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Uncovering many-body correlations in nanoscale
nuclear spin baths by central spin decoherence
Wen-Long Ma1,2,3,*, Gary Wolfowicz4,5,*, Nan Zhao6, Shu-Shen Li1,3, John J.L. Morton4,7 & Ren-Bao Liu2,8,9

Central spin decoherence caused by nuclear spin baths is often a critical issue in various

quantum computing schemes, and it has also been used for sensing single-nuclear spins.

Recent theoretical studies suggest that central spin decoherence can act as a probe of many-

body physics in spin baths; however, identification and detection of many-body correlations of

nuclear spins in nanoscale systems are highly challenging. Here, taking a phosphorus donor

electron spin in a 29Si nuclear spin bath as our model system, we discover both theoretically

and experimentally that many-body correlations in nanoscale nuclear spin baths produce

identifiable signatures in decoherence of the central spin under multiple-pulse dynamical

decoupling control. We demonstrate that under control by an odd or even number of pulses,

the central spin decoherence is principally caused by second- or fourth-order nuclear spin

correlations, respectively. This study marks an important step toward studying many-body

physics using spin qubits.

DOI: 10.1038/ncomms5822 OPEN

1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China. 2 Department
of Physics, The Chinese University of Hong Kong, Hong Kong, China. 3 Synergetic Innovation Center of Quantum Information and Quantum Physics, University
of Science and Technology of China, Hefei, Anhui 230026, China. 4 London Centre for Nanotechnology, University College London, London WC1H 0AH, UK.
5 Department of Materials, Oxford University, Oxford OX1 3PH, UK. 6 Beijing Computational Science Research Center, Beijing 100084, China. 7 Department of
Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK. 8 Center for Quantum Coherence, The Chinese University of Hong
Kong, Hong Kong, China. 9 Institute of Theoretical Physics, The Chinese University of Hong Kong, Hong Kong, China. * These authors contributed equally to this
work. Correspondence and requests for materials should be addressed to J.J.L.M. (email: jjl.morton@ucl.ac.uk) or to R.-B.L. (email: rbliu@phy.cuhk.edu.hk).

NATURE COMMUNICATIONS | 5:4822 | DOI: 10.1038/ncomms5822 | www.nature.com/naturecommunications 1

& 2014 Macmillan Publishers Limited. All rights reserved.

mailto:jjl.morton@ucl.ac.uk
mailto:rbliu@phy.cuhk.edu.hk
http://www.nature.com/naturecommunications


D
ecoherence of a central spin in a solid-state environment
is not only an ideal model problem for understanding
the foundation of quantum physics1–3, but also a critical

issue in a number of quantum technologies including spin-
based quantum information processing4,5 and ultrasensitive
magnetometry6–10. For example, decoherence from the
environmental spin bath is often a limiting factor when using
systems such as phosphorous donors in silicon11–16, semi-
conductor quantum dots17,18 and nitrogen vacancy centres in
diamond19,20, as quantum bits or sensors. Studying central
spin decoherence caused by environmental fluctuations or
elementary excitations may yield key insights into the nature of
many-body interactions in the environment. Furthermore,
dynamical control over the central spin can affect the dynamics
of the environment in a detectable manner8,18, even to the extent
of coherently controlling21,22 or dynamically polarizing nuclear
spin baths23,24. In the light of these ideas, exploiting central spin
decoherence for sensing single-nuclear spins or nuclear spin
clusters in spin baths has been theoretically proposed6–8 and
experimentally demonstrated9,10. Recently, this idea has been
pushed to new depths: theoretical studies show that the central
spin decoherence can be a novel probe to many-body physics, in
particular, phase transitions in spin baths25–28. Multiple-spin
correlations are one of the essential characteristics in spin
baths11–20, but detection of such correlations is a long-standing
challenge in many-body physics. Here we address this problem
with the first experimental demonstration of detection of
many-body correlations via central spin decoherence, laying a
foundation for studying many-body physics and phase transitions
in spin baths25–28.

Previous approaches to studying multiple-particle correlations
include the use of nonlinear optical spectroscopy of excitons in
semiconductors29–32, nuclear magnetic resonance (NMR) spectro-
scopy of nuclear spins in molecules33, and the generalization
of multi-dimensional NMR to optical spectroscopy34,35.
Nevertheless, the detection and characterization of many-body
correlations in nanoscale systems36,37 remain highly challenging
due to the weak signals in such small systems.

