes it hard to

distinguish true gene expression from the background, especially because the hybridization

probes have different affinities to their targets. However, we demonstrate that it is still

possible to assess the presence of a novel gene by comparing the expression levels of the

group of probes within an open reading frame (ORF) to those of other ORFs. We did not

want to predict new genes by comparing the expression levels to those of known genes, as

that would require deciding which known genes are expressed in the experiment — a hard

task in itself. Instead, we look for ORFs that contain many probes with high expression

values. The significance of observing an ORF with a given number of highly expressed

probes was determined by a comparison to the overall distribution of expression levels of

probes in the (mostly) non-transcribed sequence. This was done in silico by permuting the

locations of the probes. The randomization allows us to estimate the false-positive rate of

our findings and to avoid problems due to multiple hypothesis testing, without making

unrealistic assumptions about the data. A similar computational approach has been

suggested earlier (Royce et al., 2005), but our study is the first one to consistently apply it to

finding novel genes from sparse array data.

We show that it is possible to detect dozens of previously unknown transcripts from sparse

array data that was collected without additional cost as a side-product of a conventional gene

expression experiment. Furthermore, the novel transcripts show regulation and high

expression in conditions relevant for protein production, making them key targets for further

studies on fungal protein secretion.
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2. Materials and methods

A work flow of the analysis is included in Supplementary file 6.

2.1. Data collection

The Trichoderma reesei strain Rut-C30 (Montenecourt and Eveleigh, 1979) was grown in

chemostat cultivations as described in (Rautio et al., 2006). Strain Rut-C30 was used instead

of the sequenced strain QM6a for its enhanced protein production capabilities. Cultivations

were done in lactose-limited chemostats at three different conditions: specific constant

growth rates of 0.03 h−1 (D03), 0.06 h−1 (D06) and 0.03 h−1 with high cell density (HD03).

The high cell density was achieved by increasing the lactose concentration of the feed

medium from 20 g/L to 80 g/L. Triplicate cultures were analysed for the three conditions.

Stable chemostat cultures were attained within two or three residence times, and three

generations after steady states were attained, samples were withdrawn for microarray

analysis. Mycelial samples were homogenised with FastPrep cell homogenizer

(ThermoSavant, Dreirich, Germany) using 6 m/s for 45 s. RNA was extracted from the

homogenate with Total RNA kit (A&A Biotechnologies, Gnydia, Poland). Quality and

quantity of RNA was monitored by absorbance measurement at A260 (DNA Quant,

Pharmacia, Uppsala, Sweden) and Agilent Bioanalyser and RNA 6000 Nano Assay kit

(Agilent Technologies, Palo Alto, CA, USA).

Total RNA samples were submitted to microarray analysis by Roche Nimblegen (WI, USA).

Probe design and synthesis, RNA labelling, hybridisation and signal quantification were

carried out by Nimblegen. Design of the microarray and all subsequent analysis were carried

out with the T. reesei genome (Martinez et al., 2008) version 1.2 (http://genome.jgi-psf.org/

trire1/trire1.home.html). Plus strand of intergenic regions were covered with 187,641 25mer

oligonucleotide probes with approximately 100 nt spacing.

2.2. Preprocessing and normalization

The T. reesei genome version 1.2 is composed of 1094 scaffolds. The GC % of the short

scaffolds varies considerably (see Supplementary file 1). A cutoff for the lengths of the

scaffolds to be included in the analysis was chosen so that the GC% for the chosen scaffolds

is relatively constant. The cutoff was set to include 51 of the total 1094 scaffolds, covering

90.92% of the sequence data. The length of the shortest included scaffold was 131,123 bp.

The expression values of a microarray probe have been observed to be highly dependent on

their GC percentage (Samanta et al., 2006; Royce et al., 2007). Therefore we first applied

the GC-scaling scheme introduced in (Samanta et al., 2006) and discussed in (Royce et al.,

2007) to the raw probe-level data. The expression values for all probes with a given GC% in

a given experiment were divided by the median expression value of the intergenic probes in

that experiment. This corrected the bias towards larger expression values of probes with a

higher GC%.
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Potential ORFs were found using the EMBOSS (Rice et al., 2000) program ‘getorf’ and

those that overlap with a previously predicted gene in the genome version 1.2 were

excluded.

2.3. Analysis of the novel genes

Similarity of probes to transcripts of the old genes was estimated by blastn (Altschul et al.,

1990) with default settings (Supplementary file 2). To find homologues of the novel genes,

their translations in six frames were used to search the EMBL protein and nucleotide

sequence databases with tblastx, blastx (Altschul et al., 1990) and psi-blast (Altschul et al.,

1997) with default settings. All available unpublished fungal genomes were collected from

the Broad Institute, USA (http://www.broad.mit.edu/) and Joint Genome Institute, USA

(http://genome.jgi-psf.org/) web sites and searched for matches.

