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Abstract

Native cell-material interactions occur on materials differing in their structural composition, 

chemistry, and physical compliance. While the last two decades have shown the importance of 

traction forces during cell-material interactions, they have been almost exclusively presented on 

purely elastic in-vitro materials. Yet, most bodily tissue materials exhibit some level of 

viscoelasticity, which could play an important role in how cells sense and transduce tractions. To 

expand the realm of cell traction measurements and to encompass all materials from elastic to 

viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell 

tractions in viscoelastic materials.

This methodology includes the experimental characterization of the time-dependent material 

properties for any viscoelastic material with the subsequent mathematical implementation of the 

determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing 

this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the 

overall material traction calculations and quantify the error associated with omitting time-

dependent material effects, as is the case for all other TFM formulations. We anticipate that the 

3D VTFM technique will open up new avenues of cell-material investigations on even more 

physiologically relevant time-dependent materials including collagen and fibrin gels.

1 Introduction

Over the past two decades Traction Force Microscopy (TFM) has emerged as a powerful, 

quantitative approach for characterizing the physical interactions between cells and their 

surroundings1–4. TFM has provided a deeper understanding on the role of physical forces 

during cellular homeostasis, disease progression, and many other cellular processes. For 

example in 2005, Paszek et al. showed, using TFM that tensional homeostasis, i.e., the 
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regulation of intracellular tension, plays a significant role in determining the ultimate 

outcome in cancer cell malignancy5.

With the availability of improved spatial imaging techniques, TFM has evolved to deliver 

two-dimensional and three-dimensional (3D) descriptions of cell-surface traction 

measurements of single cells and cell sheets6–11. It has been shown that most of the tissues 

in the body are characterized as time-dependent viscoelastic materials12–14. Yet, until 

recently, almost every TFM approach featured a linear elastic continuum mechanics 

framework15–17. Through a recent significant advancement in our displacement detection 

scheme we showed that cells on soft gels are capable of generating large material 

deformations exceeding the traditional linear formulation limits18. We addressed these 

observations by presenting a new, reformulated hyperelastic 3D TFM approach, capable of 

accurately capturing finite elastic material deformations18.

Still, there is currently no documented approach of incorporating material viscosity into a 

TFM framework. Such a formulation may be of significant importance given that the 

literature has shown that most tissues, including more sophisticated in-vitro culture systems, 

possess some level of viscosity as part of their microstructure19–22. Since cells possess the 

ability to sense and probe their microenvironment dynamically, incorporating viscoelastic 

material properties into a TFM framework is important to provide the most accurate 

measurements of cell-material interactions23–26.

In this paper, we address this challenge by presenting an integrated material characterization 

and 3D TFM approach to perform cell traction force measurements on materials with time-

dependent physical properties. This technique, named 3D Viscoelastic Traction Force 

Microscopy (3D VTFM) is general enough to allow the incorporation of any linear or non-

linear elastic and viscous material properties. Specifically, we present a combined 

experimental and numerical approach on determining the viscoelastic material properties of 

soft agarose substrates, and their subsequent use in determining cell-induced material 

tractions. To examine differences in the spatial distribution and magnitude of the time-

dependent surface traction fields due to the viscosity of the substrate material, we construct 

an analytical test case. Finally, we present actual experimental cell surface traction data 

using our 3D VTFM technique of breast cancer cells deforming collagen-functionalized 

agarose substrates.

2 Materials and Methods

Glass Coverslips and Microscope Slides Surface Modification

Circular glass coverslips (25 mm, diameter, Fisher Scientific, Waltham, MA) were 

chemically modified to allow covalent attachment of polyacrylamide substrates using 

previously developed protocols1, 6, 7. Briefly, glass coverslips and slides were rinsed with 

ethanol and placed in a petri dish containing a solution of 0.5% (v/v) 3-

aminopropyltrimethoxysilane (Sigma-Aldrich, St. Louis, MO) in ethanol for 5 minutes. 