In this article, taking a phosphorus donor electron spin in a
natural-abundance 29Si nuclear spin bath as our model system,

we show both theoretically and experimentally that many-body
correlations in nanoscale nuclear spin baths produce identifiable
signatures in the decoherence of the central spin under
multiple-pulse dynamical decoupling (DD) control. The DD
control over the central spin establishes and manipulates
correlations among the nuclear spins in the bath. When the
number of decoupling p-pulses is odd, central spin decoherence is
primarily driven by second-order nuclear spin correlations
(pairwise flip-flop processes). In contrast, when the number of
p-pulses is even, fourth-order nuclear spin correlations (diagonal
interaction renormalized pairwise flip-flop processes) are princi-
pally responsible for the central spin decoherence. Our method is
particularly suited for the detection of many-body correlations in
nanoscale systems.

Results
System and model. We consider the electron spin (S¼ 1/2) of a
phosphorus donor localized in silicon as the central spin (Fig. 1a).
This donor electron spin is coupled with a 29Si nuclear spin bath
(I¼ 1/2 and natural abundance of 4.7% throughout the host
lattice) by the contact hyperfine interactions and dipolar inter-
actions14. In a strong external magnetic field (4100 mT), the
Zeeman energies of the donor spin and nuclear spins are
conserved, so the total spin Hamiltonian can be written in the
secular form12,13

H ¼oeSz þ Sz

X
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z
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where oe/n¼ ge/nB is the Larmor frequency of the donor
electron spin /bath nuclear spins, ge/n is the gyromagnetic ratio
of the donor electron spin /bath nuclear spins, and B is the
external magnetic field applied along the z axis. The coupling
coefficient between the donor spin and the ith nuclear spin is
Ai¼ gegn{8p/3|c(Ri)|2þ

R
d3r|c(r)|2[3(rz–Ri

z)2–|r–Ri|2]/|r–Ri|5},
where the first term is the Fermi contact interaction given by the
donor electron density |c(Ri)|2 at the position of the ith nuclear
spin14 and the second term is the dipolar interaction. The donor
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Figure 1 | Many-body correlations in the 29Si nuclear spin bath probed by a phosphorus donor electron spin. (a) Due to the extended donor

wavefunction, the P-donor electron spin (blue arrow) interacts with a bath of 29Si nuclear spins (magenta arrows) possessing various many-body

correlations. (b) Topologically inequivalent connected diagrams (LCE diagrams) corresponding to different many-body correlations in the nuclear spin bath:

(I) V2—second-order pairwise flip-flop diagram, (II–V) V4z—fourth-order diagonal interaction renormalized pairwise flip-flop diagrams. Here the nuclear

spin operators Iþi ; I�i ; Iz
i are represented in turn by filled circles, empty circles or empty squares. The off-diagonal (diagonal) interaction terms are

represented by wavy (dashed) lines. The solid arrows represent nuclear spin correlation functions between I�i and I�i (or Iz
i ) with the arrows indicating the

direction of time propagation.
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electron density decays exponentially with r, while the dipolor
interaction decays with distance by r� 3, such that the dipolar
interaction starts contributing only for |Ri|4r0¼ 2 nm. It can
therefore be approximated as gegny(|Ri|–r0)(3cos2yi–1)/|Ri|3,
where y(r) is the Heaviside step function and yi is the angle
between the nuclear spin position vector Ri and the magnetic field
vector B. The dipolar interaction between the nuclear spins is
Dij¼ gn

2(3cos2yij–1)/4|Rij|3, where yij is the angle between
Rij¼Ri–Rj and B.

We assume that the donor electron spin is initially prepared
in the coherent state þj iþ �j ið Þ=

ffiffiffi
2
p

by a p/2 rotation
(with þ /� being spin-up/down along the magnetic field
direction). In the subsequent evolution, the central spin suffers
decoherence as a result of its coupling to the nuclear spin bath.
However, by applying DD control38,39 to the central spin
(consisting of a sequence of p-flips at times {t1,t2?tn}), we can
reduce its sensitivity to the bath in general while selectively
enhancing the effect of certain multiple-spin dynamics8. With
DD, the restored central spin coherence following a total
evolution time T is

