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Abstract

Fitting parameter sets of non-linear equations in cardiac single cell ionic models to reproduce experimental behavior is a
time consuming process. The standard procedure is to adjust maximum channel conductances in ionic models to reproduce
action potentials (APs) recorded in isolated cells. However, vastly different sets of parameters can produce similar APs.
Furthermore, even with an excellent AP match in case of single cell, tissue behaviour may be very different. We hypothesize
that this uncertainty can be reduced by additionally fitting membrane resistance (Rm). To investigate the importance of Rm,
we developed a genetic algorithm approach which incorporated Rm data calculated at a few points in the cycle, in addition
to AP morphology. Performance was compared to a genetic algorithm using only AP morphology data. The optimal
parameter sets and goodness of fit as computed by the different methods were compared. First, we fit an ionic model to
itself, starting from a random parameter set. Next, we fit the AP of one ionic model to that of another. Finally, we fit an ionic
model to experimentally recorded rabbit action potentials. Adding the extra objective (Rm, at a few voltages) to the AP fit,
lead to much better convergence. Typically, a smaller MSE (mean square error, defined as the average of the squared error
between the target AP and AP that is to be fitted) was achieved in one fifth of the number of generations compared to
using only AP data. Importantly, the variability in fit parameters was also greatly reduced, with many parameters showing an
order of magnitude decrease in variability. Adding Rm to the objective function improves the robustness of fitting, better
preserving tissue level behavior, and should be incorporated.
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Introduction

Over the past several decades, mathematical models have

proven invaluable tools in the field of cardiac electrophysiology,

providing significant insights into the natural processes [1,2]. The

basic modelling unit of cardiac electrophysiological simulations is

the single cell ionic model which can be either phenomenological,

reproducing action potentials (APs) and behavior while treating

the cell as a black box, or physiological, based on explicit

representations of the various ion channels, exchangers and

transporters in the cells membrane and intracellular compart-

ments. These later models have followed the pioneering work done

by Hodgkin and Huxley in their model of the squid giant axon [3],

consisting of a non-linear system of ordinary differential equations

(ODEs).

However, determining the parameters to reproduce given AP

waveforms is time consuming and ill posed. In recent years,

various automated algorithms have been devised to optimise the

tedious and difficult fitting. A curvilinear gradient optimization

algorithm method [4] was used to fit the Beeler Reuter model [5]

to a model-generated ventricular AP [6]. Syed et al. [7] developed

a genetic algorithm (GA) to fit the Nygren human atrial model [8]

to experimental as well as AP waveforms generated from another

atrial cell ionic model [9]. A particle swarm algorithm was used to

fit the Cherry et al. [10] model to model-generated atrial APs [11].

GAs have also been used to fit mouse ventricular action potentials

[12].

Syed et al. [7] verified that using a more realistic pulse to

stimulate the ionic model generated more accurate AP waveform

fits. This idea was further enhanced by optimizing the AP from a

single point in a 1D ring model of electric propagation, to take into

account electrotonic interactions during excitation and propaga-

tion [13,14]. However, the goodness of the fit was only verified by

comparing the values of the fitted and original parameters, rather

than the AP morphologies.

For cardiac ionic models, a particular problem is that models

may perform well in single cell but fail miserably in tissue, due to

the electrotonic loading. To date, researchers effectively only fit
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net membrane current to yield proper membrane voltage changes.

Consider, though, the case that a large efflux could be counter

balanced by a large influx, yielding a small net membrane current.

However, a small efflux canceling a small influx could lead to the

same net current. We hypothesized that fitting membrane

resistance, Rm, (defined as the reciprocal of the slope of the

current-voltage relationship ( LIm

LVm
)), could more properly take into

account tissue coupling and moreover, produce a more robust fit.

To test this hypothesis, we used a multi-objective parallel GA to fit

ionic model parameters based on AP shape and Rm. Fitting was

done in both model generated and experimental data.

Materials and Methods

Tissue and Single Cell Simulations
The Cardiac Arrhythmias Research Package (CARP) software

[15] was used for all simulations including single cell as well as

tissue. For tissue simulations, a 2-dimensional grid of 1 cm61 cm

size was discretized into quadrilateral finite element mesh with

edge lengths of 100 mm. A monodomain formulation with a time

discretization of 25 ms was used. A monodomain formulation is a

reduction of bidomain model of electrical propagation in

myocardial tissue and has reduced complexity under the

assumption that the intra and extracellular domains have equal

anisotropic ratios. While clearly not true, conductivity values are

chosen in the monodomain equation to match bidomain

anisotropic propagation. Center point stimulation was applied to

tissue with intracellular conductivity in the longitudinal and

transverse directions to the fibers set to 0.174 and 0.019 S/m

respectively [16].