Next, coverslips were washed with ethanol and submersed in a solution of 0.5% 

glutaraldehyde (Polysciences, Inc., Warrington, PA) in deionized (DI) water for 30 minutes. 

Activated coverslips were washed with DI water and left to dry.
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To allow easier gel detachment, rectangular glass microscope slides (75×25 mm) were 

chemically modified to create hydrophobic surface. Briefly, glass coverslips were placed in 

a petri dish containing 97% (v/v) hexane (Fisher Scientific, Waltham, MA), 2.5% (v/v) 

(tridecafluoro-1,1,2,2-tetrahydrooctyl)-triethoxysilane (SIT) (Gelest, Morrisville, PA), and 

0.5% (v/v) acetic acid (Sigma-Aldrich, St. Louis, MO) for approximately 1 minute. 

Coverslips were then removed and left to dry.

Preparation of Polyacrylamide-covered Coverslips

Polyacrylamide (PA) gels were prepared from acrylamide (40% w/v,Bio-Rad Laboratories, 

Hercules, CA) and N,N-methylene-bis-acrylamide (BIS, 2% w/v, Bio-Rad Laboratories, 

Hercules, CA) stock solutions as described previously1, 6, 7. The concentrations of 

acrylamide and BIS were chosen to be 8%/0.1%. Crosslinking was initiated through the 

addition of ammonium persulfate (Sigma-Aldrich, St. Louis, MO) and N,N,N,N-

tetramethylethylenediamine (Life Technologies, Grand Island, NY). The PA solution was 

vortexed for about 30 seconds, and 12 μL of the PA solution were pipetted on the surface of 

an activated coverslip and sandwiched with a hydrophobic glass slide. PA gel thickness was 

measured to be ~ 5 μm. PA gel substrates were then submerged in distilled water and 

allowed to polymerize and hydrate for approximately an hour. Once the coverslip was 

removed, PA gel substrates were left uncovered at room temperature to dry out. Exploiting 

the strong cohesion between agarose and PA, the thin PA layer was used to firmly attach 

each agarose substrate to the underlying glass coverslip (Fig. 1(a)).

Preparation of Agarose Substrates

For agarose substrate preparation, 0.5%(w/v) agarose powder (Benchmark Scientific, 

Edison, NJ) was dissolved in 1× PBS (Invitrogen, Carlsbad, CA). Each agarose solution was 

heated in an oven to approximately 90°C for complete dissolution. It should be noted, that 

the vial with the solution was loosely covered, yet boiling was avoided at all times. While 

heating, the solution was stirred occasionally, until the agarose powder had completely 

dissolved. Next, the agarose solution was combined with 10% (v/v) of 0.5 μm yellow-green 

fluorescent microspheres (Invitrogen, Carlsbad, CA). All agarose samples were thoroughly 

vortexed, and 35 μL of the final agarose solution were sandwiched between a dried PA gel-

covered coverslip and a plain glass slide (75×25 mm). Upon complete gelation of the 

agarose solution, the assembly was immediately immersed in distilled water for 

approximately one hour. Finally, agarose coverslips were carefully peeled off the plain glass 

cover slide (Fig. 1(a)). The final thickness of agarose gel layer after swelling was measured 

to be ~ 40 μm.

Collagen-Functionalization of Agarose Substrates

To promote cell attachment, agarose substrates were functionalized with type I collagen 

using the bifunctional crosslinker, sulfo-SANPAH (Thermo Fisher Scientific, Waltham, 

MA)2, 6, 7. Figure 1 presents a complete overview of the functionalized agarose substrate 

preparation setup. Excess water was removed prior to deposition of 100 μL of sulfo-

SANPAH (1mg/mL) onto the surface of each film, followed by a 15 minute exposure to UV 

light. The darkened sulfo-SANPAH solution was aspirated and the procedure was repeated. 