In addition, after completion of experimental part of this study, T. reesei genome version 2.0

was released. Through additional sequencing the number of scaffolds was reduced from

1094 to 87. In addition gene modelling was improved based on extensive manual curation,

reducing the number of genes from 9997 to 9129. In order to benefit from these

improvements we also checked whether candidate genes overlapped with genes in v2.0.

Protein family databases were searched for matches by Inter-ProScan (Quevillon et al.,

2005) and RNA families with Rfam (Griffiths-Jones et al., 2003) with default settings. Figs.

3 and 4 and Supplementary files 1–5 were produced by custom scripts with R (Development

Core Team, 2008; Gentleman et al., 2004) and Fig. 1 with Bioperl (Stajich et al., 2002) and

Gbrowse (Stein et al., 2002).

2.4. Reverse transcriptase-PCR

Specific primers were designed for the candidate genes with PerlPrimer version 1.1.16

(Marshall, 2004). Forward and reverse primers respectively for quantitative RT-PCR were:

8_1718: ACGTCTTGTT-CTTCTCTTCTC and AAAGGAGAGGTAAATGCACAG,

4_2310: CTCTCGCCTCACATAATCAC and GAATGAGAATTGGACCGCTG, 10_1091:

TTCTGCTGCTTGATTGTTTCTC and GAACAGGTAGATTAAATGAGCGA, 14_172:

GGGAAACGAAACAAAGAACAG and TATTATTTGGAGGT-GAGCGG, 10_1841:

TTACTACTCTTCTT and ATTCGCAATGCTTGATACTC and for qualitative RT-PCR:

16_41: TGGCTTCTTGCTTTAAATGC and GAA-GAGTGGAGAAGAAAGGC, 19_1159:

ATGACCAGCACCTTTGAATG and TACATGTACATACTCCAACCG, 19_455:

ATGTTCTACGTCCATCACCC and TACATAGTGTGGAGAGGGAG, 21_266:

ATGGGCTCCGATAGCAAA and CAAGAGATACTGATGGTGAAC, 28_34:

ATGATATCCTCCGTCTTCTCC and TGTCATTGCAAACCGACG, 28_371:

ATGCAGCTGCACTCGTAC and GTTCGCTCTGGCTGTTG, 5_2510:

ATGCTATTTGCCATCTGCA and AGCAG-CAGGAGAGGAGAG, 7_1555:

ATGGTCGGCATCACCTAT and CTGATGA-TATGATGCATGAGG, 8_1028:

ATGACAGTTGAGCGACTGAC and AGGTACAGACAGAGCTGC, 9_273f:

TGCATTGCATCAATACTACC and AGGGAATTGGGCTATCTAGA. Same total RNA

samples as in the microarray analysis were used. Total RNA was treated with RNase-Free

DNase Set (Qiagen N.V. Venlo, The Netherlands) prior to clean up with RNeasy Mini Kit
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(Qiagen N.V. Venlo, The Netherlands). Purified total RNA samples were used as templates

in the cDNA synthesis carried out with oligo(dT) primers and DyNAmo cDNA Synthesis

Kit (Finnzymes, Espoo, Finland). Non-purified cDNA samples were then used as templates

for RT-PCR.

Quantitative RT-PCR was carried out using LightCycler 480 SYBR Green I Master and

Light Cycler Instrument II (Roche Diagnostics Ltd., Rotkreuz, Switzerland). Possible

contamination of genomic DNA was monitored by carrying out cDNA synthesis reactions

without the reverse transcriptase enzyme and then using the reactions as templates in RT-

PCR with reference gene 60091 primers. Melting temperature analysis was performed after

the amplification and the RT-PCR reactions were also analyzed in 1.2% agarose gel.

Relative quantification of genes was calculated with LightCycler 480 SW1.5 basic relative

quantification analysis with PCR efficiency correction. Endogenous reference genes used

were 60091 and 106250 (v2.0 identifiers). They were selected for their strong and stable

signal in a large non-public dataset. Their primers are 106250: CGGACGACAGA-

CAATACCAG and GCTGGTGGATGGTCAAGATT and 60091:

GCGACCTCGTCCTCTACAAG and GGTTATCGCCAACAATCCAG.

Three independent RT-PCRs were carried out for each of the five Top candidates in the four

samples. Each RT-PCR contained reactions for both control genes, i.e. in total 120 RT-PCR

reactions were carried out.

cDNA synthesis for qualitative RT-PCR was carried out as for quantitative RT-PCR except

that RNA samples were pooled before synthesis. Qualitative RT-PCR was carried out using

Dynazyme Ext PCR Kit (Finnzymes, Espoo, Finland). Possible contamination of genomic

DNA was monitored by carrying out cDNA synthesis reactions without the reverse

transcriptase enzyme and using these reactions also as templates for each individual primer

pair. Genomic DNA was also used as template for each primer pair and all three reactions

corresponding to single primer pair analyzed on 1.5% agarose gel.

