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PURPOSE. The DBA/2J mouse line develops essential iris atrophy, pigment dispersion, and
glaucomatous age-related changes, including an increase of IOP, optic nerve atrophy, and
retinal ganglion cell (RGC) death. The aim of this study was to evaluate possible
morphological changes in the outer retina of the DBA/2J mouse concomitant with disease
progression and aging, based on the reduction of both the a- and b-waves and photopic flicker
ERGs in this mouse line.

METHODS. Vertically sectioned DBA/2J mice retinas were evaluated at 3, 8, and 16 months of
age using photoreceptor, horizontal, and bipolar cell markers. Sixteen-month-old C57BL/6
mice retinas were used as controls.

RESULTS. The DBA/2J mice had outer retinal degeneration at all ages, with the most severe
degeneration in the oldest retinas. At 3 months of age, the number of photoreceptor cells and
the thickness of the OPL were reduced. In addition, there was a loss of horizontal and ON-
bipolar cell processes. At 8 months of age, RGC degeneration occurred in patches, and in the
outer retina overlying these patches, cone morphology was impaired with a reduction in size
as well as loss of outer segments and growth of horizontal and bipolar cell processes into the
outer nuclear layer. At 16 months of age, connectivity between photoreceptors and horizontal
and bipolar cell processes overlying these patches was lost.

CONCLUSIONS. Retinal degeneration in DBA/2J mice includes photoreceptor death, loss of
bipolar and horizontal cell processes, and loss of synaptic contacts in an aging-dependent
manner.

Key words: photoreceptor, horizontal cell, bipolar cell, synaptic triad, retinal degeneration,
glaucoma.

Glaucoma is a heterogeneous group of chronic ocular
diseases in which retinal ganglion cells (RGCs) die by

apoptosis.1,2 Glaucoma is the second most frequent cause of
blindness in the world, representing 8% of all cases, according
to the World Health Organization.3 Angle-closure glaucoma
usually develops an increase in IOP, leading to optic nerve
damage, RGC death, and a permanent loss of vision.2 The DBA/
2J mouse line4–6 has been suggested as a secondary angle-
closure glaucoma model because of its close resemblance to
this type of human glaucoma.7 At 3 to 6 months of age, the
DBA/2J mouse eye begins to develop essential iris atrophy,
pigment dispersion, and glaucomatous age-related changes,
including an increase of IOP, optic nerve atrophy, and RGC
death. The DBA/2J mouse line carries recessive mutations in
genes encoding glycosylated protein nmb (Gpnmb; NCBI
GeneID 93695) and tyrosinase-related protein 1 (Tyrp1; NCBI

GeneID 22178).8,9 Mice with these mutations spontaneously
develop iris atrophy, pigment deposition in the anterior
segment, and eventually blockage of ocular drainage struc-
tures,8 elevated IOP, optic nerve atrophy, and RGC degenera-
tion, usually by apoptosis.8,9 This ocular pathology may begin
as early as 3 months of age.10 Previous studies have evaluated
and documented RGC degeneration and reduction of the inner
retina concomitant with aging and disease progression in the
DBA/2J mouse line.10–12

Electroretinograms (ERGs) performed on young DBA/2J
mice (2–3 months) showed that both the oscillatory potentials
and photopic flicker ERGs are lower than those from age-
matched C57BL/6 mice,13 whereas scotopic ERG responses had
similar amplitudes in their a- and b-waves.13,14 However, older
DBA/2J mice (195–305 days) have lower amplitudes in their a-
and b-waves compared with C57BL/6 mice.13 Furthermore, a
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significant reduction of the scotopic a- and b-wave amplitudes
has also been reported for 2-year-old DBA/2J mice,15 suggesting
changes in the functional integrity of the outer retina, as these
waves are mainly generated by photoreceptor and ON bipolar
cell responses.16,17 Fuchs et al.18 found a narrowing of the
outer plexiform layer (OPL) that they attribute to structural
synaptic ribbon impairment in the axon terminal of rod
photoreceptors. However, there is poor information available
regarding cellular or synaptic changes in the outer retina of the
DBA/2J line with aging and disease progression that could
account for these changes in the ERG. In this study, we have
evaluated the cellular morphology of the outer nuclear layer
(ONL) and the organization of the OPL of the DBA/2J mouse
retina at different ages, before and after the onset of RGC
degeneration.

MATERIALS AND METHODS

Animals and Tissue Preparation

Female DBA/2J (GpnmbR150X and Tyrp1isa) mice at 3, 8, and
16 months of age, with a total of 12 animals, were used in this
study. Female C57BL/6 mice at 16 months of age were used as
controls. Animals were obtained from the Jackson Laboratory
(Bar Harbor, ME, USA). They were maintained and bred in
temperature- and light-controlled rooms with a 12-hour light/
dark cycle and had food and water ad libitum at the David
Geffen School of Medicine at the University of California, Los
Angeles (UCLA). DBA/2J is a well-studied secondary angle-
closure glaucoma model presenting IOP increase. The IOP
measurements reported by others and us showed increased
IOP in this model starting at approximately 6 months old and is
maintained with aging.4,12 All experiments were performed in
accordance with the guidelines and policies for the welfare of
experimental animals established by the US Public Health
Service Policy on Human Care and Use of Laboratory Animals
(2002), the UCLA Animal Research Committee, and the ARVO
Statement for the Use of Animals in Ophthalmic and Vision
Research. The mice were deeply anesthetized with 1% to 3%
isofluorane (Novaplus, Lake Forest, IL, USA). The eyes were
enucleated and fixed in cold 4% paraformaldehyde in 0.1 M
PBS, pH 7.4, for 60 minutes at room temperature (RT). Eyes
were immersed in 15% and then 20% sucrose in PBS for 1 hour
each, and left in 30% sucrose in PBS overnight at 48C. The