The samples were thoroughly washed with DI water, and covered with a solution of 0.2 
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mg/mL bovine type I collagen (BD Bioscience, Franklin Lakes, New Jersey) and left 

undisturbed at 4 °C overnight. Following overnight incubation, the substrates were rinsed 

three times with 1× PBS and sterilized with UV irradiation before depositing cells.

Cell Culture and Seeding

MDA-MB-231 metastatic breast adenocarcinoma cells were chosen as a representative 

contractile cell phenotype. Cells were cultured in medium containing 10% fetal bovine 

serum and 1% penicillin-streptomycin in Dulbecco’s Modified Eagle Medium (DMEM, 

Invitrogen, Carlsbad, CA). Cells were maintained in the incubator at 37 °C and 5% CO2. 

Seeding density was 30 cells/mm2. Once seeded, cells were allowed to spread for 

approximately 5 hours in the incubator prior to imaging.

Live Cell Imaging

Three-dimensional image stacks were acquired using a Nikon A-1 confocal system mounted 

on a TI Eclipse inverted optical microscope controlled by NI-Elements Nikon Software. A 

40× plan fluor air objective mounted on a piezo objective positioner was used for all the 

experiments, which allowed imaging at speeds up to 30 frames per second. Green 0.5 μm 

fluorescent microspheres were embedded into the substrate and excited with an Argon (488 

nm) laser. 512 × 512 × Z voxels (102μm × 102 μm × Z) confocal volume stacks were 

recorded every 100 seconds with Z ~ 128 voxels (38 μm), illustrated in Fig. 1(b). To ensure 

physiological imaging conditions within the imaging chamber, temperature and pH were 

strictly maintained at 37 °C and ~ 7.4 during time lapse recording as previously 

described6, 7. The outline of the cell was estimated from phase contrast microscopy images.

Calculation of Cell-generated Displacements

Cell-generated full-field displacements were determined following a similar methodology 

described in Tojanova et al.18. First, three-dimensional time-lapse volumetric images of 

fluorescent beads embedded in agarose substrates were recorded using laser scanning 

confocal microscopy (LSCM). Then, the motion of embedded fluorescent beads was tracked 

in all three dimensions using a new fast iterative digital volume correlation (FIDVC) 

algorithm27. This cross correlation-based algorithm has the capability to capture large 

material deformations by utilizing a built-in iterative deformation method (IDM). By 

utilizing the IDM, our FIDVC technique is capable of reducing its volumetric subset size to 

32 voxels, or lower depending on the signal content within each subset, without introducing 

significant correlation error27. The final results feature significantly higher spatial 

resolution, signal-to-noise, and faster computation times than our previous DVC method28.

Nanoindentation Measurements

Force-indentation measurements of agarose gels were collected using an Asylum MFP-3D-

BIO atomic force microscope (AFM) (Asylum Research, Santa Barbara, CA) following a 

similar procedure as previously described29, 30. The indenter geometry consisted of 

individual borosilicate glass spheres (5 μm diameter) attached to the tip of AFM cantilevers 

(Novascan Technologies, Inc., Ames, IA). Figure 2(a) provides a schematic overview of the 

indentation experiments. The cantilever spring constant was determined to be 0.02 N/m 
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using the power spectral density of the inherent thermal noise fluctuations of the 

cantilever31.

To probe the viscoelastic material properties of our agarose substrates, loading-unloading 

indentation experiments were performed at three different cantilever approach velocities: 0.1 

μm/sec, 1 μm/sec, and 10 μm/sec. Additionally, 30 second force relaxation tests were 

performed using an initial loading velocity of 10 μm/sec and an indentation depth of 450 

nm.

Data were sampled at 5 kHz for loading-unloading measurements and at 200 Hz for 30 s for 

viscoelastic relaxation measurements. A 2–3 nN force trigger, resulting in 400–600 nm 

indentation depths, was used to prescribe the point at which the cantilever approach was 

stopped and either retracted for loading-unloading tests, or held constant for relaxation tests. 