2.5. Sequencing

Quantitative RT-PCR products were analyzed in 1.2% agarose gel and isolated with

Qiaquick Gel Extraction Kit (Qiagen N.V. Venlo, The Netherlands) and sequenced in both

forward and reverse direction using the same specific oligos as in the RT-PCR

amplification. Sequencing was performed using Big Dye Terminator v3.1 Cycle Sequencing

Kit (AB Applied Biosystems, Life Technologies Corporation, CA, USA) and analyzed with

3100 Genetic Analyer ((AB Applied Biosystems, Life Technologies Corporation, CA,

USA).

3. Results

3.1. Obtaining sparse array data

In order to detect novel genes with sparse arrays from protein production conditions, the T.

reesei strain Rut-C30 (Montenecourt and Eveleigh, 1979) was cultivated in lactose-limited

chemostats. A chemostat is a bioreactor cultivation where some substrate component such as

the main carbon source, e.g. lactose, limits biomass production and is fed at a constant rate
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which determines the specific growth rate of the organism. The highest specific rate of total

secreted protein production is achieved at the specific growth rates close to 0.03 h−1 in T.

reesei chemostat cultivations. At the relatively high specific growth rates of 0.05–0.07 h−1

more protein is synthesized in total, but less secreted protein is produced (Pakula et al.,

2005).

The goal of our chemostat cultivations was to study the intracellular responses using

genomic methods to growth rates 0.03 h−1 (D03), 0.06 h−1 (D06) and 0.03 h−1 with high cell

density (HD03). The specific protein production rates, averaged for three replicates were

found to be 6.5, 4.5, and 1.4 mg g−1 h−1 in D03, D06, and HD03 cultivations, respectively,

confirming (Pakula et al., 2005) result.

Further results of this experiment will be published in detail elsewhere, along with the

conventional transcriptional profiling data from genes previously predicted in T. reesei. In

this article we describe a method for the analysis of sparse array data, using data from these

chemostat cultivations. The data discussed in this publication have been deposited in

NCBI’s Gene Expression Omnibus (Edgar et al., 2002) and are accessible through GEO

Series accession number GSE12960 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE12960).

3.2. Identification of candidate genes

To remove the dependency between signal strength and the probe’s GC%, the signals were

normalised with a GC% scaling as in (Samanta et al., 2006) (Fig. 1). All potential ORFs of

length >150 b and flanked by a start and stop codon were extracted from intergenic regions

of the T. reesei genome. There are three experimental conditions—D03, D06 and HD03—in

the dataset, and three independent measurements for each condition. In the following

analysis we averaged the results over the independent measurements, obtaining a single

expression value for each probe under each experimental condition.

Consider an ORF spanning N probes, h of which have an expression level higher than the

kth percentile of all intergenic probes. We computed the probability of observing such an

ORF, denoted by a p-score (Eq. (1)). We limit our analysis to ORFs that have N≥3. The

probability p (p-score) of observing at least h probes with expression values above the kth

percentile (e.g., 75th) of all intergenic expression values for that experimental condition is

computed according to Eq. (3) in (Royce et al., 2005)2:

(1)

The choice of the percentile k is addressed in the next subsection. These p-scores are based

on the assumption that all probes are statistically independent, which is unlikely to hold in

our data. Therefore we adopt the scheme suggested in (Royce et al., 2005) and compare the

p-scores in the original data to those in randomized versions of the data.

2Notice the error in the notation in Eq. (3) in (Royce et al., 2005): the powers should be N–i and i instead of N–h and h.
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Randomization is performed by shuffling the locations of all intergenic probes, i.e., a

random permutation of the probe locations is obtained, and the original probe values are

assigned to those locations. The p-scores for each ORF are now computed in the same way

as for the original data. The results can be used to assess the number of false positives that

are included in the results for a given p-score cutoff.

3.3. Choice of the percentile and p-score cutoff

The chosen percentile k and the p-score cutoff affects the number of genes that are found to

have significantly high expression, and the number of false positives among them. The

ORFs in original and randomized data were listed in the order of increasing p-scores. The

percentage of ORFs in the list up to some p-score cutoff c that results from randomized data,

false positives, is the false discovery rate (FDR) with that p-score cutoff c. We approached

the percentile selection problem by fixing the false discovery rate (FDR) to 20%.

We experimented with percentiles k={50,55,60,65,70,75,80,85} and in order to select the

percentile that yielded the largest number of true positives when the p-score cutoff is such

that including p-scores above the cutoff would increase the false discovery rate to above

20%. Here true positives are ORFs with p-scores below the cutoff in the original data, and

false positives are ORFs with p-scores below the cutoff in the randomized data. For each

alternative percentile, the randomization was repeated 100 times, and the average number of

true positives was computed.

We found that the 75th percentile yields lists that contain the highest numbers of ORFs from

the original data. The corresponding numbers of potential candidate ORFs were 75 for D03,

82 for D06, and 119 for HD03.