Rm Evaluation
Rm was evaluated at several different points during an AP cycle

as shown in Fig. 1A. Rm at a particular Vm was defined as the

change in current in response to small perturbations in Vm, based

on the work by Zaniboni et al. [17]. In our simulation protocol

(illustrated in Fig. 1B), an AP was simulated under space-clamp

conditions (i.e. no spatial variation in the membrane voltage along

the cell). At the instant of the Vm of interest, Vm was clamped to a

value 10 mV greater. (Vm,+10) for 5 ms. A second simulation was

then run, in which Vm was instead clamped 10 mV below the Vm

of interest (Vm,210). The membrane current (Im,+10 or Im,210)

corresponding to the clamp voltage (Vm,+10 or Vm,210) was

recorded 5 ms after the start of the clamp pulse (Fig. 1C) so that

the major ionic currents had stabilized. Rm was calculated as the

slope of the V-I graph as shown in Fig. 1D by the following

equation:

Rm~
DVm

DIm

~
Vm,z10{Vm,{10

Im,z10{Im,{10

ð1Þ

Genetic Algorithms
A multi-objective genetic algorithm (GA) approach was used to

adjust the ionic channel conductances and Ca2+-handling

parameters in the TNNP model to obtain parameter sets that

simultaneously fit a desired AP morphology and the desired values

of Rm. An initial set of parents was generated by randomly

choosing values from the physiologically plausible search range for

each conductance parameter. The physiological range was

selected based on the available literature and the published

mathematical human ventricle models [18–24]. By selecting a

physiologically plausible range we can reach the solution faster

while avoiding spurious solutions. Table 1 shows the maximum

and minimum values of parameters.

For a particular current, we calculate the chord conductance

from the Equation 2, e.g., GNa is given by ratio of INa and the

driving force:

GNa~
INa

Vm{ENa

ð2Þ

where Vm is membrane potential and ENa is Nernst equilibrium

potential of sodium. The term Vm-ENa is called the electorche-

mical driving force. The current is often reported normalized by

cell capacitance, providing the density of ionic current relative to

membrane surface area (current density) in pA/pF to correct for

cell size.

The population was repeatedly updated according to the

principles of natural evolution: selection, crossover and mutation.

The crossover rate was 0.8 and the mutation rate was chosen to be

0.01 [25]. The mutation operation was performed by adding a

small random number to the parameter values, ensuring the new

value remained within the physiological range. The optimization

algorithm was run several times and each time the best solution

obtained from the previous run was used as the initial parameter

values for the next run. A multi-objective optimization was used,

as there were multiple objective functions as shown in Equation 4

and 5 where optimal decisions need to be taken in the presence of

trade off between the more than one objective functions. Multi-

objective optimization can be described in mathematical terms as

follows:

F (x)~min ½ f1(x), f2(x), fn(x)� ð3Þ

The first objective function is to minimize the normalized mean

square error difference in the APs and the next objective function

is to minimize the normalized absolute difference in Rm at n
different Vm values during the AP. The ideal value for the

objective function is zero, signifying that the desired criteria are

fulfilled completely. Termination were based on either a maxi-

mum time limit (86400 s) or a maximum number of generations

(100), whichever was reached first. For each set of parameter

generated by the GA, APs were run for 3 s to reach steady-state.

We also ran simulations for 10 s and observed that results were

similar to those obtained after 3 s long simulations, so 3 s was

chosen to reduce computation time. The multi-objective genetic

algorithm finds a Pareto set of the objective functions. All solutions

in a Pareto set are equally optimal, and it is up to the designer to

select a solution in the Pareto set. The solution with the least value

of m ean square error for AP was selected among the pareto

optima [26].

To speed up the computation, the optimization algorithm was

run on 8 Intel(R) Core(TM) i7- CPU 920 @ 2.67GHz cores using

the Global Optimization toolbox and the Parallel Computing

toolbox of MATLAB.

The performance of fitting only using AP morphology was

compared with using AP morphology and Rm. The following

objective functions were minimized:

N Normalized mean square error difference in the AP,

fVm~
1

N(bVVmax
m {bVVmin

m )2

X
j

(bVVm½j�{Vm½j�)2 ð4Þ
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where bVVm is the set of voltages defining the target AP from

depolarization through return to rest, Vm is the AP of ionic model

being fit, and bVVmax
m {bVVmin

m is the AP amplitude based on the

control values of conductances.

N Normalized absolute difference in Rm at n different Vm values

during the AP

fRm,i
~

DbRRm,i{Rm,i D
bRRm,i

ð5Þ

where i = 1,2,…,n. The absolute difference between the target

(bRRm,i) and fit Rm at each voltage point was normalized by Rm

evaluated at that voltage point in the base model. For every

iteration of the algorithm, the GA maintained a population of 100

potential solutions. It may be argued that a small number of

potential solutions could guide the algorithm to poor solutions and

that a large number of potential solutions could make the

algorithm expend more computation time in finding a solution.