following day, the cornea, lens, and vitreous body were
removed and embedded in Tissue-Tek OCT (Sakura Finetek,
Zoeterwouden, The Netherlands) and frozen in liquid N2.
Vertical sections of the retina were cut at 16-lm thickness on a
cryostat (Leica CM 1900; Leica Microsystems, Wetzlar, Ger-
many) in a horizontal plane, and mounted on Superfrost Plus
slides (Menzel GmbH & Co KG, Braunschweig, Germany), and
air-dried.

Immunohistochemistry

For immunohistochemistry, at least three animals were studied
at each time point. Retinas from C57BL/6 and DBA/2J mice
were processed in parallel, and retinal sections were treated as
in previous studies.19–22 Briefly, the sections were thawed and
washed three times for 10 minutes in 0.1 M phosphate buffer
(PB), pH 7.4, and then incubated in blocking solution (10%
normal donkey serum in 0.1 M PB containing 0.5% Triton X-
100) for 1 hour at RT in the dark. The sections were then
incubated in the primary antibodies diluted in PB containing
0.5% Triton X-100 overnight at RT. All primary antibodies used
in this work (summarized in the Table) had been used in
several previous studies and are well characterized by others
and us regarding cell type specificity. The sections were
subsequently washed in PB and incubated in the correspond-
ing secondary antibodies at a 1:100 dilution for 1 hour at RT.
Secondary antibodies used in this work were AlexaFluor 488–
anti-rabbit IgG, AlexaFluor 555–anti-mouse IgG donkey, and
AlexaFluor 633–anti-guinea pig IgG donkey (Invitrogen,
Carlsbad, CA, USA). The nuclear marker, TO-PRO-3 iodide
(Invitrogen) was added at 1 lM with the secondary antibodies.
The sections were finally washed three times for 10 minutes in
PB, mounted in Citifluor (Citifluor Ltd., London, UK) and
cover-slipped for viewing with a Leica TCS SP2 laser-scanning
confocal microscope. To control for nonspecific staining, some
sections were processed without the primary antibody. Final
images from C57BL/6 and DBA/2J retinas were processed in
parallel using the Adobe Photoshop 10 software (Adobe
Systems, Inc., San Jose, CA, USA).

Morphometric Analysis

Measurements of the ONL were performed on retinal sections
stained with TO-PRO 3-iodide. Sections stained with antibodies
against calbindin at different ages were used to quantify the

TABLE. Primary Antibodies Used in This Work

Molecular Marker (Abbreviation) Antibody(Reference) Source and Catalog No.

Working

Dilution

Bassoon Mouse monoclonal51 Enzo Life Sciences, Plymouth Meeting, PA, USA (VAM-PS003) 1:1000

Calbindin D-28K (CB) Rabbit polyclonal48,60 Swant, Bellinzona, Switzerland (CB-38a) 1:500

C-terminal binding protein-2 (CtBP2) Mouse monoclonal,

clone: 16/CtBP234

BD Biosciences, San Diego, CA, USA (612044) 1:1000

Cytochrome C (Cyt C) Mouse monoclonal,

clone: 6H2.B461

Zymed Laboratories, San Francisco, CA, USA (33-8200) 1:1000

Guanine nucleotide binding protein 3

(GNB3) Rabbit polyclonal31 Sigma-Aldrich Corp., St. Louis, MO, USA (HPA005645) 1:50

Protein kinase C, a isoform (PKCa) Rabbit polyclonal60 Santa Cruz Biotechnology, Santa Cruz, CA, USA (sc-10800) 1:100

Synaptophysin (SYP) Mouse monoclonal,

clone: SY3860,19

Chemicon-Millipore, Temecula, CA, USA (MAB5258) 1:1000

Syntaxin 4 (STX4) Rabbit polyclonal36 Chemicon-Millipore (AB5330) 1:500

Transducin, Gac subunit (Gt) Rabbit polyclonal62,60 Cytosignal, Irvine, CA, USA (PAB-00801-G) 1:200

Vesicular glutamate transporter 1

(VGLUT1) Guinea Pig polyclonal36 Chemicon (AB5905) 1:1000

Brain-specific homeobox/POU domain

protein 3A (Brn-3a) Goat polyclonal Santa Cruz Biotechnology (sc-31984 L) 1:500
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invaginated terminal tips of horizontal cells into the photore-
ceptor axon terminals. All measurements were taken in the
central area, near the optic nerve head, of at least three animals
in eight single-scanned pictures at each eye and age point. At 8
and 16 months, digital images were taken inside and outside
the patches. The patches in retinal sections were defined as
areas with greater loss of photoreceptor cells, decreased
synaptic connectivity in the OPL, with high diminution in the
horizontal cell plexus. In addition, it was possible to find inside
these areas vascular alterations in the superficial plexus
together with retinal remodelation (Supplementary Material
S1). ImageJ software (http://imagej.nih.gov/ij/; provided in the
public domain by the National Institutes of Health, Bethesda,
MD, USA) was used for the morphometric analysis of the
confocal images; the quantification of horizontal cell tips was
done manually using the cell counter plugin.

