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ABSTRACT

Motivation: Although the majority of gene histories found in a clade of

organisms are expected to be generated by a common process (e.g.

the coalescent process), it is well known that numerous other coex-

isting processes (e.g. horizontal gene transfers, gene duplication and

subsequent neofunctionalization) will cause some genes to exhibit a

history distinct from those of the majority of genes. Such ‘outlying’

gene trees are considered to be biologically interesting, and identifying

these genes has become an important problem in phylogenetics.

Results: We propose and implement KDETREES, a non-parametric

method for estimating distributions of phylogenetic trees, with the

goal of identifying trees that are significantly different from the rest

of the trees in the sample. Our method compares favorably with a

similar recently published method, featuring an improvement of one

polynomial order of computational complexity (to quadratic in the

number of trees analyzed), with simulation studies suggesting only a

small penalty to classification accuracy. Application of KDETREES to a set

of Apicomplexa genes identified several unreliable sequence align-

ments that had escaped previous detection, as well as a gene inde-

pendently reported as a possible case of horizontal gene transfer. We

also analyze a set of Epichlo €e genes, fungi symbiotic with grasses,

successfully identifying a contrived instance of paralogy.

Availability and implementation: Our method for estimating tree dis-

tributions and identifying outlying trees is implemented as the R pack-

age KDETREES and is available for download from CRAN.

Contact: ruriko.yoshida@uky.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

A central problem in systematic biology is the reconstruction of

the evolutionary history of populations and species from numer-

ous gene trees with varying levels of discordance (Brito and

Edwards, 2009; Edwards, 2009). Although there is a well-

established understanding that discordant phylogenetic relation-

ships will exist among independent gene trees drawn from a

common species tree (Maddison, 1997; Pamilo and Nei, 1988;

Takahata, 1989), phylogenetic studies have only recently begun

to shift away from single-gene and concatenated-gene estimates

of phylogeny in favor of multilocus methods (Carling and

Brumfield, 2008). These newer approaches focus on the role of

genetic drift in producing patterns of incomplete lineage sorting

and gene tree/species tree discordance, largely using coalescent

theory (Degnan and Salter, 2005; Rosenberg, 2002, 2003). These

theoretical developments have been used to reconstruct species

trees from samples of estimated gene trees (Carstens and

Knowles, 2007; Edwards et al., 2007; Maddison and Knowles,

2006; Mossel and Roch, 2010; RoyChoudhury et al., 2008).
Detecting concordance among gene trees is also a topic of

interest. For example, An�e et al. (2007) developed a Bayesian

method to estimate concordance among gene trees using molecu-

lar sequence data from multiple loci. The method can produce

estimated gene trees as well as an estimate of the proportion of

the genome that supports a particular clade. However, a priori

assumptions must be made about the degree and structure of

concordance present in the gene trees.
Although there is a tremendous amount of ongoing effort to

develop better parametric models for gene tree distributions, the

parametric framework has inherent limitations. Although a para-

metric method typically makes the most efficient use of a given

dataset when the model is specified correctly, they achieve this

efficiency by assuming that the true distribution of gene trees is

one of a relatively small class of distributions. This can lead to

erroneous inferences when the true distribution does not resem-

ble any of the models in the proposed class. Given that many

questions remain about the proper way to incorporate a number

of important processes into a parametric model (e.g. geographic

barriers to migration or a population bottleneck), the problem of

model mis-specification is real. Non-parametric methods avoid

the majority of these modeling issues, enabling unbiased estima-

tion for a much larger class of true tree distributions at a cost of

statistical efficiency.
Numerous processes can reduce the correlation among gene

trees. Negative or balancing selection on a particular locus is

expected to increase the probability that ancestral gene copies

are maintained through speciation events (Takahata and Nei,

1990). Horizontal transfer introduces divergent gene copies into

a different species through shuffling gene copies among species

via hybridization (Maddison, 1997). The correlation may also be

reduced by naive sampling of loci for analysis. For example,*To whom correspondence should be addressed.
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paralogous gene copies will result in a gene tree that conflates

gene duplication with speciation. Similarly, sampled sequence

data that span one or more recombination events will yield

‘gene trees’ that are hybrids of two or more genealogical histories

(Posada and Crandall, 2002). These non-coalescent processes can

strongly influence phylogenetic inference (Edwards, 2009; Martin

and Burg, 2002; Posada and Crandall, 2002). In addition, Rivera

et al. (1998) showed that an analysis of complete genomes indi-

cated a massive prokaryotic gene transfer (or transfers) preceding

the formation of the eukaryotic cell, arguing that there is signifi-

cant genomic evidence for more than one distinct class of genes.