Due to significant influence of population size on the solution

quality and search time, we studied the effect of this GA

parameter. Test cases for 50, 100 and 200 potential solutions

were compared and results are shown in Table 2, which

demonstrates that the optimal number of potential solutions found

was 100. In this case, accurate model parameters values are

obtained in reasonable computational time. Increasing the

number of potential solutions from 50 to 100 significantly

improves the resulting value of the objective functions. The

MSE voltage and Rm were reduced by 19.8% and 21.21%

respectively, whereas increasing the number of potential solutions

to 200 decreased the MSE voltage and Rm accuracy by 1.06% and

2.14% respectively and led to significant increases in computa-

tional time. So increasing the number of potential solutions

Figure 1. Measurement of Rm using voltage clamp pulses to determine the voltage-current (V-I) relationship. (A): Timing of onset of
clamp pulses during different phases of the TNNP ventricle model AP are indicated by the stars. (B): Application of voltage clamp pulses 10 mV above
(red curve) and below (blue curve) the membrane voltage at fifth point in the previous panel. (C): Membrane currents (Im) corresponding to clamp
pulses in panel B. (D): Vm -Im graph for the calculation of membrane resistance.
doi:10.1371/journal.pone.0107984.g001

Table 1. Maximum and Minimum value of parameters.

Parameter Minimum Value Maximum Value References

gNa (nS/pF) 6.93 19.3 [18–24]

gKr (nS/pF) 0.384 0.1728 [18–24]

gKs(nS/pF) 0.027 0.539 [18–24]

gk1 (nS/pF) 2.4 5.405 [18–24]

gto (nS/pF) 0.0196 0.303 [18–24]

gCaL(nS/pF) 0.00008 0.00029 [18–20,20–24]

arel (mM/ms) 10.9 32.9 [19–22]

brel (mM) 0.17 0.51 [19–22]

crel (mM/ms) 5.5 16.5 [19–22]

doi:10.1371/journal.pone.0107984.t001
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resulted in more computation cost without considerably improving

the value of the objective functions.

Model-to-model fitting
The single cell Ten Tusscher mathematical model (TNNP) of

the human ventriclular action potential [22] was used as the base

model for fitting. The change in membrane voltage (Vm) per unit

time is governed by the following differential equation:

dVm

dt
~

INazIK1zItozIKrzIKszICaLzINaCazINaKzIpCazIpKzIbCazIbNa

{Cm

ð6Þ

Two different sets of TNNP parameters Table 3 published by

Sarkar & Sobie [27] were used to generate similar APs (Fig. 2A)

with different underlying ionic current densities. The input

parameter sets consisted of the following: GNa,GbNa,GCaL,
GbCa,Gto,GKs,GKr,GK1,Gpk,kNaK ,kNaCa, and kpCa, the maximum

conductances (G) for sodium, background sodium, L-type calcium,

background calcium, transient outward, slow-delayed rectifier,

rapid-delay rectifier, inward rectifier, plateau potassium currents

respectively, the maximum turnover rates (k) for the sodium-

potassium (NaK) and sodium-calcium (NaCa) exchangers and

calcium pump (pCa), and arel ,crel ,Vleak, and Vup (all related to

intracellular Ca2+ handling, for details, see [22]).

The fitting technique was first verified by starting with random

parameters values for the TNNP model and fitting it to itself using

Vm and Rm. A random distribution was selected starting from the

control values of the parameters in the published model and

applying the lower and upper limits depending upon the data

available from literature from other published human ventricle

models [18–21,23,28–30]. Rm was calculated at three voltage

points: 22.57 mV, 8.084 mV and 259.87 mV. GCaL,GK1,Gto,
GKs,GNa,arel ,brel ,crel were adjusted. Average and standard devi-

ations of these eight parameters were plotted to check the whether

fitting Rm is important for model-to-model fit.

After verifying the performance of the algorithm, the TNNP

model was fit to APs and Rm values generated by a different model

of the human ventricular AP, the IMW [23] model. This model

exhibits a somewhat different AP morphology from that of the

TNNP model, and uses different formulations for some of the ionic

currents. This scenario was intended to address the situation where

a mathematical model is adjusted to fit experimental data which it

may not be able to reproduce exactly. Rm was fit at the three

voltage points.

Biological Data Fitting
Two different experimentally recorded APs, each with Rm

determined at 4 or 5 points during the AP (data sets 1 and 2), were

Table 2. Dependence of the Number of potential solutions on accuracy.

Number of potential solutions MSE Voltage (mV) MSE Rm (GV) Computation time(ms)

50 0.013 0.201 32478

100 0.102 0.16 68946

200 0.01 0.15 154789

doi:10.1371/journal.pone.0107984.t002

Table 3. Two parameter sets for the TNNP ventricle model showing similar AP [3].

Parameter Units Control Value Parameter Set#1 Parameter Set#2

GNa nS/pF 14.838 211.90 18.47

GbNa nS/pF 0.00029 23.96 0.00

GCaL nS/pF 0.000175 0.00 24.50

GbCa nS/pF 0.000592 7.15 217.74

Gto nS/pF 0.294 225.00 5.90

GKr nS/pF 0.096 31.80 226.70

GKs nS/pF 0.245 28.80 14.80

GK1 nS/pF 5.405 22.28 42.89

Gpk nS/pF 0.0146 7.10 214.90

KNaK pA/pF 1.362 3.50 21.60

KNaCa pA/pF 1000 26.68 30.30

arel mM/ms 0.016464 21.62 230.00

crel mM/ms 0.008232 211.90 228.40

Vleak ms 0.00008 58.00 12.20

Vmaxup mM/ms 0.000425 26.68 210.90

kpCa pA/pF 0.825 1.16 16.14

Control value in the second column shows the value as published. Parameter sets #1 and #2 show percentage change from the control value.
doi:10.1371/journal.pone.0107984.t003
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kindly provided by Dr. Kenneth W. Spitzer, University of Utah