L nð Þ
þ ;� ðTÞ ¼

X
J

PJ Jh j U nð Þ
þ Tð Þ

� �y
U nð Þ
� Tð Þ Jj i; ð2Þ

with PJ being the probability of the nuclear state |JS and

U nð Þ
� ðTÞ ¼ e� i½V�ð� 1ÞnH0�ðT � tnÞ � � � e� iðV �H0Þðt2 � t1Þe� iðV �H0Þt1 ; ð3Þ

where H0¼ (1/2)
P

iAiIi
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P
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Here, the nuclear Zeeman term on
P

iIi
z is dropped since it has

no contribution to the spin decoherence. The nuclear spin
bath is assumed to be in an infinite-temperature (fully mixed)
state (PJ¼ 1/2M) with density matrix r0 ¼

P
J Jj i Jh j=2M ,

where |JS is an eigenstate of
P

iIi
z and M being the number of

nuclear spins in the bath.
We consider two families of DD sequences: Carr–Purcell–

Meiboom–Gill (CPMG)40–42 and Uhrig DD (UDD)43,44 (Fig. 2a).
An n-pulse CPMG sequence periodically flips the central spin at
time tc¼ (2c–1)T/2n, while n-pulse UDD flips the central spin at
time tc¼Tsin2[cp/(2nþ 2)], where T is the total evolution time
and c¼ 1, 2,?, n. It should be noted that CPMG and UDD are
equivalent for nr2, and for n¼ 1 simply correspond to the Hahn
echo.

Many-body correlation effects on central spin decoherence.
According to the linked-cluster expansion (LCE) theorem in
many-body physics45, the quantum evolution of a nuclear spin
bath from an initial state |JS can be factorized into contributions
of different orders of irreducible many-body correlations, namely,

L nð Þ
þ ;� ðTÞ ¼ exp V1h iþ V2h iþ V3h iþ V4h iþ � � �ð Þ; ð4Þ

with the lth order many-body correlation

Vlh i ¼
� ið Þl

l !

Z
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Z
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dtk Jh jT̂C V t1ð Þ � � �V tlð Þf g Jj i; ð5Þ

where T̂C is the time-ordering operator along the contour
C(0-T-0), and V(t)¼ exp(iH0t)V exp(� iH0t) is the intra-bath
coupling in the interaction picture. Note that the hyperfine
interaction H0 enters into the time evolution of the bath
correlations. We show some examples of the expansion terms
diagrammatically in Fig. 1b (see Methods for calculation of the
diagrams). Here we assume the nuclear spin bath starts from a
pure product state |JS. The thermal ensemble results can be
obtained by sampling over different initial states and then taking
a statistical average.

For each LCE term, the real part contributes to the spin
decoherence while the imaginary part just produces a coherent
phase shift (corresponding to self-energy renormalization of the
probe spin). Under CPMG-n or UDD-n control, the first-order
LCE term (l¼ 1) vanishes due to the contour integral. The
second-order LCE term (l¼ 2) corresponds to the leading-order
pairwise flip-flop processes in the nuclear spin bath, in which the
bath dynamics is approximated as a product of evolutions of
nuclear spin pairs15,17,18. Previous studies identified this term
as the main cause of spin decoherence for the free-induction
decay and Hahn echo in the strong magnetic field regime15,17,18.
The pairwise flip-flop processes of nuclear spins i, j can
be mapped to the precession of a pseudospin rij about a
pseudofield h�ij ¼ (Dij, 0, ±oij/2) conditioned on the central spin
state |±S (ref. 17), where oij¼ (Ai�Aj)/2 is the energy cost of
the flip-flop process (see ‘Pseudospin model’ in Methods for
details). If the central spin is under CPMG-n control, we have
RehVodd

2 i ¼
P

ij 4D2
ijo
� 2
ij ½4 cos oijt

� �
� cos 2oijt

� �
� 3� when n is

odd, but RehVeven
2 i¼0 when n is even (see the schematics in

Fig. 3a), where t¼T/2n. For UDD-n control, the real part of
the second-order LCE term also vanishes when n is even and is
non-zero when n is odd (see ‘Derivation of LCE terms’ in
Methods for details).
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Figure 2 | Effects of different orders of many-body correlations on

central spin decoherence under dynamical decoupling. (a) Schematics of

various CPMG and UDD pulse sequences. (b) Comparisons of the P-donor

electron spin decoherence in a natural abundance 29Si nuclear spin

bath calculated by the numerically exact CCE method (lines) and those by

the LCE approximation (symbols) to determine the many-body correlations

that contribute significantly to the spin decoherence under various

CPMG and UDD controls. Here, LCE-V2 (crosses) represents the leading-

order pairwise flip-flop processes in the nuclear spin bath which dominate

for sequences with an odd number of p pulses, while LCE-V4z (squares)