These examples suggest that the distribution of eukaryotic gene

trees may be more accurately modeled as a mixture of a number

of more fundamental distributions.
In this article, we focus on the problem of identifying signifi-

cant discordance among gene trees, as well as estimating the

distribution of gene trees as a whole. This set of gene trees is

assumed to consist mostly of ‘typical’ (or ‘non-outlier’) gene

trees, which are assumed to be independently sampled from

some distribution f. For example, gene trees have evolved neu-

trally under a coalescent process. In addition, there are a smaller

number of ‘outlier’ gene trees that are sampled from a different

distribution f 0. These genes are assumed to arise from less-com-

mon evolutionary processes, for example, paralogy, neofunctio-

nalization, horizontal gene transfer or periods of rapid molecular

evolution. In addition, more mundane errors—such as incorrect

sequencing, alignment, tree reconstruction or annotation—can

also produce outlier trees in a dataset (Horner and Pesole,

2004). Our method produces a non-parametric estimate of the

distribution f and also attempts to identify potential outlier

gene trees that are probably not generated by f. Trees identified

as outliers can then be inspected more closely for biologically

interesting properties. In particular, identifying and removing out-

liers that violate model assumptions can improve the accuracy of

inferences made from a collection of gene trees (e.g. Disotell and

Raaum, 2004; Edwards, 2009; Martin and Burg, 2002; Posada

and Crandall, 2002). Note that in this article we use dissimilarity

maps, geodesic distances and topological dissimilarity maps be-

tween trees for simulations and implementation of our software

(see Subsection 2.1.1). With these distance measures between

trees, we implicitly assume a multispecies coalescent model

(Helmkamp et al., 2012). Also note that the choice of tree distance

measures might change the detected outlying gene trees. For ex-

ample, if the subtree pruning and regrafting (SPR) distance be-

tween trees is used, the detected outlier gene trees would be

having an excess of recombinations or horizontal gene transfers.

1.1 Related work

The method presented in this article is not, at its present state of

development, a statistical method for hypothesis testing, but

rather for discovering possible outliers present in a given collec-

tion of orthologous genes. However, there has been significant

work devoted to the development of statistical methods for

testing hypotheses of discordance between the trees in a

collection. The reviewed methods in Poptsova (2009) are the fol-

lowing: (i) likelihood-based tests of tree topologies, such as

Kishino–Hasegawa test (Kishino and Hasegawa, 1989),

Shimodaira–Hasegawa test (Shimodaira and Hasegawa, 1999)

and approximately unbiased tests (Shimodaira, 2002); (ii) tree

distance methods, such as Robinson and Foulds (1981) and

SPR distances (Goloboff, 2008); and (iii) genome spectral

approaches, such as bipartition (Lockhart et al., 1995) and quar-

tet decomposition analyses (Piaggio-Talice et al., 2004).
The likelihood-based tests of tree topologies and tree distance

methods are statistical hypothesis tests that detect significant in-

congruence between trees, i.e. they are testing the following

hypotheses:

H0: given trees are topologically congruent.
H1: given trees are topologically incongruent.

The distinction between likelihood- and distance-based meth-

ods is in how they calculate the P-value of these hypotheses. The

likelihood-based tests compare each gene tree with a species/

reference tree using a likelihood value to see if the incongruence

is ‘statistically significant’. These methods are also known as

partition likelihood support (Lee and Hugall, 2003). Tree dis-

tance methods estimate the P-value of the hypotheses above by

computing a distance between a reference tree and each gene tree.

Holmes (2005) describes a framework for statistical hypothesis

testing on trees based on tree distances using distributions of

phylogenetic trees (e.g. a posterior distribution or bootstrap

resampling). Holmes also presents a statistical method to com-

pare two sets of bootstrap sampling distributions, using the mean

and variance of each distribution (Holmes, 2005; Section 4.4.1).

A non-parametric method for detecting significant discordance

between two sets of trees via supporting vector machines was

introduced by Haws et al. (2012). This is a non-parametric

method for statistical testing of the hypotheses:

H0: Two sets of trees are drawn from the same distribution.
H1: Two sets of trees are not drawn from the same

distribution

Although likelihood-based tests assume that the species tree is

known, genome spectral approaches do not use such a reference

tree. Genome spectral methods summarize a set of gene trees

with phylogenetic spectra (frequencies), such as splits or quartets.

