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ABSTRACT

microRNAs (miRNAs) regulate expression by pro-
moting degradation or repressing translation of tar-
get transcripts. miRNA target sites have been cat-
alogued in databases based on experimental vali-
dation and computational prediction using various
algorithms. Several online resources provide collec-
tions of multiple databases but need to be imported
into other software, such as R, for processing, tabula-
tion, graphing and computation. Currently available
miRNA target site packages in R are limited in the
number of databases, types of databases and flexibil-
ity. We present multiMiR, a new miRNA–target inter-
action R package and database, which includes sev-
eral novel features not available in existing R pack-
ages: (i) compilation of nearly 50 million records in
human and mouse from 14 different databases, more
than any other collection; (ii) expansion of databases
to those based on disease annotation and drug mi-
croRNAresponse, in addition to many experimental
and computational databases; and (iii) user-defined
cutoffs for predicted binding strength to provide the
most confident selection. Case studies are reported
on various biomedical applications including mouse

models of alcohol consumption, studies of chronic
obstructive pulmonary disease in human subjects,
and human cell line models of bladder cancer metas-
tasis. We also demonstrate how multiMiR was used
to generate testable hypotheses that were pursued
experimentally.

INTRODUCTION

microRNAs (miRNAs) with proven biological functions
are involved in biological processes in all organs of the hu-
man body (1), including cell cycle control, cell survival, drug
resistance and many tissue specific activities. With more
than 60% of human 3’-UTRs under evolutionary pressure
to maintain conserved miRNA target sites (2), miRNAs
could play roles in most, if not all, biological processes (3).
Many experimental approaches have been utilized to iden-
tify and validate miRNA targets (4,5). Complementing ex-
perimental data, a large number of computational meth-
ods have been developed to predict potential miRNA tar-
gets (6–13). Predictions are primarily based on base pairings
in the miRNA seed region (the first eight nucleotides of an
miRNA), conservation of target sites across species, acces-
sibility of target sites, free energy of the miRNA–mRNA
duplex, or a combination of two or more of these features
(3,14). Due to loose complementarity between most animal
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miRNAs and target mRNAs, the computational challenge
has been to confidently identify real targets without pre-
dicting too many false positives. Using experimentally vali-
dated targets, comparisons of miRNA target prediction al-
gorithms showed that the best performing algorithms had
around 50% precision (correctly predicted/total predicted)
and 6% to 12% sensitivity (correctly predicted/total correct)
(15). A more recent comparison based on microarray data
indicated that PITA, PicTar and TargetScan have the best
precision and recall rates of the databases evaluated (16).
Due to our limited understanding of the rules of miRNA–
target interactions, there is no single algorithm that outper-
forms others routinely (17). An alternative approach would
be to take the union (with the increase of sensitivity and loss
of precision) or intersection (with the increase of precision
at the cost of sensitivity) of multiple prediction programs
(15,18). The combination approach may not be as effective
as a single algorithm because of age or quality of the tool,
but it has been recommended by Shirdel et al. (16). These
authors also give guidelines for using a single database in
specific cases.

There are many online databases and web servers that col-
lect experimentally validated miRNA targets from the liter-
ature or integrate miRNA target predictions from multiple
programs (see review (19)). For example, miRWalk (20) and
miRSystem (21) integrate predictions from nine and seven
software programs, respectively. In addition, both resources
contain validated miRNA–target interactions from external
databases. To facilitate biomedical research, a few online re-
sources, such as miR2Disease (22), Pharmaco-miR (23) and
PhenomiR (24), are dedicated to disease- or drug-related
miRNAs from the literature.