Fig. 2 shows the distribution of p-scores for the experimental condition D03 in the original

data, and the average distribution in 100 randomizations. In this case the percentile k=75

was used in Eq. (1). The results for the other conditions D06 and HD03 are similar (data not

shown).

We then obtained the intersection of the lists of the three conditions, resulting in 57 ORFs of

interest. In cases where the ORF locations overlapped, those with the lowest p-scores were

retained, resulting in 47 ORFs (65 for D03, 72 for D06, and 106 for HD03, see

Supplementary file 8). Hereafter they are referred to as candidate genes, in contrast to the

genes originally predicted for the genome, referred to as old genes. Detailed information on

the candidate genes is shown in Table 1 and an example of a candidate gene is shown in Fig.

1.

3.4. Analysis of the candidate genes

To verify that signals detected from probes of candidate genes could not be explained by

hybridisation to transcripts of old genes, i.e. cross hybridisation, we estimated the similarity

of all probes to the old genes’ transcripts by blastn (Altschul et al., 1990). The highest blastn

bit scores were compared for each probe of candidate genes, all intergenic probes, and

probes of old genes against transcripts other than for which the probe was designed. We

found no significant differences between the bit score distributions (Supplementary file 2).
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Repeat sequences of the T. reesei genome have been analysed in detail. Class I and II fungal

transposons were found, none apparently active (Martinez et al., 2008). Regardless, we

verified that none of the candidate genes overlapped with repeat sequences.

We then considered whether the candidate genes could be explained as 5′ or 3′ UnTranslated

Regions (UTR) of neighboring old genes. In that case the UTR would at least span the

candidate gene and the gap between the start or stop codon (whichever was nearer) of the

closest old gene on the same strand. In order to compare this length to those of verified 5′ or

3′ UTRs, we gathered information about the expected length of UTRs in fungal genomes,

many of which were from related Trichoderma spp, from the UTRdb (Mignone et al., 2005).

With 6726 entries for 5′ UTRs and 8218 for 3′ UTRs and a good correspondence to size

estimates presented for S. cerevisiae (David et al., 2006) and Schizosaccharomyces pombe

(Wilhelm et al., 2008), two extremely distant Ascomycota fungi, the database set probably

represents fungal UTRs well. The mean length of 5′ and 3′ UTRs was found to be 155 and

184 b, respectively, and less than 1% of UTRs were found to be longer than 1000 b, hence

we assumed that candidate genes whose lengths as UTRs would be longer than 1000 b are

unlikely to be actual UTRs.

There were 23 such candidates, hereafter referred to as Top candidates. 4 candidates

(2_2919, 6_1818, 43_73, 45_18), did not fill this criteria and were not included in Top

candidates. However, several separate ESTs for both these candidate genes and the nearest

neighbouring old genes supported the hypothesis that these candidates are not UTRs.

tblastx, blastx (Altschul et al., 1990), psi-blast (Altschul et al., 1997), InterProScan

(Quevillon et al., 2005) and Rfam (Griffiths-Jones et al., 2003) searches were carried out to

find homologues of the candidate genes in DNA, RNA or protein sequences (Table 1). In six

cases (Table 1: column ‘T. reesei v2.0 protein id.’) the candidate gene derived from analysis

of the genome version 1.2 was found to overlap with a gene in the genome version 2.0. In

three of these cases the gene sequence in 1.2 contained gaps that had been removed in 2.0 by

additional sequencing (Table 1). In the others the model has been changed to include the

sequence covered by the candidate gene. As these genes are not novel they have been

excluded from further analysis unless explicitly stated. For 33_421, a Top candidate, a

predicted unknown homologous protein was found from Fusarium verticillioides and

Fusarium graminearum. EST evidence exists also for the Fusarium verticillioides gene. In

all other cases, based on detailed manual inspection of the search results, we concluded that

database matches were nonsignificant, thus similarity searches yielded no insight into

function of the candidate genes.

To study whether other gene prediction methods than the ones used for T. reesei genome

(Martinez et al., 2008) could find the candidate genes, we predicted a completely new set of

gene models with Augustus (Stanke et al., 2008). To train Augustus on the T. reesei 2.0

genome, we downloaded all T. reesei full length mRNAs (113) and ESTs (44,964) from

GenBank release 174 and used this as input into the Augustus pipeline.

This effort resulted in 7197 gene models that cover 9,779,775 b over the entire T. reseei 2.0

genome, while 9129 genes that cover 16,175,832 b were originally predicted (Martinez et
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al., 2008). Two candidate genes were found to overlap with Augustus genes on the opposite

strand (4_2591, 4_2591) and three on same strand (1_3454, 14_1144, 25_407, Table 1:

column ‘Augustus overlap’). However, 1_3454 and 14_1144 already overlap with genes in

genome version 2.0.