These frequencies can be used to approximate the distribution of

gene trees, instead of producing a summarizing tree. Outlier trees

can be identified by looking for trees whose highly supported

features disagree with prevalent features in the spectra (Nepusz

et al., 2010).
A non-statistical approach for summarizing collections of gene

trees is presented by Nye (2008). Treating each gene tree as a leaf

node, a ‘meta-tree’ is constructed where nodes correspond to

phylogenetic trees; distances between nodes of the meta-tree cor-

respond to distances between phylogenetic trees, and internal

nodes correspond to gene trees with various branches collapsed.

When using the Robinson–Fould distance, the non-parametric

method proposed in this article can be viewed as a numerical

summarization of the meta-tree in (Nye, 2008).

Recently, de Vienne et al. (2012) developed a statistical

non-parametric method to detect outlier trees from the set of

gene trees. They first convert gene trees into vectors in a multidi-

mensional Euclidean space and then apply multiple co-inertia

analysis (MCOA)—an extension of principal coordinate ana-

lysis—directly to these vectorized gene trees. Their method,
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PHYLO-MCOA, also detects outlier species, those whose position

varies widely from tree to tree. Included in our results are simu-

lation studies comparing our non-parametric method with

PHYLO-MCOA.

2 METHODS

2.1 Algorithm

Let T n denote the set of all tree topologies (including multifurcating trees)

on n taxa (which we call tree space). We consider trees to be unrooted, but

rooted trees can be treated similarly. Our main object of study is a

sample, fTig
N
i=1, of N trees (gene trees) mostly drawn from a distribution

f on T n. If n is large enough that jT nj � N, then many tree topologies in

the sample may have low empirical frequency. In this case, f cannot be

estimated well by assigning f̂ðTÞ to be the empirical frequency of T in the

sample. On the other hand, if f corresponds to a model such as the co-

alescent, it is reasonable to expect that topologies ‘close’ to many

observed trees will have a higher likelihood than topologies ‘far away’

from the observed trees.

Kernel density estimation is a non-parametric technique to estimate a

distribution that generated a sample, by leveraging the fact that points

close to sample points tend to have higher likelihood than distant outlier

points [underadequate assumptions on the distribution, namely, the distri-

bution is square integrable (Meloche, 1990)]. Kernel density estimation can

be viewed as a refined version of histogram-based estimation of a density.

Given an independent and identically distributed sample of trees

T1; . . . ;TN, we propose a non-parametric estimator of the distribution

that generated the sample with the form

f̂ðTÞ /
1

N

XN
i=1

kðT;TiÞ:

Here k, the kernel function, is a non-negative function defined on pairs

of trees, which measures how ‘similar’ two trees are. For our approach,

we do not require k to be a kernel in a strict statistical sense.

In KDETREES, we have implemented a kernel of the form

kðT;TiÞ /
1

hi
exp �

dðT;TiÞ

hi

� �� !
:

A distance function on the space of trees, dðT;T0Þ, is used to define a

univariate projection T n ! R+ in the natural way for each fixed T 2 T n,

mapping T0�dðT;T0Þ. The ‘shape’ parameter �40 and the ‘bandwidth’

parameters hi40 control how tightly each contribution kðT;TiÞ will be

centered on Ti. Allowing the bandwidth to vary with the sample points,

Ti, is called an adaptive bandwidth method. Alternatively, the bandwidth

can be set to a constant value for all Ti.

In general, we can remove the symmetry and triangle inequality re-

quirements for d, and it is possible that the sum over tree space,X
T2T

kðT;T0Þ, will vary with T0. Ideally, we would remedy this issue

by normalizing kð�;T0Þ so that
X

T2T
kðT;T0Þ=1. (This is the case

most analogous to kernel density estimation.) However, for the d imple-

mented by KDETREES, Monte Carlo estimates of this sum do not appear to

vary significantly across T0, and so the current version of the software

assumes that it is constant. (Additional information about these estimates

is presented in Supplementary Fig. S1.)

Because the ultimate goal is to detect outlier trees, Tj, which are not

actually drawn from the true distribution f, we are most concerned with

estimating the density at the observed sample points. In this context, it

makes sense to use a ‘leave-one-out’ estimator that excludes the contri-

bution of the point in question from the tree score,

ĝðTjÞ=
1

N� 1

X
i 6¼j

kðTj;TiÞ:

Once we have computed the scores, fĝðTiÞg, we classify tree Tj as an

outlier if ĝðTjÞ is less than Q1 � � � IQR. Where Q1 and IQR are the first

quartile and the interquartile range of the set of tree scores, respectively,

and � is a classification tuning parameter. The choice of � affects the

sensitivity and specificity of the classifier and is set to 1.5 by default as

defined by J. Tukey for finding outliers (Tukey, 1977), although the users

may supply their own value.