Compared to online resources, miRNA related pack-
ages in the statistical software R (http://www.R-project.
org) provide more user-controlled features and the po-
tential to automate the whole analysis pipeline without
restriction on the number of miRNAs or target genes
as input, in addition to the full repertoire of statisti-
cal analysis and graphical tools available in R. Unfortu-
nately, there are limitations to the five currently available R
packages providing miRNA target information (Table 1).
Two of them, targetscan.Hs.eg.db (version 0.6.1) and tar-
getscan.Mm.eg.db (version 0.6.1) from Bioconductor (http:
//www.bioconductor.org), are specific to TargetScan (10)
predictions in human and mouse, respectively. CORNA
(25) tests for significant miRNA–target associations given
a gene list and links miRNAs and targets to functional
annotation. It utilizes miRNA target predictions from
MicroCosm/miRBase (9) only. RmiR.Hs.miRNA (version
1.0.6) is another Bioconductor package which includes pre-
dictions from five programs (MicroCosm, miRanda (7),
miRDB (13), PicTar (6) and TargetScan) and validations
from TarBase (26) in human. The last package CROME
(https://code.google.com/p/crome/, version 1.0.0) identifies
gene clusters based on gene expression and the genes’ as-
sociation with miRNAs and gene ontology. Although not
specific to miRNA-target interactions, CROME provides
miRNA–mRNA mappings in human and mouse by Mi-
croCosm, PicTar and TargetScan. For all five packages,
users can query miRNA–target interactions using miRNA
and/or gene identifiers. However, users have little control

over the quality of the prediction due to the lack of scores,
conservation, or seed pairings that indicate predicting confi-
dence. In addition, there is little information about whether
an miRNA–target interaction has been experimentally val-
idated and no information about the relationship of a given
miRNA with diseases or drugs.

Here, we developed an R package multiMiR with
its database and web server at http://multimir.ucdenver.
edu. It is also accessible in an interactive mode at the
PhenoGen Informatics website http://phenogen.ucdenver.
edu/PhenoGen/. multiMiR is a comprehensive collection
of predicted and validated miRNA–target interactions and
their associations with diseases and drugs. This package
has incorporated several novel features that address gaps
and needs in the field including (i) more data sets than any
of the current R packages (Table 1); (ii) queries not only
based on a list of miRNAs and/or genes, but also diseases
and/or drugs; and (iii) control of the score cutoff for each
predicted data set for more confident or comprehensive re-
sults. The multiMiR R package serves as an interface be-
tween the user and the multiMiR database on the remote
server. It is a collection of R functions to display infor-
mation of the database, build query based on user’s input,
submit query to the web server, and parse and summarize
results returned by the server (Figure 1). For applications,
we illustrate how queries to multiMiR can provide insights
into the process of human bladder cancer metastasis and
can generate testable hypotheses that we pursued experi-
mentally to facilitate research on alcohol consumption in
a mouse model and chronic obstructive pulmonary disease
(COPD) in human samples.

MATERIALS AND METHODS

Building the multiMiR database and package

The multiMiR database contains human and mouse data
from 14 external databases that are categorized into
three components (Figure 1), including the three vali-
dated miRNA–target databases (miRecords (27), miRTar-
Base (28) and TarBase (26)), the eight predicted miRNA–
target databases (DIANA-microT (12), ElMMo (8), Mi-
croCosm (9), miRanda (7), miRDB (13), PicTar (6), PITA
(11) and TargetScan (10)), and the three disease-/drug-
related miRNA databases (miR2Disease (22), Pharmaco-
miR (23) and PhenomiR (24)). Data were downloaded (see
Supplementary Table S1) and pre-processed before load-
ing into a MySQL database. Depending on the available
miRNA and gene information in the original data, the pre-
processing involved updating/retrieving mature miRNA
IDs (e.g., hsa-miR-10a-5p) and retrieving mature miRNA
accession numbers (e.g., MIMAT0000253) using the mir-
base.db package (29) (package version 1.2.0; miRBase ver-
sion 19), updating/retrieving gene symbols and retrieving
Entrez and Ensembl gene IDs using the biomaRt pack-
age (30) (version 2.16.0), and cleaning and reorganizing the
data, such as correcting typographical errors, removing du-
plicates, and reorganizing the information for consistency
between databases. The multiMiR database is hosted at
http://multimir.ucdenver.edu that supports RESTful access
to the database. The multiMiR package includes functions

http://www.R-project.org
http://www.bioconductor.org
https://code.google.com/p/crome/
http://multimir.ucdenver.edu
http://phenogen.ucdenver.edu/PhenoGen/
http://multimir.ucdenver.edu
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Table 1. Comparison of R packages for miRNA–target interactions