represents the diagonal interaction renormalized pairwise flip-flop

processes which dominate for the even-numbered sequences where LCE-V2

is zero (see Fig. 1b). The magnetic field was set as B¼0.3 T applied along

the [110] lattice direction.
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For higher order LCE terms, there are three groups of
diagrams: ring diagrams, diagonal-interaction renormalized
diagrams and locked diagrams45. Generally, the leading terms

of the lth order diagrams are proportional to (Dij/oij)l. Due
to the random distribution of nuclear spins, the contri-
butions from different nuclear spin clusters add destructively
when l is odd but add constructively when l is even. Hence,
the odd-order LCE terms contribute negligibly to the spin
decoherence.

The central spin decoherence problem can be exactly solved by
the cluster-correlation expansion (CCE) method46. To identify
the contributions of different many-body correlations to the
central spin decoherence, we compare the approximate results
obtained by the LCE to the exact numerical results obtained by
the CCE (Fig. 2b). We see that the second-order pairwise flip-flop
LCE term (V2) almost fully reproduces the CCE results for DD
controls of odd pulse number, while the contribution of the
fourth-order diagonal-interaction renormalized LCE term (V4z)
coincides with the CCE results for DD controls of even pulse
number. This indicates that we can selectively detect either the
second-order or fourth-order many-body correlations by
choosing an appropriate number of DD control pulses. Similar
pulse-number parity effects were theoretically noticed before42,
however, without analysing the underlying microscopic processes.

The different correlations actually present different central
spin decoherence features. In particular, the V2 correlation
causes decoherence with a faster initial decay but a longer
decay tail (� ln j Lodd

þ ;� ðTÞ j � T2); while the decoherence
induced by the V4z correlation is better preserved in the short
time regime but decays faster in the long time regime
(� ln j Leven

þ ;� ðTÞ j � T4).
It should be pointed out that the LCE-V4z term contains two-

body, three-body and four-body nuclear spin correlations
(Fig. 1b). The two-body V4z correlations have no contribution
to decoherence, because the pairwise flip-flop of two nuclear spins
is independent of the diagonal interaction between them. The
nuclear spin clusters contributing the most to central spin
decoherence are those four-spin or three-spin clusters with small
inter-nuclei distances (o1 nm), so that the energy cost of the
pairwise flip-flop processes of two nuclear spins is significantly
changed by the other nuclear spins in the cluster (see ‘Pseudospin
model’ in Methods for details). The typical strength of the
interaction between nuclear spins in such clusters is B100 Hz,
which is in the same order of the NMR linewidth of 29Si in
natural silicon samples23. In the calculations, we consider a bath
volume with radius 8 nm from the central spin, corresponding to
5,000 nuclear spins. Statistical studies (Fig. 3b) show that there
are about 1.8� 104 such four-spin clusters and 2.6� 104 three-
spin clusters in the bath. In Fig. 3c, we compare the contributions
of different many-body correlations and find that the four-body
correlations are the main contribution to the central spin
decoherence under DD control of even number of pulses. The
three-body correlations are non-zero but relatively small.

Experimental results. We have observed the pulse-number parity
effect in DD experiments on P-donors in natural Si (Fig. 4). The
measured decoherence decays fit well in stretched exponential
functions exp½ �T=tID� T=tSDð Þl� (see Supplementary Fig. 1).
Here the first term e�T/tID represents the instantaneous diffusion
caused by dipolar coupling to other P-donor electron spins
in the sample ([P]¼ 3� 1014 per cm3), and the second term
e�ðT=tSDÞl represents the central spin decoherence (spectral dif-
fusion) caused by the 29Si nuclear spin bath.

In Fig. 4a,b, we show the measured decays, corrected to exclude
the instantaneous diffusion (with tID¼ 10 ms determined by the
initial exponential decay of the raw experimental data in
Supplementary Fig. 1). The measured and calculated results
agree well for both CPMG-n and UDD-n controls, without any
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Figure 3 | Contributions of three-body and four-body correlations to the

central spin decoherence under CPMG-2 control. (a) Schematics of

bifurcated pseudospin evolutions conditioned on the central spin state

under CPMG-2 (or UDD-2) control. The conjugate pseudospins s�ij ðtÞ
(corresponding to the central spin in the state |±S) describe the dynamics

of two-spin correlations. The more the trajectories are separated, the

greater the central spin decoherence. The conjugate pseudospins exchange

their pseudofields h�ij at time t¼ t, 3t when the central spin is flipped

by a p-pulse. Without the diagonal interaction renormalization, the

conjugate trajectories are symmetric and coincide at time T in the leading

order of the evolution time, leading to cancellation of decoherence.