2.1.1 Choice of tree distance In our approach, trees can be

incorporated into a statistical framework by converting them into a

numerical vector format based on a distance matrix or map. These

vectorized trees can then be analyzed as points in a multidimensional

space where the distance between trees increases as they become more

dissimilar (Graham and Kennedy, 2010; Hillis et al., 2005; Semple and

Steel, 2003).

For the choice of d, we propose distances derived from three different

distances on trees: dissimilarity map dd, topological dissimilarity map dt
and geodesic distance dgeo. The dissimilarity map distance measure be-

tween two trees is the Euclidean distance, ddðT
0;TÞ=jjvdðTÞ � vdðT

0Þjj2;

where vdðTÞ is a vectorization of trees, T n ! R

n

2

 !
, based on an enumer-

ation of the pairwise distances between the tips (Buneman, 1971). The

topological dissimilarity map distance measure between two trees is

defined similarly, dtðT
0;TÞ=jjvtðTÞ � vtðT

0Þjj2; but uses a vectorization vt
ðTÞ that counts the number of edges between the tips (Steel and Penny,

1993). An example calculation of both vd and vt is shown in

Supplementary Figure S2.

Billera et al. (2001) showed that the space of rooted trees with a fixed

number of taxa is the union of positive cones in R

n

2

 !
. Thus, the space of

trees is the set of all metrics derived from valid trees and is a subspace of

the space of all distance matrices. The geodesic distance dg is the shortest

distance between two valid trees when the connecting path is constrained

within this tree space (note that this subspace of valid trees is not

itself Euclidean). Owen and Provan (2011) developed an Oðn4Þ algo-

rithm to compute the geodesic distance dgðT;T
0Þ between any two valid

trees.

2.1.2 Missing taxa It is desirable for phylogenetic analyses to be

able to deal with situations with incomplete data. In this case, the

most relevant type of missing data is when some gene trees are missing

a tip that is present in other trees in the dataset. Our method is capable

of handling such a situation if the dissimilarity or topological distance

maps are used. In this situation, we impute missing tip-to-tip distances in

the tree vectors with the median value found in trees containing the

missing tip. Unfortunately, the geodesic distance algorithm we used

does not currently allow us to perform such an imputation, and so

KDETREES cannot handle missing tips if the geodesic distance map is

selected.

If the trees have node labels that correspond to support for the given

split (obtained, for example, by a bootstrap analysis), then the software

can accommodate this information by collapsing nodes with support less

than a given value. This behavior is disabled by default.

2.1.3 Kernel bandwidth The estimator ĝ depends crucially on the

choice of the bandwidth parameter h. We use a nearest-neighbor ap-

proach to estimate an adaptive bandwidth for each sample point. To

estimate the bandwidth for a point Tj, we use the distance to the m-th

closest sample point. This approach has the effect of causing the kernels

to be concentrated in areas where there is a lot of data and diffuse in the

tails of the distribution. In the current version of KDETREES, m is defaulted

to be 20% of the sample size, a heuristic value chosen based on simula-

tion results.

Alternatively, the bandwidth can be set to a constant value for all Ti.

To do this, we must find a way to choose an optimal value for the

bandwidth h. We experimented with a constant bandwidth chosen by
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estimating the partition function Zh=
X

T
ĝhðTÞ using a random sample

of trees. However, it seems that we tend to underestimate the bandwidth

h, and the results are not as robust as in the case of the adaptive

bandwidth.

2.1.4 Tuning parameters The outlier classifier’s sensitivity depends

on the choice of a tuning parameter, �. The default value, 1.5, is chosen

for historical reasons. In our simulations, smaller values of �, �0.75–1,

often resulted in false-positive rates (FPRs) close to 5%. Creating plots of

the tree scores may be helpful in choosing an appropriate value for a

given dataset.

2.1.5 Computational complexity The running time of KDETREES is

dominated by the step where pairwise tree distances are calculated. For N

trees, each with n taxa, this step takes Oðn2N2Þ operations when using the

dissimilarity or topological distances or Oðn4N2Þ if using the geodesic

distance.

2.2 Simulations

We conducted a series of simulations comparing the performance of

KDETREES and PHYLO-MCOA. (Code and documentation for the simula-

tions is included in a package vignette with KDETREES.) The simulated data

consisted of coalescent trees generated by the Python library DendroPy

(Sukumaran and Holder, 2010). Six species trees (see Supplementary Fig.