Statistical Analyses

Results were analyzed by Graphpad Prism (GraphPad Software,
Inc., La Jolla, CA, USA). For statistical analysis, two-tailed

Student’s t-test was performed to compare the ONL thickness
and the number of horizontal cell tips found at each age-point
compared with control retina. P values of less than 0.05 were
considered to be statistically significant.

RESULTS

Retinal Thickness in the DBA/2J Mice

The thickness of the ONLs and inner nuclear layers (INLs) was
evaluated using a nuclear stain, TO-PRO 3-iodide. Measure-
ments were made on vertical sections of central retina, 100 lm
from the optic nerve head. In vertical sections of 16-month-old
C57BL/6 retinas, the ONL consisted of 12 to 14 rows of
photoreceptor cell bodies, the INL consisted of five rows of
cell bodies, and there was a regular distribution of cells,
including RGCs in the ganglion cell layer (GCL) (Fig. 1A). In 3-
month-old DBA/2J retinas, the thickness of both nuclear layers
appeared normal compared with C57BL/6 retinas, although
there were some subtle alterations in the OPL, including

FIGURE 1. Vertical sections from C57BL/6J retina at 16 months (A), and DBA/2J retina at 3, 8, and 16 months (B–D). Immunostained with the
nuclear marker TO-PRO 3-iodide showed a reduction in the number of cellular rows in the ONL and INL and a reduction in cell bodies in the GCL,
likely corresponding to RGCs. The quantification is shown in (E) (**P < 0.01). Scale bars: 20 lm.
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FIGURE 2. Immunolabeling for a-PKC (green) and Bassoon (red) on vertical sections. (A–C) Retina of C57BL/6J mice at 16 months of age. Retinal of
DBA/2J mice at 3 months (D–F), 8 months (G–I), and 16 months (J–L). (A, D, G, J) Immunolabeling for a-PKC showing loss of dendrites of rod
bipolar cells in the DBA/2J retina in older animals. (B, E, H, K) Immunolabeling for Bassoon showing the diminution of synaptic ribbons in the OPL
in this animal model. (C, L, F, I) Merge. Scale bars: 10 lm.
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FIGURE 3. Cryostat sections of C57BL/6J (A–C) and DBA/2J retinas at 3 months (D–F), 8 months (G–I), and 16 months (J–L). Immunolabeling for
calbindin ([A, D, G, J] arrowheads) showing the loss of terminal tips of horizontal cells in the DBA/2J retina. Immunolabeling for synaptophysin (B,
E, H, K) showing the diminution of the photoreceptor axon terminals. (C, L, F, I) Merge. Scale bars: 10 lm.

DBA/2J Outer Retina Degeneration IOVS j September 2014 j Vol. 55 j No. 9 j 6063



misplaced nuclei resulting in discontinuities in the thickness of
the OPL (Fig. 1B). These observations in the OPL at 3 months
are consistent with findings from a previous report.18 At 8
months old, the ONL was reduced to 9 to 11 rows of
photoreceptor cell bodies and the INL was approximately 4
cellular rows (Fig. 1C). Quantification of ONL thickness
showed a statistically significant reduction of approximately
20 lm in DBA/2J mice compared with C57BL/6, which can be
converted in the loss of approximately three to four
photoreceptor rows (Fig. 1E). The width of the OPL and inner
plexiform layer (IPL), at this age, was noticeably thinner than
the OPL and IPL in the control retinas, and there was a marked
reduction in cell number in the GCL (Fig. 1C). At 16 months of
age, DBA/2J mice displayed a high variability between different
animals in the ONL thickness. We found a reduction of six to
seven rows of photoreceptor cell bodies, the quantification
showed a statistically significant reduction compared with
C57BL/6 retinas (Fig. 1E). Furthermore, the reduction in the
OPL and IPL thickness was evident, and in some areas, the OPL
was difficult to identify (Fig. 1D, arrows).

Alterations in the Connectivity at the OPL Level

The photoreceptor synaptic triad23–25 consists of a rod or cone
axon terminal characterized by a synaptic ribbon, and two
horizontal processes and a bipolar dendrite that invaginate the
axonal terminal.