Feature/Database R package

multiMiR RmiR.Hs.miRNA CROME CORNA (25)
targetscan.Hs.eg.db &
targetscan.Mm.eg.db

Predicted miRNA–target interactions DIANA-microT (12) X
ElMMo (8) X
MicroCosm/miRBase (9) X X X X
miRanda (7) X X
miRDB (13) X X
PicTar (6) X X X
PITA (11) X
TargetScan (10) X X X X

Validated miRNA–target interactions miRecords (27) X
miRTarBase (28) X
TarBase (26) X X

Disease-/drug-related miRNAs miR2Disease (22) X
Pharmaco-miR (23) X
PhenomiR (24) X

Figure 1. multiMiR components and data workflow. multiMiR components, including R functions and database are highlighted in grey. Data analysis
flow is denoted by arrows.

to display information of the multiMiR database, query the
database and summarize the result (Figure 1).

get.multimir input and parameters

multiMiR provides several functions for users to explore the
database, such as multimir dbSchema to display database
schema and list.multimir to list miRNA, gene, disease and
drug entries. Users can refer to the documentation, which

is available at http://multimir.ucdenver.edu or by typing vi-
gnette (‘multiMiR’) in R. Here, we focus on the get.multimir
function that serves as the main interface between users and
the multiMiR database. Input to the function could be ma-
ture miRNA IDs, mature miRNA accession numbers, gene
symbols, Entrez gene IDs, Ensembl gene IDs, disease or
drug terms, or a combination of any of the aforementioned
identifiers.

http://multimir.ucdenver.edu
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Several databases provide a summary score between 0
and 1 (or percentage) for conservation across species at the
target sites (miRanda and PITA), where the value one (or
100%) is the most conserved. For these databases, we use
the author recommended target site predictions with a min-
imum of 0.90 conservation for PITA, and 0.57 and 0.566 for
human and mouse, respectively, for miRanda. Predictions
below these levels are considered non-conserved. When
downloading PicTar, there were three levels of miRNA con-
servation (‘mammals, chicken, fish’, ‘mammals, chicken’,
and ‘mammals’) to select from, and the least stringent
(‘mammals’) was chosen. For TargetScan, predictions indi-
cated as conserved or non-conserved are also contained in
the multiMiR package. For other sources, there was no con-
servation information. multiMiR provides a user option to
select ‘conserved’, ‘nonconserved’, or ‘all’ target site predic-
tions.

All predicted databases have a primary score for target
site strength, which is calculated depending on the particu-
lar computational method. Almost all existing R packages
only provide a list of the target site predictions but no con-
trol over selecting predictions by their target strength. In
contrast, multiMiR allows the user to select the top predic-
tions ranked by the primary score either using a percent-
age or number cutoff. First, as default only the top 20%
predicted target sites of each external database are queried,
but the user can alter this percentage. A percentage cutoff
of 100% provides no filtering. Second, a user-set number of
top predicted target sites can be queried for all databases.
The number cutoff is also relevant because predicted target
databases vary in orders of magnitude in the number of pre-
dictions (from hundreds of thousands in PicTar to millions
in DIANA-microT and TargetScan). Therefore, when tal-
lying the number of predictions across databases, the very
large ones may dominate the counts. The number cutoff al-
lows the user to compare the same number of predictions for
each database. The default is set at 300,000. If this number
is larger than any of the databases, there will be a warning
message for the user.