(unpublished data). This study was approved by the Institutional

Animal Care and Use Committee (IACUC) of the University of

Utah school of Medicine. The technique used to obtain the

experimental data is available in the literature [17]. Briefly, it

involved continuous pacing of the cell under current clamp and

then at various times during the action potential, switching from

current clamp to voltage clamp for ,30 ms. Instantaneous

current-voltage curves were constructed from the Vm and Im

measured 10 ms following the onset of the clamp. Thus, the

experimental protocol is very similar to the one used for

simulations as explained earlier in Rm evaluation section in

methods. Due to the variability in APs, it is not guranteed that

voltage is exactly clamped to 10 mV above and below the Vm of

interest as the voltage while switching to clamp can be slightly

different to the voltage recorded from action potential immediately

before applying the clamp. An Axoclamp 2B amplifier system was

used for current and voltage clamping (switch clamp, 8 kHz

chopping frequency). The sampling frequency for all signals was

20 kHz. The pipettes (resistance ,3 M V) were coated with

Sylgard to decrease capacitance. All Vm values were corrected for

the 10 mV liquid junction potential. The bathing solution

contained (mM): 126 NaCl,11 dextrose,4.4 KCl, 1.0 MgCl2, 2.2

CaCl2, 24 Hepes, 12.9 NaOH (pH7.4). A amphotericin perforated

patch was used for data set 1. The pipette solution for data set 1

contained: 123 mM K glutamate, 10 mM NaCl, 10 mM KCl,

10 mM Hepes(free acid) titrated to pH 7.2 with 8 mM KOH,

amphotericin ,250 mg/ml. The temperature of the bathing

solution was 36uC. The pacing cycle length was 1 sec. A ruptured

patch was used for data set 2. The pipette contained (mM): 123

potassium glutamate, 10 NaCl, 5.5 dextrose, 5 dipotassium ATP,

1MgCl2, 10 Hepes, 12 KOH (pH 7.1). The temperature of the

bathing solution was 34uC. The pacing cycle length was 2 sec.The

current was measured 10 ms after the voltage clamp.

Since these experimental data were obtained from rabbit

ventricular cells, we opted to use the UCLA rabbit model [31].

The eight major conductances GNa,GKr,GKs,GCa,Gkix,Gtos,
Gtof ,GNaK were varied to fit the experimental data. Rm was

calculated at five voltage points (24 mV,21 mV,223 mV, 2

28 mV, and 281 mV) for data set 1 and four voltage points

(32 mV, 28 mV,221 mV and 278 mV) for data set 2. These

values were chosen as they correspond to the experimentally

obtained data.

Results

Rm calculation
To illustrate the ambiguity in parameter values when Rm is not

considered, single cell simulations were run for the TNNP model

using two different sets of parameters (Table 3). Fig. 2A show the

APs for parameter set 1 and set 2. It can be seen that two

drastically different combinations of ionic conductances resulted in

nearly identical APs in the single cell, as previously demonstrated

[27]. Fig. 2B shows the tissue APs for the two parameter sets. Note

that the APs are quite different in the tissue setting, despite being

nearly identical in the single cell simulations. APD90 for parameter

set 1 for tissue has been increased by approximately 5.95% from

the control value of APD90 of single cell simulation whereas for

parameter set 2 it has been reduced by 45.23%.

To see whether Rm was different in single cell with these two

sets of parameters, Rm was evaluated in the single cell model at

nine different points (shown by star markers in Fig. 2A). Rm

changed substantially during the time course of the AP, and,

moreover, Rm curves for the two parameter sets were very

different. As shown in Fig. 2C, Rm for parameter set 1 (red curve)

is approximately ten-fold higher during the repolarization phase as

compared to parameter set 2 (blue curve). This demonstrates that

Rm contains information independent of AP shape. In tissue, the

cells are connected by gap junctions that are responsible for charge

transfer between cardiomyocytes [28]. Rm provides information

about how sensitive the AP waveform is to current flow among

adjacent cardiomyocytes. In the single cell, a large efflux

cancelling a large influx, or a small efflux cancelling a small

influx, may yield the same net current and, thus, the same AP.

However, these two scenarios will likely have different Rm and

could be distinguished by taking Rm into account.