To determine the initial point of contact, we used a contact point extrapolation method32. In 

brief, the upper 50% of force and indentation data were fit with a linearized version of the 

Hertz model, and the contact point was extrapolated by back calculation with the slope and 

intercept. All data past the contact point were used in our least-squares analysis with our 

finite element simulation results. To account for any day-today variability among the 

agarose substrates, all AFM indentation tests were performed on the same batch of agarose, 

and on the same day as the cell experiments. All experiments were carried out at room 

temperature in a fluid environment. The AFM was allowed to equilibrate before each 

measurement period to minimize deflection laser and/or piezo drift.

Finite Element Simulation

Simulations of the nanoindentation process were conducted using the commercial finite 

element software, ABAQUS 6.12 (Dassault Systemes Simulia Corporation, Providence, RI). 

The geometry of the agarose substrate was discretized by using 2D axisymmetric elements 

(CAX4H). The indenting spherical tip was modeled as analytical rigid solid with a radius of 

R = 2.5 μm. The agarose substrate boundary conditions were set to mimic those of the 

indentation experiments with frictionless interactions between the indenter tip and sample 

surface (Fig. 2(b)). The indentation simulation was executed using the same displacement 

control loading condition as in the AFM experiments with the same loading rates. The 

material behavior of agarose used for fitting the experimental force-indentation curves is a 

Neo-Hookean rubber elasticity model with a finite-deformation Maxwell element in parallel, 

shown schematically in Fig. 2(c) and detailed mathematically in the appendix. Our process 

of material parameter determination is described in the following section.

3 Agarose Material Characterization

The objective of this investigation is to present the reader with a complete approach of 

determining the viscoelastic material properties of a given substrate material, and provide a 

straightforward approach of implementing the determined material model into a 3D TFM 

framework for cell traction measurements. To illustrate this process in detail, we chose an 

agarose gel as a model viscoelastic substrate material33, 34. Typical material characterization 

techniques for determining the material properties of soft hydrogels and tissue-mimicking 

materials have involved uniaxial compression, tension, AFM indentation and shear 
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rheometry experiments. AFM indentation characterizations are attractive for determining 

TFM-substrate properties, since they have the ability to measure the local mechanical 

properties directly at the surface where the cell is applying its tractions.

While elastic material AFM-based characterization approaches are relatively 

straightforward, the analysis of time-dependent material properties usually requires 

additional experimental measurements, such as creep or stress (force) relaxation tests30. If a 

large strain constitutive relation is sought, numerical simulation of the experimental 

procedure, followed by least-square fitting of the numerical to the experimental data 

provides a robust overall material characterization approach.

Figure 2(a) presents a schematic of the AFM indentation experiments that were utilized to 

collect force-indentation curves of agarose substrates at different loading rates, as well as 

force relaxation tests (see technical details in Materials and Methods). Next, we constructed 

a simple, axisymmetric FEM model (Fig. 2 (b)) mimicking the experimental indentation 

process using the non-linear viscoelastic material model shown schematically in Fig. 2(c). 

For a full mathematical description of the model, the reader is referred to the appendix. 

Briefly, the constitutive model consists of two contributions, represented as branches in Fig. 

2 (c). The equilibrium, or time-independent, response is modeled through a Neo-Hookean 

spring (represented schematically as the left branch in Fig. 2(c)) with its free energy given 

mathematically by Eq. (1). The material parameters associated with the equilibrium response 

are the equilibrium ground-state shear modulus μ and bulk modulus K. The right branch of 

Fig. 2(c) represents the non-equilibrium, or time-dependent, contribution and is modeled 

through a finite-deformation Maxwell element. We note that the Maxwell element only 

affects the deviatoric, or shear, response, leaving the volumetric response time-independent. 