get.multimir output

Depending on the input parameters, output from the
get.multimir function is a list with several data frames con-
taining results from a given external database, predicted,
validated, and disease and drug components of multiMiR,
and a summary (see examples in ‘Results’ section). The
result includes miRNA and target gene identifiers, infor-
mation on the external database supporting the interac-
tion, prediction scores (for the ‘predicted’ data frame),
diseases/drugs (for the ‘disease.drug’ data frame), sup-
porting experiments (for the ‘validated’ data frame), and
PubMed IDs (for the ‘validated’ and ‘disease.drug’ data
frames). The summary provides results for each miRNA–
gene pair by tallying the number of times that pair is
supported by each of the external databases, each of the
database types (predicted, validated, disease or drug associ-
ations) and the total number of databases. Finally, the user
can select the ‘add.link’ option, which will display the exter-
nal links from the original database for the miRNA–target
validations or predictions. For many of the databases, the

links are available. However, in Supplementary Table S2 we
have listed the databases where links may be broken due to
outdated identifiers in these databases. We also listed the
databases that do not have the option to search by miRNA–
gene pairs. In the package and documentation, we have in-
cluded a warning to the user for unavailable or broken links.

Methods for the three case studies

qRT-PCR. Whole brains of naı̈ve, saline or ethanol (5
g/kg; i.p.) injected mice from the Inbred Long Sleep (ILS)
and Inbred Short Sleep (ISS) strains (n = 3/condition)
were used for a small pilot study. The origin of these in-
bred strains is discussed in (31) and phenotypic data on
these strains and on members of a large recombinant inbred
panel derived from these strains are available at the Jack-
son Laboratory (http://www.jax.org), GeneNetwork (http:
//www.genenetwork.org) and PhenoGen (http://phenogen.
ucdenver.edu/PhenoGen). Tissue was collected at 8 h post
injection. The dose and time were selected based on pre-
vious work which showed a relationship between ethanol
tolerance and drinking behaviour under these conditions
(32). Eighteen mice were used in total (2 strains X 3 con-
ditions X 3 mice), however one ISS naı̈ve sample was re-
moved due to low quality. The Qiagen miScript system was
used to give relative expression of a miRNA normalized to
three additional miRNAs profiled and selected for normal-
ization based on the approach in (33). cDNA was generated
using the miScript Reverse Transcriptase kit (Qiagen) fol-
lowed by qRT-PCR using miScript SYBR green (Qiagen)
with the universal reverse primer and microRNA specific
primers for mmu-miR-101a-3p, mmu-miR-218, mmu-miR-
9 and U6. Mature mmu-miR-101a-3p and mmu-miR-101b-
3p only differ by one base, but the location of that base is
far enough into the primer that it should not disrupt bind-
ing. Therefore, we used the primer for mmu-miR-101a-3p
only. ANOVA was applied in R to determine p-values for
treatment and strain effects.

Luciferase assay. The predicted hsa-miR-429 binding site
was placed in the plasmid pSI-CHECK2 using the fol-
lowing primers For-CERS6 5’- tcgaTG TAG GCA TGC
TGT ATG TAA TTG ACA CAA GGG AAC AGT ATT
TGC ATT TGT A and Rev-CERS6 5’-ggccTAC AAA TGC
AAA TAC TGT TCC CTT GTG TCA ATT ACA TAC
AGC ATG CCT ACA and for the mutant construct For-
CERS6 mut 5’-tcgaTG TAG GCA TGC TGT ATG TAA
TTG ACA CAA GGG AAC AaT gTT TGC ATT TGT
A and Rev-CERS6 mut 5’-ggccTAC AAA TGC AAA cAt
TGT TCC CTT GTG TCA ATT ACA TAC AGC ATG
CCT ACA.