Connectivity Between Photoreceptor and Rod Bipolar
Cells. To evaluate the distribution of rod bipolar cell dendrites
in rod synaptic triads, we performed double-label immuno-
staining using antibodies against protein kinase C (PKC)-a, for

rod bipolar cells, and Bassoon, a marker of the arciform density
underlying the synaptic ribbon26 (Fig. 2). In C57BL/6 retinas at
16 months old (Figs. 2A–C), the outer retina appeared to have a
normal morphology, with bipolar cell dendrites terminating
near Bassoon immunoreactive puncta, which demark the
photoreceptor synaptic ribbon (Figs. 2A–C). In 3-month-old
DBA/2J retinas (Figs. 2D–F), the rod bipolar cell dendrites (Fig.
2D, green) were retracted with shorter tips compared with
bipolar cells in C57/Bl retinas, and there was a significant
decrease of Bassoon immunoreactive puncta (Fig. 2E, red).
These anatomical changes are more apparent at older ages. In
8-month-old DBA/2J retinas (Figs. 3G–I), most rod bipolar cells
lacked dendrites, although there were a few dendrites that
extended into the ONL (Fig. 2G). In addition, there were few
Bassoon immunostained puncta (Fig. 2H) compared with
earlier ages, and some of these puncta were not associated
with bipolar dendrites (Fig. 2I, arrowhead), whereas other
Bassoon immunoreactive puncta were localized at the end of
dendrites in the ONL (Fig. 2I, arrow), indicative of a retraction
of the rod spherules. In 16-month-old DBA/2J retinas, only a
few bipolar cell dendrites remained (Fig. 2J) and there was an
overall reduction of Bassoon immunoreactive puncta (Figs. 2K,
2L).

Connectivity Between Photoreceptors and Horizontal
Cells. To identify horizontal cell axons and dendrites, we used
an antibody to calbindin27 (Figs. 3A, 3C). Photoreceptor axonal
terminals were identified using an antibody to synaptophysin, a
protein associated with synaptic vesicles28 (Figs. 3B, 3C).

The C57BL/6 retinas at 16 months old showed a regular
distribution of horizontal cell dendritic tips and synaptophysin
staining in rod and cone photoreceptor axon terminals

FIGURE 4. Low-magnification cross section of retinas labeled with antibodies against a-PKC (red), calbindin (green), and VGLUT1 (blue). Retina of
DBA/2J mice at 16 months old (A) showing a panoramic view of a retinal patch (area underlying white line). In high magnification of this area ([C]
high magnification from [C’]), the loss of photoreceptor cells, sprouting of bipolar and horizontal cells into the ONL (arrowheads), loss of
horizontal plexus in the OPL, and vascular alterations (arrows) can be observed compared with areas outside patches ([B, D] high magnification
from [B’] and [D’] in [A], respectively). Scale bars: 200 lm (A); 40 lm (B–D).
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associated with horizontal cell endings (Figs. 3A–C). In 3-
month-old DBA/2J retinas (Figs. 3D–F), there was a shortening
of horizontal cell processes and a clear reduction of horizontal
cell endings (Fig. 3D, arrowheads) compared with C57BL/6
retinas (Fig. 3A, arrowheads), although the expression of
synaptophysin immunostaining in the photoreceptor axon
terminals (Fig. 3E) appears to remain at the same level as
control retinas (Fig. 3B). In 8-month-old DBA/2J retinas (Figs.
3G–I), the loss of horizontal cell processes and tips was more
apparent (Figs. 3G, 3I, arrowheads) compared with control
retinas (Fig. 3A, arrowheads). The staining of photoreceptor
axon terminals with synaptophysin showed only one to two
rows at the OPL at this age (Figs. 3H, 3I). In 16-month-old DBA/
2J retinas (Figs. 3J–L), there was a discontinuous plexus of
horizontal cell processes in the OPL with few endings (Figs. 3J,
3L), as well as a reduction of the photoreceptor axon terminals
(Figs. 3H, 3K).

Degeneration in Retinal ‘‘Patches’’

At 6 to 8 months of age in the DBA/2J retina, degeneration and
loss of cells in the GCL is apparent4,10,11 and located in
discontinuous retinal areas.29 Over time, these areas of RGC
loss expand to cover most of the retina (see Supplementary
Materials S2).

In retinal sections, we identified areas with changes in the
inner and outer retina, which were referred to as ‘‘patches’’
compared with other areas in the same retinal section (Fig. 4).

These patches (Fig. 4C) are areas where photoreceptors are
lost and the OPL and INL present alterations with a substantial
decrease in the horizontal cell plexus (see Supplementary
Materials S1) and increased retraction of photoreceptor cell
axons accompanied by sprouting of horizontal and bipolar
cells (Figs. 4A, 4C, arrowheads). Inside these areas it is possible
to find vascular alterations (Figs. 4A, 4C, arrows) compared
with neighbor areas with normal appearance (Figs. 4B, 4D).