The Maxwell element includes a Hencky spring with free energy given by Eq. (17) – 

referred to in this way due to the use of the Hencky, or logarithmic, strain in Eq. (17) – in 

series with a Mises dashpot whose flow rule is given by equations Eq. (20) and Eq. (21). 

The non-equilibrium materials parameters are the non-equilibrium shear modulus μneq and 

viscosity η. Here, the use of the word non-equilibrium is for purely descriptive purposes to 

denote all material properties associated with the time-dependent Maxwell element.

The emphasis behind the model was to use a minimal set of fitting parameters to 

appropriately describe the viscoelastic behavior of agarose under finite deformations. The 

characteristic size of our indentation process – as well as the deformation processes induced 

by cells – is comparable or smaller than the average pore size of typical agarose gels35, 36. 

Therefore, it is reasonable to assume that solvent diffusion relative to the gel network 

equilibrates quickly compared to deformation time-scales, so that the diffusion process is 

always in equilibrium. To inform our choice of bulk modulus, we utilize the observations of 

Zhao et al.37 and set the equilibrium Poisson’s ratio in the linear (small) deformation regime 

to be 0.3. That is to say, using the familiar relations between elastic constants in linear 

elasticity, we have that the bulk modulus is given by K = 2μ (1 + ν)/(3 − 6ν) with μ the 

equilibrium shear modulus and ν taken to be 0.3. Once the bulk modulus K has been fixed in 

this manner, the remaining three material parameters, μ, μneq, and η were determined by 

iteratively adjusting the numerical FEM simulation to fit the experimental force relaxation 
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data in a least-squares sense. The resulting best-fit material parameters describing the finite 

viscoelastic behavior of agarose are presented in Table 1.

Figure 3 (a) and (b) present the experimental and best-fit numerical indentation results for a 

typical force-relaxation experiment. The agarose sample is first indented to a depth of 

approximately 450 nm using a constant loading rate of 10 μm/sec (Fig. 3(a)). Then, while 

maintaining the current indentation depth, the force is allowed to relax over a total period of 

30 seconds (Fig. 3 (b)). Comparison between the experimental and numerical force-

indentation curves shows good agreement. Given the relatively simple nature of the 

viscoelastic material model presented in Fig. 3(b) (see simple shear example in 

Supplemental Figures 1–2), some differences especially at larger indentation depths (Fig. 

3(a)) can be expected.

Figure 4 compares the experimental indentation loading-unloading force curves to the 

numerical indentation results based on the same material parameter set (given in Table 1) 

used to describe the force relaxation curves in Fig. 3. As Fig. 4 shows, the FEM simulations 

are in good agreement with the experimental results for all three different loading rates. 

Indenting the agarose gel at different loading rates allows for the examination of the time-

dependent, viscous material behavior, which the model seems to capture adequately. When 

comparing Figs. 4(a) – (c), only the loading rate of 0.1 μm/sec leads to significant loading-

unloading hysteresis, which is indicative of viscoelastic relaxation during the indentation 

cycle. This is expected as the intrinsic material relaxation time, τ, is on the same order of 

magnitude as the time duration for the loading-unloading cycle for the 0.1 μm/sec loading 

rate. The indentation force curves shown in Fig. 4 are representative of 5 indentation 

measurements at each loading rate.

4 3D Viscoelastic Traction Force Microscopy (3D VTFM)

Cell-generated full-field displacements and tractions can be determined in a variety of 

different ways, with two of the most common approaches being image correlation-based 

measurements and single particle tracking algorithms. We previously presented a large-

deformation 3D image correlation-based approach for determining cellular displacement 

fields with high resolution18, 27. Regardless of the chosen displacement detection scheme, 

once the 3D displacement field is obtained, its spatial derivative, i.e. the deformation 

gradient, is used within the framework of the previously described viscoelastic material 

model (Fig. 2 (c)) to determine the cell surface tractions. Given that most tissue materials 

and more complex hydrogels exhibit some time-dependent and viscous behavior19–21, and 

the observation that cells can generate finite deformations18, accurate cell traction analysis 

requires the utilization of a finite-deformation viscoelastic material model. Although our 

example is specific to agarose, we purposefully set up the methodology such that the same 

steps can be utilized to incorporate other, experiment-specific, viscoelastic material models 

into the same overall 3D VTFM framework.