In order to find independent experimental evidence for the candidate genes, we analysed T.

reesei ESTs from (Chambergo et al., 2002; Foreman et al., 2003; Arvas et al., 2006;

Martinez et al., 2008). Overlapping ESTs were found for 33_421, mentioned above (Fig. 1),

and for 3 cases which had been predicted to be genes in version 2.0, and for 14 other

candidate genes, including 3 Top candidates, for which no database matches were found.

In order to further verify the existence and expression signal of candidate genes we carried

out an quantitative and qualitative RT-PCR (Reverse Transcriptase-PCR) experiments. Of

the 23 top candidates, for 15 primers could be designed.

Five Top candidates that covered the expression signal range were selected for quantitative

RT-PCR. Their relative expression was measured against two control genes in four samples

originally used for array experiments. Possible contamination of genomic DNA was

monitored by carrying out cDNA synthesis reactions without the reverse transcriptase

enzyme and then using these reactions as templates in RT-PCR. Control reactions showed

that in one sample a minor amount of genomic DNA was left. In this control reaction there

was amplification in very late cycles but since the amplification of the candidate and

reference genes from cDNA started in much earlier cycles, the amount of genomic DNA in

the sample did not influence the results. Expression of all the five candidate genes was

detected with RT-PCR. Regardless of repeated efforts we were able to successfully sequence

only two of the RT-PCR products and they were found to correctly match expected genomic

sequence (EMBL accessions: 4_2310 FN651826, 10_1841 FN651825). Relative RT-PCR

expression values for each sample averaged over technical repeats and control genes was

compared to array expression signal (Supplementary file 3). Overall Pearson correlation

between array and RT-PCR signal was 0.48. However, if 10_1841 data is removed the

correlation is 0.94. 10_1841 has the lowest array expression signal.

The rest 10 Top candidates for which primers could be designed were analysed with

qualitative RT-PCR. For all, but 28_34, a higher signal was detected from cDNA sample

than from negative control (cDNA synthesis without reverse transcriptase enzyme)

confirming their expression. Some genomic contamination is present in most of the

reactions, in particular 28_371 is somewhat borderline. For 8_1028 and 19_435 a fragment

of different size was derived from cDNA and genomic sample (Supplementary file 7).

To compare signal intensity and variation, i.e. gene regulation, of transcriptional profiling

signals of candidate and old genes, we processed their probe-level data together into gene

level normalised signals using Robust Multichip Average (RMA) (Irizarry et al., 2003). The

mean and standard deviation of the three experimental conditions for each candidate gene

can be found in Table 1. Furthermore, we compared the signals of candidate genes to the

signals of old genes. The mean (11.7) and standard deviation (0.3) of all candidate genes’
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signals are higher than those of old genes (8.4, 0.18) and only 16% of old genes have a

signal above 10.0 (Fig. 4).

We also compared the regulation of candidate genes to its nearest neighbour on the same

strand. For each candidate and old gene, we calculated the Pearson correlation of non-

averaged signals and difference of averaged signals of the 9 samples to the signals of the

gene’s nearest neighbour on the same strand (Supplementary file 4, Table 1). The average

difference between average signals of candidates genes and each nearest neighbour is 2.5

with a p-value of 7.7e–12 in paired t-test.

Candidate genes’ mean signal intensity, standard deviation of signal, correlation or

difference of signal to nearest neighbour were not found to be dependent on the EST or

homology evidence for the candidate gene (Fig. 4, Supplementary file 4, Table 1).

Based on sequence database searches, the candidate genes appeared to be orphan, i.e.

lineage-specific genes, only found in T. reesei or its close relatives. In fungi, orphan genes

sometimes appear in genomic islands (Machida et al., 2005; Kamper et al., 2006) that can be

found particularly near telomers (Rehmeyer et al., 2006; Fedorova et al., 2008).

Consequently, we analysed the old genes surrounding candidate genes for their lineage

specificity. The genome was divided into non-overlapping windows of six genes, genes in

each window were mapped to protein clusters from (Arvas et al., 2007), and the median

number of proteins in those clusters was calculated (Supplementary file 5). The data set in

(Arvas et al., 2007) contains 33 fungal genomes, 27 of which belong to Ascomycota. In

(Arvas et al., 2007) protein sequences from these genomes were clustered to form protein

clusters that mostly contain one gene from each of a set of closely related species, i.e. they

are groups of orthologous genes sometimes complemented by paralogues. Given the species

distribution of the protein clusters, windows with median cluster size of 1–4 represent

genomic islands roughly specific to subclass Hypocreomycetidae. In (Arvas et al., 2007) this

subclass is represented by T. reesei, Nectria haematococca and Fusarium graminearum.