Cone Photoreceptors. To evaluate cone photoreceptor
morphology, retinal sections were immunostained with an
antibody against c-transducin, a specific marker for cone
photoreceptors.30 To avoid the differences in cone density in
different areas of the retina, the photographs for cone
morphology studies were taken in the temporal area near
optic nerve and inside the patches in all animals. The
morphology of cone photoreceptors was well preserved in
the DBA/2J retina at 3 (Fig. 5B), 8, and 16 months of age
outside of the patches (Figs. 5C, 5E). In C57BL/6 retina at 16
months of age, the nuclei of cone photoreceptor cells were
located in the distal ONL (Fig. 5A). In the DBA/2J retina at 3
months of age, some cone nuclei were located in the middle of
the ONL (Fig. 5B, arrows). At 8 months of age, there were
patches with a greater degeneration compared with other areas
of the retina. There was a marked loss of rows of
photoreceptor cell bodies in the ONL in these regions. Cone
photoreceptor morphology was altered, with an overall
reduction in length, shorter outer segments (OS) and swollen
inner segments (IS) (Fig. 5D, arrowheads). At 16 months of age,

FIGURE 5. Retinal morphology of cone photoreceptor. c-Transducin antibodies were used to visualize cone morphology in vertical retina sections of
C57BL/6 retinas (A), DBA/2J retinas at 3 months (B), 8 months (C, D) and 16 months (E, F). The nuclei of cone photoreceptors showed an
abnormal localization at the ONL level at 3 months ([B] arrow) and at 16 months ([E] arrow). Inside the patches (D, F) the IS of cones were swollen
(arrowheads) and had short axons or absent (double arrowheads). Scale bars: 20 lm.
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cone morphology was markedly impaired (Fig. 5F) compared
with outer retinal regions that overlay retinal regions with
RGCs (Fig. 5E). At this age, most cone photoreceptor cells
lacked an obvious axon terminal (Fig. 5F, double arrowhead)
and only a few cone photoreceptor cells were observed having
a short axonal terminal (Fig. 5F, arrows). In addition, the cone
IS were swollen (arrowheads) and the OS were quite small (Fig.
5F), compared with control retinas (Fig. 5E).

Bipolar Cells. Guanine nucleotide-binding protein b3
(GNB3), an isoform of the b subunit of a G-protein commonly
associated with transmembrane receptors, is expressed by
cone photoreceptors, and ON cone and ON rod bipolar cells.31

Therefore, we used an antibody against GNB3 to evaluate
bipolar cell morphology in the C57BL/6 and DBA/2J retinas
(Fig. 6). In 3-month-old DBA/2J retinas, GNB3 immunostaining
showed a slight reduction of the bipolar cell dendrites (Fig. 6B,
arrowheads) and the bipolar axon terminals in the IPL
appeared to be less frequent and swollen compared with
bipolar cells in C57BL/6 (Fig. 6A). In 8-month-old DBA/2J
retinas, a few GNB3 immunostained bipolar cell dendrites
were present in middle of the ONL (Figs. 6C, 6D, arrows). The
IPL was thinner at this age, and there were fewer bipolar cell
axon terminals that were smaller than the bipolar cell axonal
terminals in the C57BL/6 retina. In 16-month-old DBA/2J
retinas, a greater number of bipolar cell dendrites showed

growth into the ONL (Fig. 6E, arrows). In addition, at this age,
bipolar cell bodies were disorganized in the INL, and there was
a loss of axonal terminals and lateral varicosities in the IPL,
especially over regions of RGC loss (Fig. 6F).

Synaptic Connectivity Between Photoreceptor and
Horizontal Cells. To evaluate alterations in the synaptic
connectivity between photoreceptors and horizontal cells in
the OPL, we performed triple immunostaining studies using
markers for photoreceptor axonal terminals, the photorecep-
tor synaptic ribbon, and horizontal cell processes. Antibodies
against the vesicular glutamate transporter type 1 (VGLUT1),
which transports glutamate into synaptic vesicles,32 was used
to visualize cone and rod axon terminals. To identify the
synaptic ribbon in the photoreceptor axon terminal, antibodies
were used to detect the C-terminal binding protein 2 (CtBP2),
which is domain B of RIBEYE, a structural protein of synaptic
ribbons.33–35 Antibodies to calbindin were used to visualize
horizontal cell processes (Fig. 7). In the C57BL/6 retina (Fig.
7A), VGLUT1 immunostaining showed three to four rows of
rod spherules in the OPL, and each rod spherule contained a
synaptic ribbon, identified by CtBP2 immunoreactive puncta
adjacent to the tip of the horizontal cell ending (Fig. 7A). In 3-
month-old DBA/2J retinas (Fig. 7B), there was a small reduction
in the thickness of the OPL compared with the C57BL/6 retinas
(Fig. 7A). The quantification of the number of horizontal cell

FIGURE 6. Bipolar cells immunostained with GNB3 antibodies. The GNB3 staining showed retraction of bipolar dendrites at 3 months old in the
DBA/2J retina ([B] arrowheads) compared with C57BL/6 retina (A). The DBA/2J retinas have bipolar cell dendritic growth at 8 months (C, D,
arrows) until 16 months of age ([E] arrows; [F]). This dendritic growth was more evident inside the patches (D, F). Scale bars: 20 lm.
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showed a reduction of 10% compared with C57BL/6 retinas
(Fig. 7G). In 8- and 16-month-old DBA/2J retinas, the loss of
connectivity between photoreceptors and horizontal cell
endings was evident (Figs. 7C, 7E). There was a loss of

approximately 40% and 48% of the horizontal cell tips at 8 and
16 months, respectively, over the retinal regions with RGCs
(Fig. 7G). In contrast, in outer retinal regions overlying regions
of RGC loss (‘‘patches’’), at 16 months the decrease in the