S3) were used to contain coalescent gene trees. A dataset consisted of a

small number of ‘outlier’ gene trees, together with a larger number of

‘non-outlier’ gene trees. Pseudocode in Algorithm 1 summarizes the simu-

lation processes.

Our first simulation investigated the classification characteristics of the

methods, producing receiver operating characteristic (ROC) curves com-

paring KDETREES and PHYLO-MCOA, by varying the classification tuning

parameter of each method. [An ROC curve is a graphical plot of the

fraction of true-positive rate versus the fraction of FPR at various thresh-

old settings (Hastie et al., 2009).] In this simulation, we set the effective

population size of the coalescent process generating the trees to 2000, a

value that produced a moderate amount of variance in the generated

coalescent trees.

A second simulation compares the true-positive rates of the methods as

the variance of the coalescent trees increases. (Variance of the random

trees is controlled by the coalescent population parameter.) This simula-

tion was performed both with the default classification tuning values, as

well as values chosen based on the ROC simulation results to limit the

FPR to �5%.

A third simulation compared the distribution of outlier tree scores with

the distribution of non-outlier tree scores. The simulation process is sum-

marized in the pseudocode in Algorithm 2.

2.3 Biological datasets

2.3.1 Apicomplexa The Apicomplexa dataset presented by Kuo et al.

(2008) consists of trees reconstructed from 268 single-copy genes from the

following species: Babesia bovis (Brayton et al., 2007; GenBank accession

numbers AAXT01000001–AAXT01000013), Cryptosporidium parvum

(Abrahamsen et al., 2004) from CryptoDB.org (Heiges et al., 2006),

Eimeria tenella from GeneDB.org (Hertz-Fowler et al., 2004),

Plasmodium falciparum (Gardner et al., 2002) and Plasmodium vivax

from PlasmoDB.org (Bahl et al., 2003), Theileria annulata (Pain et al.,

2005) from GeneDB.org (Hertz-Fowler et al., 2004) and Toxoplasma

gondii from Toxo-DB.org (Gajria et al., 2008). A free-living ciliate,

Tetrahymena thermophila (Eisen et al., 2006), was used as the

outgroup. To this set of sequences, we appended the Set8 gene, which

has been identified by Kishore et al. (2013) as a probable case of hori-

zontal gene transfer from a higher eukaryote to an ancestor of the

Apicomplexa.

2.3.2 Epichlo €e Another set of biological sequences to use as a test case

was generated from housekeeping genes and a known pair of paralogs in

Epichlo €e species and related plant symbionts and parasites in the fungal

family Clavicipitaceae. We previously reported sequencing, annotation

and the identification of orthologs in genome of Epichlo €e amarillans

strain E57, Epichlo €e brachyelytri E4804, Epichlo €e festucae strains E2368

and Fl1, Epichlo €e glyceriae E277, Epichlo €e poae E5819, Epichlo €e typhina

E8, Aciculosporium take MAFF-241224, Claviceps fusiformis PRL 1980,

Claviceps paspali RRC-1481, Claviceps purpurea 20.1, Neotyphodium gan-

suense e7080 and Periglandula ipomoeae IasaF13 (Schardl et al., 2013).

We compiled the inferred protein sequences for 10 housekeeping proteins,

namely, �-actin (ActG), DNA lyase (ApnB), a calmodulin-dependent

protein kinase (CpkA), the largest and second largest subunits of RNA

polymerase II (rpbA and rpbB), translation elongation factor 1-� (TefA),

�-tubulin (paralogs TubB and TubC) and �-tubulin (paralogs TubB

and TubP). As a possible phylogenetic outlier, we used an alignment of

proteins related to the Emericella nidulans O-acetylhomoserine (thiol)

lyase enzyme (CysD). In some, but not all, of the fungal strains we

analyzed, the CysD homologs were located in the loline alkaloid biosyn-

thesis gene cluster and have been designated LolC (Schardl et al., 2013).

Analysis by OrthoMCL (Li et al., 2003) grouped all of the CysD-related

proteins as orthologs, whereas further analysis with COCO-CL (Jothi

et al., 2006a) separated LolC from the other CysD-related sequences as

paralogs.
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3 RESULTS

We present the software package KDETREES for non-parametric

estimation of tree distributions and detection of outlier trees. The

software takes as input a sample of trees in Newick format and

estimates for each tree a ‘score’ based on a non-parametric esti-

mator of the tree density. It can then use these scores to identify

putative outlying trees in the sample. The tree scores and sum-

mary plots are produced as output.
The KDETREES package is written in R (R Development Core

Team, 2011) and depends on packages DISTORY (Chakerian

and Holmes, 2013), GGPLOT2 (Wickham, 2009) and APE

(Paradis et al., 2004). The software is available for download

from CRAN and is compatible with all systems supported by R.