Correspondingly, windows with median cluster size of 5–12 represent regions roughly

specific to the class Sordariomycetes. Increasing numbers of paralogous genes confound the

interpretation of clusters with more genes, thus no evident taxon corresponds to windows of

higher median cluster sizes. Furthermore, clusters above that size often contain several

different groups of orthologous genes. Although 5 candidate genes reside in windows of

median size below 6, i.e. Hypocreomycetidae specific genomic islands (Table 1), candidate

genes are not particularly enriched in these islands nor are they found particularly near the

scaffold ends.

T. reesei’s carbohydrate-active enzymes (CAZymes) have been shown to be located in loose

chromosomal clusters (Martinez et al., 2008). As these are the main protein product genes

studied in the cultivations we checked whether any candidate genes resided in CAZyme

clusters. 11_1798 was found in CAZyme cluster 4 (scaffold-3:8500–238,500) with

cellulases egl1 and cbh2 and 627 b downstream of the start of the unfolded protein response

(UPR) regulatory factor ire1 transcript (Valkonen et al., 2004). In addition, 25_408 was

found in CAZyme cluster 19 (scaffold-22:310,000–540,000). Other candidate genes were

not found in CAZyme clusters.
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In order to study whether other candidate genes than 11_1798 would have interesting

neighbouring genes we collected 3 different gene sets for both the 47 candidate genes and

the 23 Top candidates among them: two, six and ten nearest neighbouring genes. For each of

these six different gene sets an enrichment analysis was carried out as in (Arvas et al., 2007).

Briefly, for each T. reesei gene conserved Protfun function predictions (Jensen et al., 2003),

Funcat functional categories (Ruepp et al., 2004) and InterPro identifiers (Mulder et al.,

2005) were determined and the gene sets analysed for enrichment of any of the annotations

using the hypergeometric distribution (Table 2). Only InterPro identifiers i.e. protein

domains were found to be significantly enriched (p-value<0.05). Of the eight enriched

domains, four were found to be related to signalling. This does not include the ire1, nor the

carbon catabolite repressor cre1 (Strauss et al., 1995). 2_1351 was found 1139 b

downstream from the end of the cre1transcript with no intervening genes. In addition six

candidate genes were found to be adjacent to a putative transcription factor of the ‘Fungal

transcriptional regulatory protein’ IPR001138 family. However, as the IPR001138 is very

abundant in Pezizomycota (Arvas et al., 2007) it is not significantly enriched in these gene

sets.

4. Discussion

We selected ORFs defined by a start and stop codon and >150 b as the basic gene model

among which to look for candidate genes. The T. reesei genome version 2.0 is 33.9 Mb long

with 9129 genes. 40.4% of it is coding and the average size of protein coding exon is 486 b,

while the gene length is 1793 b with 3.1 introns of 120 b, on average. With sparse spacing of

array data and high coding percentage of the genome, we did not expect to find large genes

with introns. Furthermore, genes missed by current gene prediction methods are likely to be

small (Warren et al., 2010) i.e. intronless in T. reesei. Current de novo gene predictors use

complex models based on for example characteristics of splice donor and acceptor sites and

translation initiation and termination sites (reviewed in (Brent, 2008)). These characteristics

are ultimately derived from known genes. As we wanted to find truly novel genes that

current gene prediction methods would be unable to find we wanted our model to have

minimal assumptions. The average length of the found candidate genes is 463 b. If the

statistics of version 2.0 genome apply for the candidate genes, then we might miss some

genes that have introns. However, a model accounting for introns would make more

assumptions.

In order to apply our method to other species the characteristics of the genome would have

to be considered to find a suitable minimal model. For example predictions of individual

exons or a windowing schema without any use of sequence characteristics could be used. In

our opinion our data was of too low quality for a segmentation approach.

We searched for candidate genes from sparse microarray data by calculating how likely it is

to observe a signal from a candidate gene that is significantly higher than the background

level. This was done by applying a GC% scaling and computing the probability p of

observing at least h probes out of all N probes of a candidate gene that have a signal higher

than 75% of all intergenic probes. The false discovery rate (FDR) of candidates was then

defined by randomisation and an FDR of 20% set as a cut-off (Fig. 1) for the probabilities p.
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This strategy is particularly appealing because it is not sensitive to outliers, it requires no

arbitrary cut-offs for original expression values, there is no need to normalise across

experiments, and it takes into account multiple statistical testing. It has been shown that the

common normalisation strategy that forces signal distributions to be similar across samples

hides true variation between samples (van de Peppel et al., 2003).

Similarity between the probes in the candidate genes and originally predicted transcripts was

then estimated to confirm that cross-hybridisation could not explain the results more than in

conventional transcription profiling experiments (Supplementary file 2).

The candidate transcribed regions we detected could be actual novel genes or UTRs of old

genes. We used data from known UTRs of T. reesei and other fungal genes to estimate

whether the candidate genes, on average, based on the length of the candidate gene and its

distance to the nearest neighbour on the same strand could be explained as UTRs (Fig. 3).

We found that 23 candidate genes, Top candidates, are unlikely to be UTRs.