FIGURE 7. Three specific markers of synaptic structure were used to study the connectivity between photoreceptor and horizontal cells. Antibodies
against CtBP2 (red) and VGLUT1 (blue) were used to visualize the axon terminal structures of photoreceptor cells, and calbindin (green) was used
to visualize horizontal cell dendrites. A thinning in the OPL was observed at 3 months old in the DBA/2J retinas (B) compared with C57BL/6 retinas
(A). From 8 months (C, D) to 16 months (E, F), DBA/2J retinas showed growth of horizontal cells and synaptic contacts without VGLUT1
immunoreactivity (arrowheads). At 16 months old, inside the patches, only some synaptic contacts were complete ([F] arrows) and the plexus of
the horizontal cells at OPL level were nearly absent. Quantification of horizontal cell terminal tips is shown in (G). *P < 0.05. Scale bars: 10 lm.
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number of horizontal cell tips was approximately 80% (Fig.

7G), and only a very few horizontal cell tips, axonal terminals,

and photoreceptor ribbons were identified (Fig. 7F). In

addition, at 8 and 16 months, overlying regions where RGCs

remain, a few horizontal cell tips were observed in the ONL,

indicating growth into the photoreceptor nuclear layer (Figs.

7C, 7E). No VGLUT1 immunoreactivity was present in the axon

terminals (Figs. 7C, 7E, arrowheads), although the pairs

between horizontal cell tips (calbindin, green) and photore-

ceptor ribbons (CtBP2, red) were still present.

Similar findings were observed at 8 months inside the

patches (Fig. 7D). At 16 months of age, no horizontal cell

bodies were found in regions above the ‘‘patches’’ and there

was a corresponding loss of the horizontal cell plexus in the

OPL. In these regions, a reduction of calbindin and CtBP2

immunoreactive puncta was evident (Fig. 7F, arrows). In

addition, CtBP2 and VGLUT1 immunoreactivity was found in

the inner and outer segments of the photoreceptors (Fig. 7F,

arrowheads), instead of in the photoreceptor axon terminal.

To determine if horizontal cell processes are in apposition
to photoreceptor terminals near the synaptic ribbon, and verify
whether postsynaptic contacts with horizontal cells were lost,
we performed double-label immunostaining with antibodies
against CtBP2 (Fig. 8, red), and against syntaxin 4 (Fig. 8,
green), a marker of horizontal cell tips.36 The typical horseshoe
morphology corresponding to photoreceptor ribbons in rod
spherules is associated with horizontal cell tips (Fig. 8A,
arrowheads) and the disk-like morphology corresponding to
photoreceptor ribbons in cone pedicles is also associated with
horizontal cell dendrites (Fig. 8A, arrows).

In 3-month-old DBA/2J retinas (Fig. 8B), there was a clear
decrease of photoreceptor ribbons together with a loss of their
horseshoe morphology compared with C57BL/6 retinas (Fig.
8A). Some of the CtBP2 puncta observed were lacking their
corresponding syntaxin 4 immunoreactive spot (Fig. 8B,
arrowheads). In 8-month-old DBA/2J retinas, there was a
reduction of the CtBP2 and syntaxin 4 pairs. In addition, the
horseshoe morphology of the ribbon changed to a small
immunoreactive puncta and pairs of CtBP2 and syntaxin 4

FIGURE 8. Study of connectivity lost between photoreceptor and horizontal cells. A double immunostaining against syntaxin 4 (green) and CtBP2
(red) was used to evaluate the loss of photoreceptor and horizontal contacts. In the C57BL/6 retinas (A) and in DBA/2J retinas at 3 months old (B),
each point of CtBP2 had the corresponding syntaxin 4 (STX4) spot. This relation was disrupted from 8 months old inside the patches (D,
arrowheads) to 16 months old in the DBA/2J retinas ([E, F], arrowheads). There was a reduction in the contacts at 8 months old in the DBA/2J
retinas. Scale bars: 10 lm.
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immunoreactive puncta were rare (Fig. 8C, arrowheads). These

changes were more evident in outer retinal regions above the

patches of RGC loss (Fig. 8D, arrowheads). The impairment of

synaptic contacts was more evident at 16 months of age (Fig.

8E), where there were many examples of CtBP2 immunoreac-

tive puncta without a corresponding syntaxin 4 immunoreac-

tive puncta (Fig. 8E, arrowheads). In outer retinal regions over

the patches lacking RGCs at 16 months old, the pairs CtBP2

and syntaxin 4 in the OPL were infrequent. Only sporadic pairs

can be recognized (Fig. 8F, arrow). Some CtBP2 puncta were

located in the ONL and were not associated with syntaxin 4
immunoreactivity (Fig. 8F, arrowhead).