3.1 Simulation results

Our first simulation, presented in Figure 1, produced ROC

curves comparing the various methods of outlier identification.

We find that the performance of KDETREES and PHYLO-MCOA is

similar, with PHYLO-MCOA having a slightly better curve in the

single simulations, and KDETREES in the mixed scenarios.

Interestingly, the geodesic distance worked better for the ‘single’

simulation data than the dissimilarity map, whereas the relation-

ship is reversed for the ‘mixed’ simulation. These results were

almost completely unaffected by changes in the proportion of

outliers in the sample (proportions between 1 and 10% were

tested).
The variability of the coalescent trees is determined by the

effective population size, the parameter studied in our second

simulation. The proportion of the simulated datasets where

each method correctly identified an added outlier tree is illu-

strated in Figure 2. This simulation was run both with default

tuning parameters and ones chosen based on the ROC curve

simulation results. If optimal tuning parameters are selected,

PHYLO-MCOA can outperform KDETREES; however, selecting

these correctly can be difficult.

We ran a third simulation studying the difference between the

score distributions of outlier trees and non-outlier trees, as the

ability of our method to reliably detect outlying trees depends on

a tendency by outlier trees to produce scores significantly lower

than the scores of non-outlier trees. The results are presented in

Figure 3. We found that, although there is some overlap between

the score distributions, the distribution of scores for outlier trees

lies significantly below that of non-outlier trees.

Fig. 2. Summary of simulation results comparing performance of

KDETREES and PHYLO-MCOA for various values of the effective popula-

tion size. The proportion of simulated datasets in which the methods

identified the outlier tree is shown. The top two plots use tuning param-

eters chosen based on results of the ROC simulation, whereas the bottom

plots use default values. For KDETREES, the optimal tuning parameter was

�=0:7, whereas for PHYLO-MCOA, it was �=0:25. The default values are

both �=1:5

Fig. 3. Kernel density estimates of the observed distribution of tree

scores. The ‘coalescent’ scores are for contained coalescent trees gener-

ated within a fixed species tree (bottom). A single random outlier tree is

added to this dataset and its score computed. This process is replicated to

generate the sample of ‘outlier’ tree scores (top). Lines and dots represent

the 5–95% quantiles and the median, respectively. An effective popula-

tion size of 2000 was used to produce these estimates

Fig. 1. ROC curves comparing KDETREES and PHYLO-MCOA as the clas-

sification tuning parameter is varied. (In general, higher is better; an

effective classifier will pass close to the upper left corner.) The effective

population size is 2000 for the coalescent trees. At left are the ‘single’

contained coalescent simulations, with the non-outlier trees all contained

within a single species tree. At right are results from a ‘mixed’ simulation,

with the non-outlier trees generated from a mixture of five species trees
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3.2 Biological data results

3.2.1 Apicomplexa The list of putative outlier genes identified by
KDETREES in the Apicomplexa data is presented in Table 1, with
additional discussion in Supplementary Table S1. When using

either the dissimilarity maps or geodesic distance, our method
identified the same set of putative outlier trees. (The first four
trees identified as putative outliers are also plotted in

Supplementary Figure S4, and the entire set of estimated scores
are summarized in Supplementary Fig. S5.) These trees all contain
abranchwitha length that is far too long inproportion to theother

branches, leading to their identification as outliers. Closer inspec-
tion of these trees suggested that they correspond to questionable
sequence alignments, which are likely non-homologues included

due to poor annotation, many involving E.tenella sequences.
Because KDETREES revealed that there were pervasive problems

with the E.tenella sequence data, we removed this species from

the dataset and recreated the phylogenetic analysis as in the
paper by Kuo et al. (2008). With the reduced set of gene trees,
KDETREES identified a different set of outlier trees, and in this

case, the Set8 gene was selected as the furthest outlying tree.