The candidate genes were subsequently evaluated in the context of EST data, repeat

sequences, microarray transcriptional profiling data from old genes, the T. reesei genome,

and homology to other organisms. ESTs gave independent experimental evidence to support

the hypothesis that the candidate genes are actually transcribed and comparison to

microarray data from the same experiments showed that the expression of candidate genes is

on average higher than that of old genes (Fig. 4). Expression and high signal was further

verified for five candidate genes with quantitative RT-PCR (Supplementary file 3) and

expression for at least eight candidate genes with qualitative RT-PCR (Supplementary file

7). As expected qualitative RT-PCR results are harder to interpret and give less evidence for

actual expression or lack of it than quantitative RT-PCR experiments. In addition a gene

prediction software not previously used for the T. reesei genome, Augustus (Stanke et al.,

2008) was used to predict a completely new gene set for the whole genome. Not counting

candidate genes that could be explained by improved quality of genome version 2.0,

Augustus was able to find one of the candidate genes. Given the variety of methods

integrated into the JGI (Joint Genome Institute) gene prediction pipeline and large number

of ESTs available for T. reesei, it would be surprising if other contemporary gene prediction

methods could fare better. Thus, current gene prediction methods cannot generally predict

such genes as our candidate genes.

Microarrays allow efficient comparison of changes in the transcript amount of one gene

between several samples. However, it has not been very clear whether differences in

microarray signals between genes are correlated with actual differences between transcript

amounts. Recent comparison between transcript profiling by tiling arrays and transcript

sequencing shows that a good correlation between counts of sequenced ESTs and tiling

array signal exists over all genes of an organism (Wilhelm et al., 2008). Furthermore our

array and quantitative RT-PCR experiments correlated well. Thus, it is likely that the

particularly strong signal detected for the candidate genes identified here reflects particularly

high amounts of transcripts. High transcript amounts suggest that the transcripts are also

physiologically relevant.
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We also compared the regulation of candidate genes to that of their nearest neighbour on the

same strand (Supplementary file 4). We found that the candidate genes’ signals are on

average significantly higher than those of their neighbours’. In addition, signals of most

candidate genes do not show positive correlation with those of their neighbours’.

Transcriptional regulation of neighbouring genes could correlate positively for a number of

reasons, for example, they might share promoter or enhancer elements or be subjected to

common regulation of the nucleosome structure. Common regulation of the candidate genes

with their neighbours does not mean that the candidate genes would be UTRs of the

neighbouring gene. In contrast, finding genes with such exceptionally long UTRs and such

internal signal variation would be highly unlikely. EST evidence also supports the

conclusion that four candidates, not included as Top candidates are independent transcribed

regions instead of being UTRs.

Sparse array data appears to contain much noise and, in addition, most of the eukaryotic

genome is randomly transcribed to some extent (Wilhelm et al., 2008). In order to find true

novel genes of interest, regardless of these effects we designed a robust analysis. In practice

the analysis found genes transcribed at particularly high level. In this study short 25mer

probes were used, while longer probes have been shown to perform better (Hughes et al.,

2001; Chou et al., 2004). Use of longer probes could improve transcript detection even with

the same relatively sparse probe spacing.

Homologous genes for the candidate genes were found from the 2.0 version of the T. reesei

genome and closely related species, even though they were not predicted as genes in genome

version 1.2 used in the analysis. This further confirms that our method can detect protein

coding transcripts. Gaps in the sequence had prevented gene detection in three cases in

version 1.2, while our method detected the transcript. This demonstrates that our method

would be useful in the annotation of even low quality genome sequences.

We could detect homology to a sequence (protein or DNA) or family (protein or RNA) from

other organisms for only one candidate gene. As fungal lineage-specific genes sometimes

appear in genomic islands, we checked whether our candidate genes were found in these

islands particularly often, or were found particularly near scaffold ends. Their locations did

not show such biases and thus they are not likely to be found in subtelomeric regions

(Supplementary file 5). Subtelomeric regions appear to have potential for faster evolution

than other chromosomal regions in fungi (Naumov et al., 1996; Rehmeyer et al., 2006;

Fedorova et al., 2008). In our analysis of the T. reesei genome, the most prominent lineage-

specific region is found at the end of scaffold 50 (Supplementary file 5). As subtelomeric

positioning does not offer clues to the mechanism behind the rise of these lineage-specific

candidate genes; other evolutionary forces must be driving their evolution.

As similarity searches and analysis of genome structure yielded no insight into the function

of the candidate genes, we turned to their neighbouring genes (Table 2). These analyses

suggest that candidate genes occur often near to genes related to regulation and signalling.

Strikingly, two important regulatory factors related intimately to protein production, ire1 and

cre1 were found adjacent to candidate genes. As full cDNA for these genes are known,

unlike for many other genes adjacent to candidate genes, we can be sure that the candidate
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genes are not actually parts of ire1 or cre1 UTRs. These results invoke the possibility that

the candidate genes would belong to a novel class of regulatory factors involved also in

protein production. They would have been previously missed due to their small size.