The first construct contained the predicted binding site
and the second construct contained site directed muta-
tions of the predicted binding site as previously described
(34). Plasmids were transfected into HEK293 cells using
the lipophilic reagent Lipofectamine 2000 (Invitrogen) and
treated with control mimics or mimics of hsa-miR-429
(Fisher Scientific-Dharmacon). Following 24 h of incuba-
tion, luciferase activity was quantitated on a luminometer
and compared to the internal control in the dual luciferase
vector for transfection efficiency.

http://www.jax.org
http://www.genenetwork.org
http://phenogen.ucdenver.edu/PhenoGen
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Microarray experiment. Two metastatic human bladder
cancer cell lines FL4 and Lul2 were lineage related (35,36)
to their poorly metastatic relatives T24 and Luc, respec-
tively. Total RNA of the four cell lines was extracted by
Trizol (Invitrogen). For the miRNA microarray, RNA was
labelled and hybridized as described (37) to version 5 of
the MDACC miRNA expression bioarray (38). Hybridiza-
tion signals were detected and quantified as in (37). mR-
NAs of the four cell lines were profiled on Affymetrix HG-
U133A arrays as in (36). For these miRNA microarrays,
signal intensities were background corrected and set at the
minimum value of 128 if the intensity was below the mini-
mum (this level is the average minimum intensity level de-
tected in the experiments). Arrays were median centered us-
ing the median of all arrays. A probe was excluded if more
than 50% of its data were missing or below the minimum
intensity. All remaining probes for an miRNA were consid-
ered for differential expression. For the Affymetrix microar-
rays on the four cell lines, raw data were processed by the
Robust Multi-array Average algorithm implemented in the
affy package (39) in R. Differentially expressed miRNA and
protein-coding genes between T24 and FL4 and between
Luc and Lul2 were identified using the limma package (40)
in R with false discovery rate (FDR) < 0.05. The mRNA
and miRNA array data are available in the ArrayExpress
database (http://www.ebi.ac.uk/arrayexpress) under acces-
sion numbers E-MTAB-2610 and E-MTAB-2611, respec-
tively.

RESULTS

To demonstrate a typical application of multiMiR, we first
discuss two examples that illustrate the get.multimir func-
tion’s input options and output format. We continue to
demonstrate multiMiR’s features with three additional case
studies, emphasizing applications where multiMiR can be
used to generate testable hypotheses for experimental vali-
dations.

In the first example, a user may query whether a given
miRNA (i.e., hsa-miR-18a-3p) has targets that are experi-
mentally validated in the literature. This is usually an initial
query for researchers investigating the role of a particular
miRNA. As a result, a total of two records from miRecords
and miRTarBase show that hsa-miR-18a-3p targets KRAS
(Figure 2A) based on a luciferase assay. The interaction is
confirmed by multiple experiments in a single paper (Figure
2A). In the summary, get.multimir returns how many times
this miRNA–target pair is recorded in each of the external
databases and in total.

One of the novel features of multiMiR is the disease/drug
association of miRNAs. In the second example, we ask what
miRNA–target pairs are related to Cisplatin, which is pre-
scribed to treat various types of cancers. We searched ‘cis-
platin’ in the ‘disease.drug’ component of multiMiR that in-
cludes miR2Disease, Pharmaco-miR and PhenomiR. The
output of multiMiR showed that there are 53 miRNA–
target interactions associated with Cisplatin (Figure 2B).
The PubMed IDs in the resulting table can be used to exam-
ine the original papers for more details of the association.

In the following three case studies, we illustrate how mul-
tiMiR can be used to select candidate miRNA–target pairs

in mouse and human for further experimental testing. For
two of these cases, we show how predictions were validated
by miRNA expression and binding assays.