(b) Histogram of the number of nuclear spin clusters (with inter-nuclei

distances o1 nm) in 200 different bath configurations. (c) Decomposition

of the LCE-V4z term into three-body and four-body correlations (see Fig. 1a)

for CPMG-2 (or UDD-2) control of the central spin. The magnetic

field was B¼0.3 T applied along the [110] lattice direction.
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adjustable parameters in the calculations. In Fig. 4c,d, we
compare the central spin coherence decay time tSD and exponent
stretching factor l of the measured and numerical data as
functions of the pulse number n. The quantitative and qualitative
agreement is remarkable, the only exception being that the
measured decay time tSD oscillates with n somewhat less
strongly than expected. As predicted, the stretching factor l
oscillates between about 2 and 4 as n increases, meaning
that either the second-order correlations or fourth-order correla-
tions contribute dominantly to central spin decoherence. The
slight decrease of the stretched exponent l with n can be ascribed
to the emergence of the ‘Markovian’ decoherence when the
coherence time is prolonged to exceed the pairwise flip-flop time
and the higher order many-body correlations become more
important46.

Discussion
The different signatures of the many-body correlations under DD
control of the central spin, in particular the pulse-number parity
effect in the number of DD control pulses, provide a useful
approach to studying many-body physics in the nuclear spin
bath. Note that the parity effect is not affected by the type of DD
sequences adopted in this paper—it exists in both CPMG and
UDD controls. It is remarkable that the many-body correlations
between nuclear spins have sizable effects even at temperatures (a
few Kelvin in our experiments) much higher than the coupling
strengths between the nuclear spins (a few nano-Kelvin).

The pulse-number parity effect should be observable in a broad
range of central spin systems as long as the following conditions
are satisfied: (i) pure dephasing condition—the external magnetic
field should be large so that the energy non-conserving processes
(such as single-nuclear spin rotations) are highly suppressed (that
is, the total Hamiltonian can be written in the secular form);
(ii) slow/non-Markovian bath condition—the decoherence time

should be much shorter than the nuclear spin cluster correlation
times (so that the LCE terms converge rapidly with increasing
orders and the central spin decoherence is mainly induced by the
lowest-order non-zero LCE terms). Extending the study of
nuclear spin correlation effects to other types of shallow donors
in semiconductors (such as bismuth donors in silicon47,48) would
be quite straightforward. It is also possible to observe similar
effects for electron spins in semiconductor quantum dots (such as
GaAs and InAs quantum dots17,18,42) under the conditions that a
strong magnetic field (4100 mT) is applied and DD control is
available. On the other hand, deep centres like nitrogen vacancy
centres in diamond are not likely to produce the pulse-parity
effect, since in such systems, the electron spins interact with only
a small number of nuclear spins (B100) through the (rapidly
decaying) dipolar interaction and the decoherence time becomes
comparable with the nuclear spin cluster correlation time. This
makes the higher order LCE terms (compared with V2 and V4z)
contribute significantly to decoherence for both odd and even
pulse numbers.

The detection of many-body correlations may find
applications in identifying the structures of molecules and defect
complexes in solids. For example, the pulse-number parity
effect can be adopted to tell whether the molecules/defects that
form the nuclear spin bath have two-body or higher order
interactions among the nuclei. The delocalized nature of the
electron spin in many molecules49 makes it interact with a large
number of nuclear spins and therefore lends itself to such an
approach.