Model Self Fitting
The performance of the algorithm as described in the Methods

section was first verified by by successfully fitting the TNNP model

to itself, as shown in Fig 3. The GA fit was not improved by

adding Rm, and, hence, the curve for AP fit overlies exactly the

AP+Rm fit. The fact that the AP+Rm fit did not perform better is

Figure 2. AP and Rm for two sets of parameters. (A): APs
produced by two sets of parameters (shown in Table 3) for the TNNP
model in single cell (SC) and tissue (Tissue) simulations. (B) Stars
indicate voltage clamp control points as defined in Fig.A. The AP is
shown in black curve. (C) Rm calculated at nine points during the AP for
parameter set 1 and 2. Red and blue curves show membrane
resistances calculated for parameter sets 1 and 2 respectively. The Y
axis is logarithmic.
doi:10.1371/journal.pone.0107984.g002

Fitting Membrane Resistance along with AP Shape Improves Convergence

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e107984



expected, as this was a model fit to itself for which a perfect

solution exists, making this fitting problem relatively straightfor-

ward. Even using only 3 resistance points, an excellent fit was

achieved in only 16 iterations. The fit AP was indistinguishable

from the target AP. Using only the AP, the fit took 50 iterations.

The value of MSE for the action potential of the TNNP published

model and the AP generated by GA using AP+Rm fit was 0.1 mV.

Model to Model Fitting
We attempted to fit the TNNP model to the IMW model, using

only AP morphology and using both AP+Rm. Results are shown in

Fig. 4A.

The AP+Rm fit matches the target APD of IMW model very

well as compared to AP only fit. There was a depression of the

action potential amplitude by 7.9% and 8.8% for AP only and

AP+Rm fits respectively. The difference in APD90 of published

IMW model and the APD90 of AP generated by AP only fit is

13.04% wheras APD90 difference of actual IMW published model

and AP generated by AP+Rm fit is 2.79%. MSE voltage and MSE

Rm by decreased by 19 fold and 29 fold respectively by fitting AP

and Rm simultaneously as compared to fitting AP only. By adding

another constraint, Rm, that has functional relevance, we are

providing more information to the GA, and, hence, narrowing

down the problem. Rm is a relevant parameter as many different

conductance values can give similar APs. A large outward current

cancelling a large inward current is indistinguishable from a small

inward current cancelling a small outward current. Adding Rm at

few voltages to the AP fit led to an improvement in fitting.

Fig. 4 B compares the average and standard deviation of the

normalized parameter adjustments obtained for the two different

fitting protocols over 100 and 18 fits for AP only and AP+Rm fit

respectively. The average and standard deviation for each

parameter was normalized by the control value of the parameter

in the TNNP published model. The variability in almost every

estimated parameter values was greatly reduced by considering

Rm. For instance, variation in GCaL decreased by 80.5% and for

GKr was reduced by 93%. The variability for the conductances

was reduced from 40.1% (in GNa) to 95.7% (in case of GKr).

Tissue Simulations
We also tried tissue simulations as shown in Fig. 5 to determine

the effect of coupling resistance on the AP in tissue, and how it

relates to membrance resistance, Rm. Red and blue curves in

Fig. 5 show the AP for parameter set 1 and set 2 respectively. In

the early phase of AP near plateau Rm for parameter set 2 Rm at

this point decides what is going to happen in the later phase of the

AP. For parameter set 2, interconnecting cells in tissue with

normal intercellular coupling (the blue curve) results in shortened

APD. Decreasing the longitudinal and transverse intracellular

conductivities of parameter set 2 by a factor of 10 resulted in

action potetnials in the tissue simulations that were similar to those

in a single cell, i.e., the APD increased as the cells were decoupled.

Conversely, increasing tissue coupling with parameter set 1, which

has lower Rm at first four points is already well coupled.

Fitting Biological Data
For further testing the versatility of the approach, we also fit to

experimental Rm and AP data. Fig. 6A shows the fitting results for

first data set and where Rm was calculated. Absolute values of Rm

at the five points were 50.0, 330.0, 1896.0, 123.0, and 9.0 MV

Figure 3. Fitting TNNP model to itself. The red dashed curve shows
the single cell AP for TNNP model as published [22]. the blue dashed-
dotted curve shows the single cell AP waveform generated by genetic
algorithm after fitiing AP+Rm. Membrane resistance was evaluated and
fitted at three different voltage points as indicated by the markers.
doi:10.1371/journal.pone.0107984.g003

Figure 4. Model-to-model fit: TNNP ventricle model fitted to
the IMW ventricular model. (A): The TNNP (red) was fit to the IMW
model (green), using only the AP (blue), or the AP+Rm (magenta)
measured at three different points (black star markers). Orange square
markers represent the corresponding voltage points in AP+Rm fit curve
obtained from genetic algorithm (B): Plot of normalized average and SD
of parameters from the pareto set generated from the genetic
algorithm output from AP only (gray) and AP+Rm fits (black).
doi:10.1371/journal.pone.0107984.g004

Figure 5. Effect of changing tissue coupling with the two
parameters sets of TNNP model. Red and blue curve show the APs
for parameter set 1 and 2 for TNNP model. The green curve shows the
AP for parameter set 2 when the coupling has been decreased by a
factor of 10. The purple dotted curve shows the curve for parameter
set1 with the coupling increased by a factor of 10.
doi:10.1371/journal.pone.0107984.g005
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respectively. We again attempted to determine the best-fit model

parameters by fitting with and without Rm. MSE voltage

decreased by 4.2% and MSE of Rm decreased by 11.42% by

using Rm Fig. 6B compares normalized averages and SDs of the

optimal parameter values obtained from the AP only fit to those

obtained from the AP+Rm fit. There was not much difference in

the average parameter values obtained from the two methods.