Case Study 1: Alcohol drinking in mice

In a previous investigation, we examined the predispos-
ing genetic factors for voluntary alcohol consumption in
mice (41). Brain gene expression was compared between
five pairs of mouse strains and selected lines (4–6 mice
per strain or line) that showed high and low drinking be-
haviour (42,43). For all five pairs, the transcript for gua-
nine nucleotide binding protein (G protein), beta 1 sub-
unit (Gnb1) was differentially expressed. The Gnb1 tran-
script codes for the G�1 subunit of the guanine nucleotide
binding proteins, which transduces signals from G protein
coupled receptors (GPCRs). The transcript levels for Gnb1
were higher in the brains of the low alcohol-drinking mice
in all but the ISS/ILS pair, where higher levels of Gnb1
mRNA were found in the ISS mice, which consume more
ethanol than the ILS mice. However, based on protein lev-
els of G�1 in whole brains of all the strain pairs, in all cases,
protein levels were higher in the brains of the low alcohol-
consuming mice. In exploring this inconsistency, we found
that the Gnb1 gene has at least two different transcripts
that vary in the length of their 3’ UTR prior to the polyA
sequence (Figure 3A). The probes that were used to inter-
rogate the Gnb1 transcript on the Affymetrix array target
the long form of the 3′ UTR. Therefore, the low alcohol-
consuming DBA/2J mice have more of this form of Gnb1
mRNA than the high alcohol-consuming C57BL/6J mice.
However, the ILS mice, which have more G�1 protein in
their brain and drink less alcohol than the ISS mice, have
less of the Gnb1 transcript with the long 3′ UTR.

To explore the role of miRNAs, we searched for miRNA
binding sites of Gnb1 in all databases of the multiMiR
package (Supplementary R Code). Two miRNAs, mmu-
miR-324–3p and mmu-miR-7b-5p, were validated to tar-
get Gnb1 according to miRTarBase and TarBase. The pre-
dicted databases varied greatly in the number of miRNAs
predicted to target Gnb1: DIANA-microT (108), ElMMo
(53), MicroCosm (5), Miranda (44), miRDB (1), PicTar (9),
PITA (132) and TargetScan (58). Among them, PITA was
the only one that predicted the two validated miRNAs. To
select novel miRNAs for validation, users could pick the
top-scoring candidates from PITA, or any one of the other
predicted databases, or use a combination approach. It is
still a debate whether the single or combination approach is
better (15–18). Here, we examined all databases and found
that mmu-miR-101a/b-3p and mmu-miR-218–5p (Figure
3A) were supported by the largest number of predictions,
seven from six and four databases respectively.

One plausible hypothesis, explaining the discrepancy in
the transcript and protein expression data for the ILS/ISS
mice, is that one or both of these miRNA may be expressed
at higher levels in the ISS, and following targeting of the
Gnb1 3’UTR, this could result in repression of translation
and generation of less G�1 protein, which is consistent with
our results. To explore this hypothesis, we assessed the ex-
pression of the two miRNA in the ILS and ISS strains.
Based on a small pilot study, both mmu-miR-101a/b-3p

http://www.ebi.ac.uk/arrayexpress
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Figure 2. R commands and results for examples 1 (A) and 2 (B). (A) Parameter ‘summary’ was set to TRUE (to summarize the result) and other parameters
were as default. By default, get.multimir searches the validated miRNA–target interactions in human. MTI, miRNA–target interaction.

and mmu-miR-218–5p show evidence of increased expres-
sion in the whole brains of the ISS strains compared to
ILS (Figure 3B), supporting further investigation in a larger
study.

Case Study 2: Chronic Obstructive Pulmonary Disease
(COPD)

In recently published work, we examined microarray ex-
pression signatures for COPD and emphysema in the pe-
ripheral blood mononuclear cells (PBMCs) of 136 current
and former smokers from COPDGene R©, a nationwide ge-