It should be noted that the current scheme can only detect up
to the fourth order (four-body) correlations. Generalization to
detection of higher order correlations is in principle possible by
using more complicated dynamical control (in timing, composi-
tion, and so on) and/or different types of probes (for example,
higher spins). Exploration along this line will provide interesting
topics for future studies.
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Figure 4 | Comparison between theoretical and experimental results of natSi:P electron spin decoherence under dynamical decoupling. (a,b) Measured

(solid lines) and calculated (dashed lines) coherence of the P-donor electron spin in the natural 29Si nuclear spin bath under (a) CPMG or (b) UDD

control. We attribute the deviation seen at B1 ms for CPMG-6 to an overlap with uncorrected stimulated/unwanted echoes. (c,d) Comparisons of the

experimental (solid lines) and theoretical (dashed line) decay times tSD (blue) and stretched exponents l (magenta) of the central spin decoherence

under (c) CPMG or (d) UDD control. The error bars correspond to the systematic errors of the stretched exponential fitting of the plots in a,b. The

magnetic field was B¼0.3 T applied along the [110] lattice direction.
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Methods
Interaction picture. The propagators of the nuclear spin bath can be written as45
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with I �i tð Þ ¼ I �i e� ioi t and oi¼Ai/2. By the relations above, the operator U ðnÞ� ðTÞ
can be rewritten in the interaction picture as the product of several evolution
operators. For example, for the CPMG-1 (UDD-1) and CPMG-2 (UDD-2) controls
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with t¼T/(2n).

Generalized Wick’s theorem for spin 1/2. Wick’s theorem for bosons or
fermions cannot be directly used for the nuclear spins, because the commutation
brackets of spin operators do not yield c-numbers. Previous studies generalized
Wick’s theorem to spin 1/2 operators45,50. First, we define the contraction of two
spin operators as

ð9Þ

where N̂ � � �f g is the normal ordered operator depending on the state of the nuclear
spin cj ii such that N̂ � � �f g cj ii¼ 0. For example,

N̂ I þi ðtÞI �i ðt0ÞIz
i ðt00Þ

� �
"j ii¼ I �i ðt0ÞI þi ðtÞIz

i ðt00Þ "j ii¼ 0; ð10aÞ

N̂ I þi ðtÞI �i ðt0ÞIz
i ðt00Þ

� �
#j ii¼ I þi ðtÞI �i ðt0ÞIz

i ðt00Þ #j ii¼ 0: ð10bÞ

If the ith nuclear spin is in the spin-down state ( cj ii¼ #j i), we have the following
contraction relations50

ð11Þ

where y(t) is the Heaviside step function. If cj ii¼ "j i, we can get the new
contraction relations from equation (11) by the transformation I �i ! I �i and with
the right side of the equations changing the signs.

Now we can state the generalized Wick’s theorem for spin 1/2 operators: the
time-ordered product of a set of time-dependent spin operators is equal to the sum
of all possible fully contracted products which contains only Iz

i operators45,50.

Derivation of LCE terms. Now we can derive the analytical forms of the LCE
terms. First we calculate the LCE-V1 term (Fig. 5a),

V1h i ¼ � i
Z
C

Jh jT̂C V t1ð Þf g Jj idt1 ¼
X

ij

4iDij

Z
C

ijh jIz
i Iz

j ijj idt1 ¼ 0; ð12Þ

where Jj i ¼ 	 jj i and ijj i ¼ ij i 	 jj i. We see that this term vanishes due to the

contour integral. The LCE-V2 term (Fig. 5b) is

ð13Þ

For the CPMG-n control, we have RehV2i ¼
P

ij 4D2
ijo
� 2
ij ½4 cos oijt

� �
�

cosð2oijtÞ� 3� when n is odd, and Re/V2S¼ 0 when n is even. For the UDD-n
control, we also have Re/V2S¼ 0 when n is even, but Re/V2S cannot be written
in a simple compact form as in the CPMG case when n is odd (n42).

The LCE-V4z term includes four diagrams (Fig. 5g–j). However, the last two
diagrams (Fig. 5i,j) have no contribution to central spin decoherence, because the
pairwise flip-flop processes of nuclear spins (i, j) are independent of the diagonal
interactions between them (DijIz

i Iz
j ) (so the fourth order terms in Fig. 5i,j

approximately reduce to the same form as in Fig. 5c,d, respectively, but are higher
order small quantities). Therefore the pairwise dynamics (Fig. 6a) is well
approximated by the diagram in Fig. 5b. For the diagrams in Fig. 5g,h, we can get
analytical results of the three-body and four-body correlations for the CPMG and
UDD control of even pulse number as follows

� ln Lijk



 

 � Iz
k

� �2D2
ij

o4
ij

Dik �Djk
� �2

;

� ln Lijkl



 

 � Iz
k

� �
Iz

l

� �D2
ij

o4
ij

Dik �Djk
� �

Dil �Djl
� �

;