Photoreceptor Axon Terminal Morphology. Neuro-
transmitter release requires ATP for synaptic vesicle release,
which is generated by large mitochondrion in the rod
photoreceptor terminals.33,37–39 To study the energetic condi-
tions of the photoreceptor axon terminals, we used antibodies
against cytochrome C (Cyt C) as a marker of mitochondrion.
The VGLUT1 and calbindin antibodies were used to visualize
rod spherules and cone pedicles, and horizontal cell endings,
respectively. In the C57BL/6J mouse retina at 16 months of age,

FIGURE 9. Vertical sections of retinas stained with antibodies against calbindin (green) to visualize horizontal dendrite tips, VGLUT1 (red) for
photoreceptor axon terminals staining, and Cyt C (blue) to visualize the giant mitochondria. The panel shows normal connections between
photoreceptor and horizontal cells in C57BL/6 retinas at 16 months (A) compared with the connections of DBA/2J retinas at 3 months where some
photoreceptor axons have lost VGLUT1 staining ([B] arrows). At 8 months (C, D), DBA/2J retinas show growth of horizontal cell processes outside
the patches ([C] arrows) and loss of contacts with photoreceptor axons and horizontal tip retraction ([C] arrowheads). The DBA/2J retinas at 16
months of age have some axon terminals adjacent to horizontal cell processes both outside and inside the patches ([E, F] arrows). Scale bars: 10
lm. Scale bars in the high magnification: 2 lm.
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rod spherules express VGLUT1 immunoreactivity, and the
horizontal endings in the synaptic triad can be easily
recognized (Fig. 9A, inset, arrow). The giant mitochondrion
expressing Cyt C immunoreactivity (Fig. 9, blue) was also
visualized in the rod spherules.39 In 3-month-old DBA/2J
retinas, VGLUT1 immunoreactivity was absent in some of the
photoreceptor axon terminals, which were identified by the
presence of punctate Cyt C immunostaining (Fig. 9B, arrows,
inset, arrow). In 8-month-old DBA/2J retinas, there was a
widespread loss of VGLUT1 immunostaining in the photore-
ceptor axon terminals. Horizontal cell processes extended to
the vicinity of the mitochondria in the ONL, and these regions
of the photoreceptor lacked VGLUT1 immunoreactivity (Fig.
9C, arrows). Some horizontal cell endings ramified in the ONL
and were isolated from photoreceptor axon terminals and
mitochondria (Fig. 9C, arrowheads). Horizontal cell endings in
the rod spherules were not present (Fig. 9C, inset) and the rod
spherules containing VGLUT1 immunoreactivity were reduced
in size. All of these morphological changes were more
prominent in regions of the outer retina overlying patches of
the inner retina lacking RGCs (Fig. 9D, inset).

In 16-month-old DBA/2J retinas (Figs. 9E, 9F), the OPL was
disrupted with a marked reduction of VGLUT1 immunoreac-
tive axonal terminals and loss of calbindin immunoreactive
horizontal cell processes (Fig. 9E, arrows, inset). In regions of
the OPL that did not overlie the patches of inner retina with
RGC loss, the giant mitochondria were displaced to the ONL,
whereas in ONL regions overlying the patches lacking RGCs,
the number of giant mitochondria decreased, likely due to the
reduction of the number of photoreceptors. Furthermore, in
OPL regions overlying the inner retina patches lacking RGCs,
rod spherules had smaller appearance than those in the C57BL/
6J control retinas and the horizontal cell endings, based on
calbindin immunostaining and the giant mitochondria, based
on Cyt C immunostaining were not observed (Fig. 9F, inset).

DISCUSSION

Functional studies performed with glaucoma patients,40,41 and
on glaucoma experimental animal models42 and genetic
models13,15,43 showed that the a- and b-waves of the ERG
were diminished compared with normal, age-matched con-
trols.

Findings from the present study also showed outer retina
pathology in the DBA/2J model in addition to their well-
established loss of RGCs and axons. Altered ERGs are also
correlated with outer retinal damage in a model of acute ocular
hypertension,42 and recently, rod photoreceptor synaptic
contacts have been reported to be reduced with aging.18 The
morphological changes described in this work could underlie
the altered ERG responses observed in the DBA/2J mouse
retina reported by other authors.13,15

Photoreceptor and ON bipolar cells16,17 mainly mediate the
a- and b-waves of the ERG response. In this study, we
performed an exhaustive characterization of the outer retina
using immunohistochemical techniques with cellular markers
for photoreceptor, bipolar, and horizontal cells, before and
after an increase in IOP in the DBA/2J mouse line. In general,
IOP in this line begins to increase at approximately 6 months
of age.11,44 In the DBA/2J line, alterations in the ONL and OPL
were first observed at 3 months of age, before the increase of
IOP. At this age, there was a diminution of photoreceptor cell
bodies and OPL thickness, as well as a reduction in the
occurrence of both pre- and postsynaptic markers. The present
study is in contrast to two earlier findings that the outer retina
is unchanged in the DBA/2J mouse retina after the develop-
ment of ocular pathology.10,29

In the DBA/2J retina at all ages, there are changes in the
connectivity of photoreceptor cells and their postsynaptic
contacts, shown by a reduction in their connections with
bipolar cell dendrites and horizontal cell processes. In
addition, we have found retraction of bipolar and horizontal
cell processes and a disruption of the photoreceptor synaptic
triad. Interestingly, in the 8- and 16-month-old DBA/2J retinas,
some horizontal and bipolar cell processes were located in the
ONL, suggesting their growth was concomitant with outer
retinal degeneration; interestingly, at 3 months of age, bipolar
and horizontal cell processes were shorter, suggesting a
retraction of their processes. These results disagree with
findings from Fuchs et al.18 They described no alteration in
horizontal and bipolar cells and attributed the thinning of the
OPL to structural changes in rod synaptic ribbon but not cone
photoreceptors.18 We have carefully evaluated the pre- and
postsynaptic elements of the synaptic contacts in the OPL
showing the loss of bipolar and horizontal cell dendrites and
axons.