However, the variability in the parameter values obtained was

greatly reduced, by more than a factor of 5, for

GNa,Gkix,Gtos,Gtof ,GNaK when objective functions for Rm were

included in the algorithm. The variability in the other parameters

were more modestly reduced, in the 10–30% range. We repeated

the same procedure for a second experimental data set for which

the results are shown in Fig. 7A. The absolute Rm values were

23.5, 30.5, 390.0, and 16.7 MV at the four markers shown in

Fig. 7A at voltage points 32 mV, 28 mV,221 mV and 278 mV.

The AP for the experimental data was entirely different for data

sets 1 and 2 as cells and the pacing cycle length were different.

While neither fitting protocol of genetic algorithm yielded a very

close fit to the AP shape, the AP+Rm fit was better than the AP

only fit. Given our mathematical formulation and constraint of

parameters, no parameter set could produce a good match to the

experimental data set. Moreover, the problem was more

challenging in this case since the experimental AP curve was

vastly different from TNNP published model. Absolute error

difference between APD90 for AP+Rm fit and actual experimental

data was 2.87% whereas in case of AP only fit it was 18.9%.

Furthermore, the difference in peak-overshoot-potential for AP+
Rm fit from experimental data was 0.84% whereas in case of AP

only fit this difference was 9.1%. Thus, AP+Rm fit decreased the

variations in APD and POP. Furthermore, while average

parameter values are mostly similar between the two protocols,

the variability in parameter values obtained was again reduced for

the AP+Rm protocol. This was particularly evident for the

GNa,Gkix,Gtos,Gtof , and GNaK parameters, for which variability

was reduced by at least 34-fold. Variability in parameters GKr and

GKs was reduced by 3 and 2-fold, respectively, while in the case of

GCa the variability was reduced by 18.6%.

The mean square error for the cases, fitting TNNP to IMW

model fitting, and fitting UCLA model to experimental data set 1

and 2, were measured (Fig. 8). The error was considerably less in

the case of AP+Rm fit in TNNP to IMW fit and UCLA to

experimental data set 2 as compared to AP only fit. MSE voltage

for experimental data set 2 has been decreased 4 fold whereas

MSE of Rm is decreased by 68 folds by fitting AP and Rm

simultaneously as compared to fitting AP only A possible reason

for the small difference for fitting experimental data set 1 was its

similarity to the UCLA rabbit model. Thus, the AP only fit was

sufficient to fit the model to the data. Adding Rm did not have

much scope to improve the results to a great extent. Whereas in

the second set of experimental data, the AP shape was entirely

different from the published TNNP ventricle model and thus there

was a strong need to fit Rm as well along with fitting AP.

There was a seven fold overall increase in the computational

cost of an iteration for fitting additional parameter Rm at few

points. There was a decrease in the number of iterations from 100

in the case of AP only fit to 18 for the AP+Rm fit, but still 18

iterations took 25% more time than 100 iterations of AP only fit.

Discussion

This study puts forth a method for enhancing fitting of APs in

single cell models. We propose adding Rm as an objective, beyond

just AP morphology, and demonstrate that it has several benefits:

It leads to less variability in the parameters values obtained,

reduces computation, as well as leads to better tissue level

behaviour.

Rm measurements
Take the current flow of ion X through a channel represented

by a Hodgkin-Huxley formulation, Ix~gx(Vm{Ex), and, conse-

quently

LIx

LVm

~gxz
Lgx

LVm

(Vm{Ex) ð7Þ

It can be seen that the channel conductance is composed of two

terms, the first being the chord conductance (gx), and the second

being a function of the driving force and the rate of change of the

chord conductance, and can be negative. Which term dominates

will depend on many factors which change throughout AP. Pumps

and exchangers also have nonlinear conductances. The total cell

conductance is, then, the summation of a set of nonlinear

conductances which makes it noninutuitive.

We chose different voltages at which to measure Rm instead of

times post-activation. This is because currents have a strong

voltage dependence so by sampling at different voltages, we are

sure to get different distributions of conducting ionic channels.

When a particular channel is more active during a certain phase

and contributes a large portion of the membrane conductance, this

Figure 6. Fit of UCLA rabbit ionic model to experimentally
recorded AP data set 1 (A) The UCLA rabbit ionic model (red) was fit
to experimental data set 2 (green) using just the AP (blue), and the AP+
Rm (magenta) measured at 5 different points (black star markers).
Orange square markers represent the corresponding voltage points in
AP+Rm fit curve obtained from genetic algorithm. (B): Plot of normalized
average and SD of parameters from the pareto set generated from the
GA output from AP only and AP+Rm fits. Bars show normalized averages
with SD for the optimal values of particular parameters with AP only fit
(grey) and AP+Rm fit (black).
doi:10.1371/journal.pone.0107984.g006
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provides more information to the GA to help fit its absolute

magnitude.