netic epidemiology study (44). Pathways relevant to the im-
mune system, inflammatory responses and sphingolipid (ce-
ramide) metabolism and signaling were over-represented by
the candidate genes. The abundance of differentially ex-
pressed immune and inflammatory response genes were not
unexpected considering that PBMCs were profiled. How-
ever, the appearance of sphingolipid metabolism and sig-
naling genes is relevant since it is an area of research for
treatment of lung disease (45). To explore whether miRNAs
are regulators of sphingolipid related pathways in PBMCs,
we took a set of candidate genes from these pathways in
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Figure 3. (A) Diagram of 3’UTR of Gnb1. Graphic was from Saba et al. (41) and generated using tools available at UCSC Genome Browser (http:
//genome.ucsc.edu/). Among four different Gnb1 transcripts, there are two versions of the 3′ UTR region of Gnb1 (blue bars bottom). The diagram also
depicts the differentially expressed Affymetrix probe set for Gnb1 (bright blue), polyadenylation sites (green), predicted miRNA target sites (red) and the
SNPs predicted to differ between ISS and three other inbred strains (purple). The entire length of the 3’UTR is 1809bp and the longer version extends from
254 to1809bp. mmu-miR-218 had predicted target sites by three databases (DIANA-microT, ElMMo and PITA) and mmu-miR-101a/b had predicted
target sites by four databases (ElMMo, miRanda, PicTar and TargetScan). By checking location information from the original databases, we found that in
the long form of the 3’UTR, the mmu-miR-218 predicted target site was located at 727–734bp and the mmu-miR-101a/b predicted target site were located
at 1765–1771bp. In the shorter version of the 3’ UTR, mmu-miR-218 also had a predicted target site at 150–178bp. (B) RT-PCR results for mmu-miR-101a
and mmu-miR-218 in ILS and ISS mice. Strain effects determined by ANOVA are suggestive of mmu-miR-101a (p = 0.058, fold-change FC = 1.94) and
mmu-miR-218 (p = 0.069, FC = 1.37) expression increases in ISS. Conditions for each strain were combined to create the boxplot.

our data set (AKT2, CERS6, S1PR3, SULF2) and ran
multiMiR (Supplementary R Code). We found that 465
miRNA had at least one predicted site to one of the four
genes and the different databases varied in the number of
miRNA predicted to target any of the four genes: DIANA-
microT (145), ElMMo (172), MicroCosm (32), Miranda
(29), miRDB (141), PicTar (47), PITA (85) and TargetScan
(157). To focus on miRNAs targeting this set of genes, five
miRNAs had predicted sites to three of the four genes;
no miRNA had predicted sites to all four. Of the five,
hsa-miR-429 was the miRNA with the most predicted tar-

get sites to three genes including CERS6 (supported by
DIANA-microT, ElMMo, PicTar and TargetScan), AKT2
(supported by MicroCosm and PITA) and SULF2 (sup-
ported by MicroCosm). To follow up, we used a luciferase
reporter assay to evaluate the binding of hsa-miR-429 in
the 3’UTR of CERS6, which is involved in sphingolipid
metabolism. The assay confirmed that there was significant
reduction in luciferase expression when treated with hsa-
miR-429 mimics compared to the negative control mim-
ics (p-value < 0.05; Figure 4A). We also mutated the bind-

http://genome.ucsc.edu/
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Figure 4. Results of luciferase reporter assay for hsa-miR-429 and CERS6.
The first construct (A) contains the hsa-miR-429 predicted binding site
and the second construct (B) contains site directed mutations of the pre-
dicted binding site. Plasmids were treated with control (con) or hsa-miR-
429 mimics. Bars indicate the standard error. The wild type CERS6 target
site is AAC AGT ATT TGC ATT and the mutant target site is AAC AaT
gTT TGC ATT, where lower case indicates the variants.

ing site to show that the regulation of the mutated gene by
mimic hsa-miR-429 is no longer possible (Figure 4B).

Case Study 3: Bladder cancer metastasis

To identify miRNA:target interactions that are impor-
tant in bladder cancer metastasis, we profiled miRNA and
mRNA expression in poorly metastatic cell lines T24 and
Luc, and their metastatic derivatives FL4 (36) and Lul2
(35), respectively. Within each pair of parental-derivative
cell lines, differentially expressed (DE) miRNAs and genes
were identified. To diminish cell lineage-specific artifacts, we
focused on nine DE miRNAs and 83 DE genes that were
common between the two pairs of cell lines and whose ex-
pression changes were in the same direction for both pairs
when comparing the parent and derivative. Interestingly, all
nine DE miRNAs are upregulated and more than half (47
out of 83) of the DE genes are downregulated in the tumori-
genic cell lines (Supplementary Tables S3 and S4).