The novel transcribed regions found in this work are each composed of an ORF. The

polyadenylated tail of an RNA is used in the transcript labelling step of the transcriptome

profiling technique used. Thus, the detected transcripts have the potential to code for

proteins. As the majority of them have not been detected as protein coding genes in any

genomes analysed, their sequence characteristics are not typical of other protein coding

genes. However, the existence of longer, in contrast to short interfering RNAs,

polyadenylated noncoding RNAs (ncRNA) has been shown in many metazoan species

((Zhao et al., 2008), reviewed in (Gingeras, 2007)) and in fungi (Miura et al., 2006; Samanta

et al., 2006; Wilhelm et al., 2008; David et al., 2006; Nagalakshmi et al., 2008). The

function of these is generally not known, but diverse examples of ncRNA roles related to

chromatin architecture and epigenetic control exist (reviewed in (Amaral et al., 2008)).

Particularly, polyadenylated mRNA-like (mlRNA) transcripts that are derived from

independent exons, in contrast to anti-sense transcripts, are sometimes processed to

microRNAs (Rodriguez et al., 2004). In addition, many genes might code for both, a

functional RNA and a protein (reviewed in (Dinger et al., 2008))

It is possible that some candidate genes are in fact noncoding RNAs. Many ncRNAs are

conserved over different mammals (Ponjavic et al., 2007). Nevertheless the evolution of

their DNA sequences is likely to be faster and under different constraints than that of protein

coding genes, which consequently makes homology detection harder. This could partly

explain why we cannot find homologues for such highly expressed genes. The work

presented here was geared towards finding novel transcripts of protein coding genes,

however the computational principles could easily be adapted to finding other types of

transcripts.

5. Conclusions

The ability to find all transcripts of an organism is essential to understanding its biology,

particularly its species-specific attributes, such as a notably high protein or metabolite

production capability or severe pathogenicity. We demonstrated a simple, low-cost

alternative for finding novel genes that are left undetected by gene prediction software from

sequenced genomes. Our method is complementary to existing gene prediction methods,

geared towards finding exceptional genes from low quality data, thus we do not expect to

find many novel genes. We apply sparse arrays in this task, discovering novel candidate

genes with a fixed false discovery rate. We validate our findings with a quantitative and

qualitative RT-PCR experiments and a comparison to T. reesei EST and other sequence

data. We show that the discovered novel candidate genes are expressed at high level and

thus likely to be of importance for the phenotype of T. reesei. In addition, the genes

neighboring the candidate genes are enriched in genes related to regulation and signalling,

proposing a regulatory role for them. It has been shown that more than 90% of a fungal

genome can be transcribed (Wilhelm et al., 2008). Much of this expression is likely to be

noise. In contrast, sparse array data analysed with our method reveals highly expressed,
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condition- and species-specific genes, that are prime targets for explaining species-specific

attributes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
33_421 with probe signal and EST data. On top, a ruler with genomic coordinates in

scaffold 33. Below a panel that shows positions of old genes (green), candidate gene

(yellow) and ESTs (blue) as arrows. Arrows point in the direction of transcription. The

bottom 6 panels show average signals of the three repeats of each condition from individual

probes as vectical bars, before and after GC% scaling. Bars are positioned at the genomic

location of the probes as specified by the top ruler. Bars for probes whose signal value is

above the 75th percentile of signals of all intergenic probes are colored in red. The location

of the candidate gene is based on a simple ORF prediction that does not take into account

splicing nor UTRs.
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Fig. 2.
Histograms of p-score distributions. The distribution of the p-scores for each ORF is shown

in the original data, as well as their averages in 100 randomizations. The results are for the

experimental condition HD03, computed according to the 75th percentile.
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Fig. 3.
Length distribution of verified UTRs and candidate genes as UTRs. The distribution of the

length of the candidate genes plus each distance to the nearest stop or start codon, which

ever was closer, of an old gene, i.e. the length of candidate gene if it would be a UTR, and

the distribution of experimentally verified UTRs in fungi. Plus signs indicate mid values of

bins (500 b bins) and lines connect them. The counts of candidate genes are shown for each

bin. Candidate genes that overlapped genes in version 2.0 have been excluded. The Y axis

shows the percentage of values in a bin for the four categories.
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Fig. 4.
Scatterplot of gene expression signals. X axis shows the mean of log2 of gene expression

signals for the three conditions and Y axis the respective standard deviation. Small black

dots show the signals from old genes. Values for candidate genes are colored based on the

evidence found for them: either no other evidence was found, ESTs were found, a

homologue was found in another organism or the gene was successfully predicted in version

2.0 of the genome. White plus signs indicate the Top candidate genes which are particularly

likely to be true novel genes based on analysis of UTR sequences.
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