If we simply chose times at which to compute Rm, we could get

multiple samples from the plateau which would be very similar. If

the two cells had very different APs, we would end up sampling

very different states and Rm comparisons would not be meaning-

ful. Finally, we would have had to adjust the algorithm to the

particular APD to ensure proper sampling of all states.

We chose a 5 ms delay after the voltage clamp onset to allow

very fast transients to die down, and the major currents to stabilize.

Sodium, calcium, and transient outward channel activation gates

have kinetics on the order of 1–5 ms [22]. Within this short time

period (5 ms) as compared to the duration of an AP, activation of

major currents such as INa, ICaL, Ito and inactivation of IKr etc. are

stabilized and all the slower kinetics are assumed to be frozen. This

definition of membrane resistance has the advantage that it can be

experimentally assessed, and is relevant to dynamics on the

timescale of an AP. Table 4 shows the computed values of Rm

after 5 and 10 ms after the start of clamp pulse to see the

difference between the Rm values computed. Measuring Rm 5 or

10 ms after the onset of clamp pulse does not make a substantial

difference except at the starting two points during the plateau

phase of AP. Except for these points, on average, there was only

1.1% difference in Rm measured. If we include the first two points,

it gave an average percent difference of 4.6%. We verified our

choice of timing by measuring the MSE in APs fit with Rm

measured 5 ms and 10 ms after the clamp pulse. It was observed

that the difference in MSE voltage and MSE Rm for TNNP to

IMW model fit was only 0.03% and 0.04% respectively.

Furthermore, for the theoretical Rm calculation, capacitive

transients do not need to be dealt with, so 5 ms is acceptable. We

conclude that differences between using 5 ms and 10 ms delay to

measure Rm are negligible in terms of the quality of the resulting

fit. For experimental Rm measurements, a 10 ms delay was chosen

due to the presence of capacitive transients. If we waited longer,

the state would have evolved too much and the response would

have been more a function of the clamp voltage.

Justification of Fitting Rm

The results shown in Fig 2 revealed that different sets of

parameters produce almost similar AP in single cell but entirely

different morphology in the tissue, highlighting that models

producing good AP fits in single cell simulations may sometimes

fail to reproduce the AP in tissue simulations. For example, recent

detailed atrial [24] and ventricular [18] ionic models have failed to

propagate in tissue, despite faithfully reproducing expected

isolated behavior. In tissue, cells are interconnected through gap

junctions and interact electrically with neighbouring cells. If we

take the example of two cells connected to each other, cell 1

(source) is more depolarized than cell 2, so it will try to depolarize

cell 2 whereas the sink has opposite effect on the source

(repolarizing influence). The membrane resistance, Rm, relates

the change in membrane voltage to the current by these source-

sink interactions. If Rm is high, a small current produces a large

change in voltage. If Rm is low, a large current produces a small

Figure 7. Fit of UCLA rabbit model to experimentally recorded
AP data set 2. (A): The base UCLA rabbit ionic model (red) was fit to
experimental data set 2 (green) using just the AP (blue), and the AP+Rm

(magenta) measured at 4 different points (black stars). Orange square
markers represent the corresponding voltage points in AP+Rm fit curve
obtained from genetic algorithm. (B): Plot of normalized average and
SD of parameters from the Pareto set generated from the genetic
algorithm output from AP only and AP+Rm fits. Bars show normalized
averages with SD for the optimal values of particular parameters with
AP (grey) and AP+Rm fits (black).
doi:10.1371/journal.pone.0107984.g007

Figure 8. Mean square errors. Error for fitting the TNNP to the IMW
model (TNNP-IMW), and fitting the UCLA rabbit model to experimental
data sets 1 (UCLA-Expt1) and 2 (UCLA-Expt2) are shown. Grey bars
shows MSE for fitting AP only while black bars show the MSE of fitting
AP+Rm.(A). MSE of AP voltage normalized by square of height of AP. (B)
MSE of Rm normalized by square of actual membrane resistance at
particular voltage point.
doi:10.1371/journal.pone.0107984.g008

Fitting Membrane Resistance along with AP Shape Improves Convergence

PLOS ONE | www.plosone.org 8 September 2014 | Volume 9 | Issue 9 | e107984



change in voltage. Rm curves for two model parameter sets were

very different (Fig. 2B).

For parameter set 1, Rm was approximately ten-fold higher

during repolarization as compared to set 2. Rm is maximum

during depolarization as many channels are voltage activated and

close. The shorter the APD, the lower the average Rm must be.

This is because the amount of charge to dissipate through the

membrane is a function of the peak voltage. The average current

flow will be this charge divided by the APD. Rm must, therefore,

be lower with the higher current to keep the voltage at the same

level as with the longer APD.

Rm relates the change in membrane voltage to an injected

current (or in the case of cells in tissue, current flowing through

gap junctions to/from adjacent cells). If Rm is high, a small current

produces a large change in voltage. If Rm is low, a large current

produces a small change in voltage. In tissue, the current through

gap junctions depends on source-sink interactions and thus

coupling between the cells. Thus, membrane resistance interacts

with coupling resistance in determining the behaviour of cellular

APs in tissue, and properly fitting Rm yields better results in tissue

simulations.