We reasoned that miRNAs and genes that expressed dif-
ferently between parental and derivative cell lines could po-
tentially contribute to their disparity in metastatic compe-
tence. We further hypothesized that interactions between
these miRNAs and target genes may play an important
role in metastatic competence. For demonstration, multi-
MiR was utilized to check whether any of the nine upreg-

ulated miRNAs (in FL4 and Lul2) could potentially target
any of the 47 downregulated genes (in FL4 and Lul2) (Sup-
plementary R Code). As a result, all nine miRNAs are doc-
umented by miR2Disease and/or PhenomiR for their asso-
ciation with a total of 100 disease terms. For example, five
cancers (breast, lung, ovarian, prostate cancers, and head
and neck squamous cell carcinoma) have associations with
all the nine miRNAs. Only two miRNAs (hsa-miR-23b-3p
and hsa-miR-146a-5p) are supported by the literature for
their involvement in bladder cancer. There are 65 predicted
unique miRNA–target pairs between the nine miRNAs and
28 of the 47 genes (Supplementary Table S5). Three inter-
actions, two included in the predicted set, hsa-miR-30a-5p
and LIMCH1, hsa-miR-30a-5p and FDX1, and hsa-miR-
128 and NEK2, have been experimentally validated and
documented in miRTarBase and TarBase. In summary, ex-
pression data and multiMiR searches suggested the role of
several miRNA–gene regulatory relationships in metastatic
competence. By combining and mining the information
from the validated, predicted and disease components of
multiMiR, we can prioritize the miRNA–gene pairs for fur-
ther experimental investigation.

DISCUSSION

We developed and presented a new R package multi-
MiR and its database that compiles 14 miRNA and target
databases from experimental, computational, drug and dis-
ease resources. Although web servers exist that also assem-
ble a similar set of the target databases, this package pro-
vides the largest collection available in R, in addition to
more flexible queries. Furthermore, integration into R fa-
cilitates a seamless downstream analysis for making tables,
graphics and statistical computations. Finally, unlike most
other compilation web servers and packages, we allow the
user to alter the cutoffs for predicted binding strength so
that they can obtain the most confident targets.

Our examples and case studies illustrate the typical usage
of our package, searching by gene, miRNA, gene–miRNA
pair and/or by disease/drug. The case studies also illustrate
how the package generated hypotheses regarding miRNA
regulation that could be tested in the laboratory. For al-
cohol preference, multiMiR was used to identify poten-
tial miRNA that target the brain candidate gene Gnb1
discovered in different mouse studies and qRT-PCR con-
firmed that their expression was consistent with the tran-
script and protein levels of the candidate gene. In the COPD
study, a luciferase assay confirmed binding of the predicted
miRNA reported by multiMiR for the candidate PBMC
gene CERS6. The genes for the COPD study were chosen
based on their role in sphingolipid metabolism and signal-
ing. For a more focused analysis on the overall effects of
miRNA on regulation of pathways, there are several tools
to study pathways affected by miRNA (21,25,46). Finally, in
the third case study, multiMiR was used to identify interac-
tions between differentially expressed miRNAs and genes
in two pairs of metastatic and poorly metastatic cell lines
in bladder, providing a list of miRNA–target gene pairs for
further investigation of their roles in bladder cancer metas-
tasis.
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Advanced users have the option to query the multiMiR
database directly and can refer to the documentation for de-
tails. Our multiMiR R package and its documentation can
be freely accessed and downloaded from http://multimir.
ucdenver.edu.

AVAILABILITY

multiMiR is freely available at http://multimir.ucdenver.
edu. We will check for updates in the original databases
quarterly and will include new versions when they are avail-
able.

ACCESSION NUMBERS

The microarray data used in case study 3 are available in Ar-
rayExpress (http://www.ebi.ac.uk/arrayexpress) under ac-
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