The growth of bipolar cell dendrites into the overlying ONL
is a common feature in animal models of photoreceptor
degeneration, including rd mice,45–47 the Royal College of
Surgeons (RCS) rats,48 and P23H rats.27

There are only a few functional and morphological studies
of young DBA/2J mouse retinas; smaller amplitudes of the
second harmonic component of the flicker responses are
noted at 2 to 3 months old compared with those registered in
wild-type animals, which could be due to the disruption of the
synaptic triad in the photoreceptor terminals.13 Furthermore,
alterations in RIBEYE staining in rod photoreceptor ribbons
were detected at 2 months old.18 These findings are consistent
with the idea that the Tyrp1 mutation that DBA/2J mice carry is
expressed in the RPE,49 which may indirectly affect photore-
ceptor cells, as the health of the RPE is essential for the
integrity of photoreceptors and normal retinal function.50 For
instance, in the adult retina, mutations altering the function of
RPE lead to photoreceptor death.48,51

With aging and IOP increased, the morphological changes
in the OPL become quite prominent. In regions of the outer
retina inside patches, cellular degeneration is accelerated
compared with other retinal regions. Moreover, at 16 months
of age, the photoreceptor triad is disrupted and apparently
absent in most cases, and the horizontal cell plexus is absent.
These morphological alterations in the OPL also have been
described in an animal model of experimentally induced
increase of IOP.42

Using double and triple immunostaining with markers for
the synaptic ribbon, photoreceptor terminal, and for bipolar
and horizontal cell processes, we studied the organization of
the synaptic ribbon in the DBA/2J model. A decrease in
photoreceptor ribbons with increased age was observed in the
DBA/2J retina, based on the loss of Bassoon and CtBP2
immunoreactivity. Furthermore, we showed that although
some photoreceptor axons expressed CtBP2, there was an
absence of VGLUT1 immunoreactivity in the same terminals,
suggesting that synaptic release of glutamate is greatly
diminished or absent in the OPL,52 which is essential for visual
information transmission.53 These findings, together with the
decoupling between photoreceptor terminals, bipolar cell
dendrites, and horizontal cell processes revealed by the loss
of PKC and syntaxin 4 immunoreactivity, respectively, adjacent
to synaptic ribbon markers is indicative of an impairment of
the rod and cone synaptic structure.

Overall, these findings indicate a reduction in outer retinal
signaling between photoreceptors, and bipolar cell dendrites
and horizontal cell processes. This suggestion is consistent
with a reduced ERG b-wave54 in the Bassoon knockout mouse,
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which is characterized by a severely disrupted photoreceptor
triad.

There are several different possibilities to account for the
outer retinal pathology we observed in the DBA/2J retina.

First, outer retina impairment might be related to mutations
of RPE genes and not to elevated IOP, as the Tyrp1 gene is
expressed by the RPE, at least at the initial stages of outer
retinal degeneration. Retinal pigment epithelium dysfunction is
a well-established cellular mechanism for photoreceptor and
outer retinal diseases. Royal College of Surgeons rats are a good
example of a retinitis pigmentosa animal model carrying a
mutation in an RPE gene.55 Mutations in Tyrp1 gene have been
related to the etiology of human oculocutaneous albinism type
3. Moreover, mutations in this gene generate endoplasmic
reticulum stress due to misfolded protein accumulation,56

which could drive to RPE alterations. In addition, it has been
shown that number of rod-photoreceptors is closely related to
melanin levels in the RPE57 and the fact that photoreceptors
from albino animals are more susceptible to light damage58,59

suggests the basis for outer retinal degeneration in DBA/2J
mice.

Second, the increase of the IOP could result in two
independent events: RGC and axonal damage that lead to
RGC death, and photoreceptor cell damage that leads to outer
retinal degeneration. This possibility cannot account for the
changes in the outer retina that occur in young DBA/2J mice,
before an increase of IOP.

Last, the mutations that the DBA/2J mice carry lead to
ocular pathology typical of glaucoma before IOP increase,
suggesting that this mouse glaucoma model is an IOP-
independent glaucoma model. This suggestion is also based
on findings that the DBA/2J model has two episodes of RGC
loss10: one occurs before the increase of IOP and is mainly
mediated by apoptosis, and the second occurs after an increase
IOP and is mainly mediated by necrosis. These observations are
consistent with the early alterations in the outer and inner
retina during an IOP-independent component followed by a
component with increased IOP.
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