This further emphasizes the importance of Rm. If considering

only net current flow while fitting maximal conductance values,

there could be a large influx cancelling large efflux due to ionic

currents with large chord conductances, or a small efflux

cancelling small influx due to ionic currents with low chord

conductances, in both cases resulting in a similar net current. One

may argue that the net flux of a particular ionic species will have

other effects beyond direct membrane voltage changes and that

these effects should also direct the fitting. However, given the

complex feedback interactions and different sensitivities to model

parameters, more direct fitting data seems to be of great help.

Thus, Rm is a vital parameter that can provide information

regarding ionic currents that is not sufficiently provided by just the

shape of AP. Hence, we propose that fitting net membrane current

and Rm at different voltage points in the AP cycle can overcome

this problem.

Computation Time
Including Rm improves the fit and reduces number of runs

approximately five fold at the price of more expensive iterations.

Each Rm measurement requires two runs, one to increase and one

to decrease Vm. This aspect of the computation was not fully

optimized in this implementation. For example, for every Rm

measurement, we reran the initial 3 seconds. We could have saved

the state immediately before the Rm calculation, performed the

calculations, and then continued from the saved state. Thus,

although we observed a sevenfold increase in objective function

evaluation time, this could be reduced significantly, theoretically to

1z2 n d
APD

where n is the number of Rm points and d is the duration

of the voltage clamp, notwithstanding system time to launch any

additional jobs required. In any case, the single cell simulations

take on the order of seconds and GAs parallelize well, so

computation time is not an obstacle and is actually significantly

reduced.

Effects of fitting with Rm

The TNNP human ventricle model fit to the IMW model both

with and without incorporating Rm data. Parameter values

obtained with both methods were similar on average after 100

runs. However, the variability in GCaL,GKr,Gto,GKs and GNa was

considerably smaller for combined AP and Rm fit compared to AP

only fit, and also brings AP closer to the desired AP curve of IMW

model. Hence, addition of one extra objective, (Rm, at a few

voltages) to the AP fit, improved the fit to the desired AP curve

while reducing variability in the solutions obtained. This also

reduced the number of runs to perform from 100 to 18. The mean

square error was reduced 19-fold by fitting Rm at three points

during the AP.

The UCLA rabbit model was fit to the experimental rabbit

ventricular data sets 1 and 2, with Rm determined at 5 and 4

points respectively during the AP. For data set 1, the AP of the

UCLA model is quite similar to rabbit experimental data set 1.

There was not much scope for fitting by the additional parameter

Rm (magenta curve) at five voltage points as compared to fit AP

only (blue curve). Thus there was not much change in the shape of

AP while fitting AP only or AP+Rm. Fig. 4B shows that there is not

a significant change in the average for both AP only and AP+Rm

fit, but the variation for parameters GNa,Gkix,Gtos,Gtof ,GNaK was

reduced considerably for the AP+Rm fit along with a reduced

number of runs, from 100 to 18. The experimental behaviour was

not exactly replicated during repolarization and also for GKr and

GKs conductances, variation was not significantly decreased as

compared to the model-to-model fit. The possible interpretation of

this can be that these are the currents responsible for this part of

the AP, and the problem is more challenging to fit than the

Table 4. Rm measured 5 ms and 10 ms after start of clamp pulse.

Time (ms) Voltage (mV) Rm after 5 ms Rm after 10 ms Error

3020 14.5 5.6 6.8 20.9%

3035 19.9 7.0 7.9 12.8%

3050 22.4 7.4 7.6 2.2%

3080 20.8 8.4 8.5 1.4%

3140 14.4 13.8 14.0 1.6%

3170 9.7 46.8 47.0 0.5%

3260 230.4 149.3 152.1 1.9%

3276 52.4 4.2 4.2 0.0%

3320 286.0 0.492 0.492 0.0%

% Error for all points 4.6%

% Error except first two points 1.1%

doi:10.1371/journal.pone.0107984.t004
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model-to-model fit. There might not be a best possible solution to

fit this part of AP as well without making other parameters worse.

The MSE was only reduced by a factor of 1.1 by fitting Rm. So,

since the UCLA model AP and experimental data set 1 AP curve

are not very different, the AP only fit was sufficient for reproducing

the experimental results.

The experimental data set 2 for AP and Rm at 4 voltage points

in Fig. 7A is quite different from UCLA rabbit model AP+Rm fit

together is closer to the experimental AP than the AP only fit (blue

curve of Fig. 7A). The variation in parameters GNa,Gkr,Gkix,
Gtos,Gtof ,GNaK was reduced further along with a reduced number

of runs to perform from 100 with AP only to 14 for AP+Rm fit.

Hence, addition of one extra objective, (Rm, at a few voltages) to

the AP fit, improves the fit to the desired AP curve while reducing

variability in the solutions obtained. It also reduced MSE 4 fold. It

has been noticed that experimental data. The possible reason can

be that the GKr and GKs which are the dominating currents during

this phase of AP did not vary much in average and variation from

the AP only fit. For cases where the target AP is very different from

the model, Rm improves the fitting.
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