ð14Þ

where Lijk and Lijkl denote the central spin decoherence caused by the diagonal
interaction renormalized pairwise flip-flop processes (i2j) in the three-spin
cluster {i,j,k} (Fig. 6b) and four-spin clusters {i,j,k,l} (Fig. 6c), respectively, and

Iz
k

� �

 Jh jIz

k Jj i. These analytical expressions imply that to have significant
contributions to the central spin decoherence, the nuclear spin clusters should
satisfy the following conditions: (i) the inter-nuclei distances in four-spin clusters
or three-spin clusters should be rather small (o1 nm); (ii) the renormalization to
the energy cost of the pair flip-flop (i, j) should be substantial as compared with the
bare energy cost, that is, jo� 1

ij hIz
kiðDik � DjkÞ j should be large for three-spin

clusters {i,j,k} while jo� 2
ij hIz

kihIz
l iðDik � DjkÞðDil � DjlÞ j should be positive and

large for four-spin clusters{i,j,k,l}.

Pseudospin model. To get an intuitive understanding of the pulse-number parity
effect, we use the pseudospin model17 to describe the dynamics of two nuclear
spins. In the strong field regime, the Hamiltonian of the ith and jth nuclear spins
conditioned on the central spin state

Hij
� ¼ �oijsz=2þDijsx ; ð15Þ

where the basis set is defined as "#j i; #"j if g. Note that the two pseudofields
corresponding to the two opposite central spin states lie in the xz plane and are
symmetric with respect to the x axis. The time evolution operator is

U� ðtÞ ¼ cosf� iðnxsx � nzszÞsinf; ð16Þ

Where f¼ kt, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

ij=4þD2
ij

q
, nx ¼ Dij=k, nz ¼ oij=k. If the central spin is

under CPMG-n or UDD-n control, the time evolution operator UðnÞ� can be
obtained by the above formula. For CPMG-1 (UDD-1) and CPMG-2 (UDD-2)
controls, we have

U 1ð Þ
� ðTÞ ¼ 1� 2n2

x sin2 f� inxð�2nz sin2 fsy þ sin2fsxÞ;
U 2ð Þ
� ðTÞ ¼ 1� 2n2

x sin2 2f� 2inxsin2f 1� 2n2
x sin2 f

� �
sx � nx sin2 fsz

� �
:
ð17Þ

For the donor spin in silicon, we have oijcDij, so nxE2Dij/oij is a small

quantity. The difference between U ðnÞ� Tð Þ and UðnÞ� Tð Þ causes the central spin

decoherence LðnÞþ ;� Tð Þ. When n¼ 2kþ 1, we have jU 2kþ 1ð Þ
þ �U

2kþ 1ð Þ
� j � nx and

L
2kþ 1ð Þ
þ ;� ðTÞ � 1� n2

xf 2kþ 1ð Þ ðTÞ. However, when n¼ 2k, due to the symmetry between
the two pseudofields corresponding to the two opposite central spin states, the two
conjugate trajectories of the pseudospin under the two pseudofields cross into each
other (in the leading order of evolution time) at the end of the DD control.
Therefore jU 2kð Þ

þ �U
2ð kÞ
� j � n2

x and L
2kð Þ
þ ;� ðTÞ � 1� n4

x f2k ðTÞ. Here fn(T) is a
function of the total evolution time T and the pulse number of DD control n.

If we consider all the nuclear spins in the bath, then the central spin
decoherence can be expressed as the product of the decoherence contributed by
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each pair of nuclear spins. Then we have

L 2kþ 1ð Þ
þ ;� ðTÞ �

Y
ij

1�
4D2

ij

o2
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f ij
2kþ 1 Tð Þ

 !
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 !
; ð18aÞ
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 !
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exp �
16D4

ij

o4
ij

f ij
2kþ 1 Tð Þ

 !
: ð18bÞ

These results are consistent with results obtained by the LCE method. Recall
that the LCE-Vl terms are proportional to (Dij/oij)l. Therefore, for CPMG or UDD
control of odd pulse numbers, the second-order correlations contribute the most to
the central spin decoherence. But for the CPMG or UDD control of even pulse
numbers, the second-order correlations are cancelled and the fourth-order
correlations corresponding to the ring diagrams V4r and locked diagrams V4l

(Fig. 5) would contribute the most to the central spin decoherence. It should be
pointed out that in the discussion above, we have not considered the diagonal
interactions between the nuclear spins i, j and other nuclear spins in this
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i i i i
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i i
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Figure 6 | Decomposition of many-body correlations into LCE diagrams. We only consider the V2 and V4z terms contributing most to central spin

decoherence. The fourth-order diagonal-interaction renormalized pair flip-flop processes (V4z) can be two-body, three-body or four-body correlations. The

two-body correlations describe the pairwise flip-flop processes of nuclear spins i, j renormalized by the diagonal couplings between i and j, while

the three-body (four-body) correlations describe the pairwise flip-flop processes of nuclear spins i, j renormalized by the diagonal couplings of i, j to nuclear

spin k (k, l) in the nuclear spin bath. Note that in this figure, the vertices along the same horizontal line are of the same spin.