3.2.2 Epichlo €e The fungal datasets included alignments of 10
fungal housekeeping proteins, plus an alignment of suspected
paralogs designated LolC and CysD. The LolC/CysD tree was

identified as one of two outliers, the other being the DNA lyase
protein ApnB. Topologically, the LolC/CysD tree differed mark-
edly from the others. However, the topology of the ApnB tree

was similar to the topologies for the other housekeeping proteins,
so its identification as an outlier suggested that the ApnB tree
had significantly different relative branch lengths from those of

the other housekeeping protein phylogenies in the analysis.

3.3 Running time

A significant advantage of KDETREES over PHYLO-MCOA is a
significant improvement in computational speed, especially

with larger datasets. Actual KDETREES running times are well
fitted by a OðN2Þ curve, as suggested by the complexity of the
algorithm discussed previously, whereas the PHYLO-MCOA times

are OðN3Þ.

4 DISCUSSION

4.1 Simulations

The results of our simulations were generally positive for

KDETREES. Although PHYLO-MCOA was often able to slightly

outperform KDETREES in classification accuracy, the difference

was often relatively small. However, in terms of computational

time, KDETREES vastly outperforms PHYLO-MCOA, especially as

the number of trees in the dataset increases.

In all cases studied, methods incorporating branch length in-

formation outperformed the topology-only methods. The per-

formance of the geodesic distance was better in the ‘single’

simulations than the ‘mixed’ simulations, although the reason

for this is unclear. All of the methods were able to correctly

identify the outlier tree when the effective population size (and

thus tree variance) was low, provided that a suitable tuning par-

ameter was chosen. As the variance of the coalescent trees

increased, the performance of PHYLO-MCOA tended to degrade

at a slightly slower rate than KDETREES.
It should be noted that choosing a suitable tuning parameter

can be quite difficult, as the optimal value depends on not only

the details of the dataset but also one’s subjective opinions on the

relative merits of the sensitivity and specificity of the classifier.

As such, we also studied the behavior of the algorithms when

using their default tuning parameters. This information is rele-

vant, as many users will not change the parameters from their

default values. With these values, we found that KDETREES is

slightly superior to PHYLO-MCOA in the single-distribution

simulations. In the mixed-distribution simulations, the default

values for PHYLO-MCOA resulted in poor performance, whereas

KDETREES’s rate of outlier identification was much higher.
The third simulation set compared the distribution of scores

for outlier trees with the scores of non-outlier trees. Although the

distributions are not completely distinct, it is clear that the outlier

trees tend to have scores smaller than the majority of non-outlier

trees. Because the outlier trees were generated as completely

random coalescent trees, there will inevitably be trees generated

that have structure similar to the non-outlier trees, simply by

chance, and this accounts for some of the overlap between the

distributions. With real data, such trees would correspond to

genes that have some exotic history but nonetheless appear to

have a phylogeny substantially similar to the rest of the genes in

the genome. In this case, it is ambiguous whether such a gene

should be legitimately classified as an outlier.
The main advantage of KDETREES over PHYLO-MCOA lies in

the vast improvement in running time on datasets with larger

numbers of gene trees. For small datasets, the difference is not

material; however, for datasets with several thousand trees,

PHYLO-MCOA requires many hours to complete, whereas

KDETREES will finish within a few minutes on contemporary com-

modity hardware.

4.2 Biological datasets

4.2.1 Apicomplexa The phylum Apicomplexa contains many
important protozoan pathogens (Levine, 1988), including the

mosquito-transmitted Plasmodium spp., the causative agents of

malaria; T.gondii, which is one of the most prevalent zoonotic

pathogens worldwide; and the water-borne pathogen

Table 1. Apicomplexa gene sets identified as outliers by KDETREES

No.a GeneIDb Functional annotation

488 PF08_0086 RNA-binding protein

497 PF13_0228 40S ribosomal subunit protein S6

515 PFA0390w DNA repair exonuclease

546 PFF0285c DNA repair protein RAD50

547 PFL1345c Radical SAM protein

641 PFE0750c Hypothetical protein, conserved

660 PF10_0043 Ribosomal protein L13

662 PF11_0463 Coat protein, gamma subunit

728 MAL13P1.22 DNA ligase 1

747 PFB0550w Peptide chain release factor subunit 1

773 PFF0120w Geranylgeranyltransferase

780 PFD0420c Flap exonuclease

Notes: All annotations except 728 are putative.
aBased on the gene set designations in Kuo et al. (2008).
bGene set represented by GeneID for P.falciparum.
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Cryptosporidium spp. Several members of the Apicomplexa also
cause significant morbidity and mortality in both wildlife and

domestic animals. Because of their medical and veterinary im-

portance, whole genome sequencing projects have been com-

pleted for multiple prominent members of the Apicomplexa.
The dataset presented in Kuo et al. (2008) consists of 268

orthologous genes from seven species of Apicomplexa and one

outgroup ciliate, Tetrahymena thermophelia. To this set of genes,

we appended sequences from the Set8 gene, which has been
identified by Kishore et al. (2013) as a probable case of horizon-

tal gene transfer from a higher eukaryote to an ancestor of the

Apicomplexa.
Although the Set8 gene was not identified initially by KDETREES

as an outlier gene, its score was close to the classification thresh-

old and is the next gene to be classified as an outlier if the tuning

parameter is lowered slightly, from 1.5 to 1.3. Because many of

the outliers in the analysis seem to be caused by questionable

annotation in the E.tenella sequences, we removed this species
from the dataset and generated new gene trees. In the new ana-

lysis, the Set8 gene was identified as the furthest outlier tree.

These results demonstrate the potential applicability of the

KDETREES method to the curation of genetic datasets by providing

a simple tool for highlighting sequences or alignments that may
be of further interest. The successful identification of the Set8

outlier indicates that our method is able to highlight interesting

cases that warrant further attention from investigators.

Moreover, the initial findings with the E.tenella sequences pre-

sent in the dataset show that KDETREES can be useful for iden-

tifying problematic taxa due to incorrect annotation and/or
inclusion of non-orthologous genes.

4.2.2 Epichlo€e The application of KDETREES to the set of fungal
protein alignments successfully identified the paralogous CysD/

LolC alignment as an outlier. This is a scenario that could easily

arise in phylogenomic analysis, where OrthoMCL (Li et al.,

2003) identified the genes as orthologs, although the group was
subsequently broken into separate ortholog sets by application of

COCO-CL (Jothi et al., 2006b) to the OrthoMCL output. The

identification of the LolC/CysD alignment as an outlier was in-

dicative of the utility of KDETREES to identify outliers arising from

paralogy.

5 CONCLUSION

The ongoing development of ever-cheaper sequencing methods is

producing a plethora of data suitable for phylogenomic analysis.

One of the great promises of modern genomics is that phylogen-

etics applied at the genomic scale (phylogenomics) should be

especially powerful for elucidating gene and genome evolution,
relationships among species and populations and processes of

speciation and molecular evolution. However, for genomic

data that can now be generated relatively cheaply and quickly,

but for which computationally efficient analytical tools are lack-

ing, there is a major need to explore new approaches to under-

take comparative genomic and phylogenomic studies more
rapidly and robustly than existing tools allow. There is a major

need to explore new approaches to undertake comparative gen-

omic and phylogenomic studies more rapidly and robustly than

existing tools allow.

In simulations and applications to biological data, we address
particular challenges posed by bioinformatic artifacts, as well as
interesting biological phenomena such as gene duplications and

horizontal gene transfer. As we observed in the Apicomplexa and
fungal datasets, our approach also serves as a means of identify-
ing ‘interesting’ gene trees that may arise from horizontal gene

transfer, paralogy or experimental artifacts such as misannota-
tions or misalignments.
A further advantage of our method is that it may be applied in a

straightforwardway tophylogenetic reconstructionmethodswhich

produce a sample ofmany trees as output, rather than a single ‘best
fit’ tree. Methods that produce only a point estimate do not repre-
sent the full set of possible phylogenies compatible with the gene

sequences. We can circumvent this issue by building a kernel for
each gene based on a collection or sample of reconstructed topol-
ogies (e.g. via the estimated posterior distribution of each gene),

rather than using only a point estimate of each gene tree.
In future work, we intend to extend our method to clustering

trees based on similarity, in addition to identifying outliers. The

identification and exclusion of outlier points is an important
preliminary step in many clustering methods. The removal of
outlier points facilitates better inference at the clustering stage

(Camastra and Verri, 2005; Hur et al., 2001, 2000).
A long-term goal for this project is to develop a phylogenomic

pipeline that is convenient and accessible, as well as robust. To

accomplish this aim, important problems that need attention are
(i) refinement of gene calls based on comparison among ortho-
logs from multiple genomes and (ii) comparing thousands of

gene phylogenies across whole genomes. Therefore, our ap-
proach is focused on the efficiency of the algorithm in terms of
computational complexity and memory requirements, with less

emphasis on achieving the highest classification accuracy pos-
sible. Such a trade-off makes our approach more attractive can-
didate for inclusion in a pipeline for genome-wide phylogenetics

as an annotation supplement or as a discovery aid for instances
where evolutionary processes deviate significantly from normal.
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