V1 : V2 :

V3r :V3z :

V4z :

V4l : V4rz :

V4r :

Figure 5 | LCE diagrams for different many-body correlations in the nuclear spin bath up to the fourth order. (a) V1—first-order diagram,

(b) V2—second-order pairwise flip-flop diagram, (c,d) V3z—third-order diagonal interaction renormalized pairwise flip-flop diagrams, (e) V3r—third-order

ring diagram, (f) V4r—fourth-order ring diagram, (g–j) V4z—fourth-order diagonal interaction renormalized pairwise flip-flop diagrams, (k,l) V4l—fourth-

order locked diagrams.(m,n) V4rz—fourth-order diagonal interaction renormalized ring diagrams.
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pseudospin model. Actually, such diagonal interactions will renormalize the
pseudospin Hamiltonian and break the symmetry between the two conjugate
pseudofields for the pseudospin.

The renormalization effect depends on the magnetic field direction which
determines the dipolar interactions between nuclear spins (see Supplementary
Fig. 2). For B//[111], the nearest neighbour nuclear spins (which contributes most
to decoherence) have strong dipolar interactions, which make the pairwise flip-flop
processes hard to be renormalized by other spins. But as B//[001] or [110], the
nearest neighbour nuclear spins have zero or weak dipolar interactions, rendering
the pairwise flip-flop processes easier to be renormalized by other spins. Therefore,
when the number of pulses is even, the higher order pairwise flip-flop processes
(V4l and V4r) contributes most to the central spin decoherence as B//[111], while
the diagonal interaction renormalized pairwise flip-flop processes (V4z) contribute
most to the central spin decoherence as B//[001] or [110].

Numerical simulation method. The P-donor electron spin decoherence in a
natural abundance 29Si nuclear spin bath was numerically solved by the well-
established CCE method46. We included about 5,000 nuclear spins that are located
within 8 nm from the P-donor nucleus. Nuclear spins beyond this range have
negligible contribution to the central spin decoherence as evidenced by the
converged numerical results with increasing bath size. The central spin coherence
time depends on the random configuration of 29Si nuclear spin positions in the
lattice. To compare with the experimental results, we ran simulations for 100
random nuclear spin configurations and took the ensemble average of the
corresponding time-domain spin coherence. Since the central spin decoherence is
almost independent of the initial state of the nuclear spin bath as long as the initial
state is roughly unpolarized, we just took a random unpolarized single-sample
state |JS (an eigenstate of {Ii

z}) as the initial state of the nuclear spin bath.

Experimental setup. Experimental results were measured on a natural silicon
Czochralski wafer doped with 3� 1014 per cm3 phosphorus, using an X-band
(9.6 GHz) Bruker ELEXSYS 580 spectrometer. All decay times were obtained on
the high-field electron spin resonance line (mI¼ � 1/2) at 3,452 G at 6 K (where
the electron spin relaxation processes (T1E1 s) did not contribute to decoherence
over the timescales considered in this paper). The multiple pulses required for the
DD sequences can result in ‘stimulated echoes’, and other unwanted echoes, in the
experiment due to pulse infidelities. When such echoes overlap with the desired
one (from spin packets which have been flipped by all the p pulses), the experi-
mentally observed decay curves gain unwanted contributions. We therefore cycled
the phases of the applied p pulses in such a way as to remove the contribution of all
undesired echoes. For UDD, the timings between each pulse are different and most
stimulated echoes fall outside the desired one which can then be isolated. For
example, the phase cycling sequence for UDD-4 requires simply subtracting the
echo from two experiments where the first two pulses are changed from þ p to –p
and the last two are þ p. For CMPG, this is more challenging as the intervals are
equal and we did not suppress all possible stimulated echoes for CPMG-5 and
CPMG-6.
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