Finite deformations are described by a displacement function, y = x + u(x, t), which 

represents a one-to-one mapping of points x in the reference configuration to points y in the 

deformed configuration at each time t.* The deformation gradient is then the gradient of the 
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displacement function with respect to x, that is F = ∇y = I + ∇u(x), with the volume ratio 

given by the Jacobian of F, J = det F > 0. Experimentally, the deformation gradient tensor, 

F, can be directly calculated from the full-field displacements using various discrete 

differentiation kernels. Farid et al., and Bar-Kochba et al. provide a description of several 

robust differentiation kernels27, 38.

To specify the mechanical response of the equilibrium branch of the material model in Fig. 

2(c), we assume that the spring is described by a Neo-Hookean free energy of the form

(1)

where μ and K are the ground-state, equilibrium shear and bulk moduli, respectively, and B 
= FF⊤ is the left Cauchy-Green tensor. The first term represents the free energy due to 

distortional (constant volume) deformations, and the second term represents purely 

volumetric deformations. The associated Cauchy stress is then

(2)

The time-dependent, viscous material response is described by the Maxwell element (Fig. 2 

(c), right branch). For this branch, the deformation gradient, F, is decomposed into its elastic 

and viscous parts: F = FeFv, where Fe is the elastic deformation gradient, representing the 

deformation of the spring, and Fv is the viscous deformation gradient, representing the 

deformation of the dashpot. To specify the mechanical response of the non-equilibrium 

branch, we take the spring to be described by a Hencky spring with shear modulus μneq and 

the dashpot to be in a linearly viscousMises form with viscosity η. The details of the 

constitutive equations describing this branch are given in the Appendix. Here, we give the 

recipe for handling the Maxwell element in time-discrete form.

The approach is summarized in Fig. 5. At a given time t = tn, the deformation gradient Fn 

and viscous deformation gradient  (and hence the non-equilibrium elastic deformation 

gradient ) are known. (Note that if tn corresponds to the initial time, .) Then at 

time t = tn+1 = tn + Δt, the deformation gradient Fn+1 is given. In an experiment, this is 

simply the deformation gradient measured at the subsequent time point. To proceed forward 

in time, we need to calculate the Cauchy stress due to the Maxwell element, , and 

viscous deformation gradient, , at time tn+1. The steps are given below:

1. First, we consider a trial state, in which viscous flow is frozen, see Fig. 5, and 

calculate a trial non-equilibrium elastic deformation gradient, , based on the old 

value of the viscous deformation gradient :

*Notational conventions: The symbol ∇ denotes the gradient with respect to the material point x in the reference configuration; a 
superposed dot denotes the material time-derivative. We write tr A and det A for the trace and determinate of A, and dev A = A − 
(1/3)(trA)I denotes the deviatoric part of A. The product of tensors A and B is denoted by AB (or AikBkj in component form), and the 

inner product is A : B (or AijBij). The magnitude of A is .
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(3)

In this intermediate state, all deformation between times tn and tn+1 is assumed to 

be accommodated by the Hencky spring. We then perform the polar decomposition 

of  and calculate the trial strain:

(4)

where  is the trial rotation,  the trial right stretch tensor, and  the trial 

Hencky (logarithmic) strain.

2. Next we use the trial strain to calculate a trial stress

(5)

where μneq is the non-equilibrium shear modulus. This particular stress measure is 

work conjugate to the Hencky strain and is referred to as the Mandel stress, and the 

specific stress-strain relation reflected in Eq. (5) arises due to a free energy function 

ψneq associated with the non-equilibrium spring (see the Appendix for details). 

Note that we only consider the contribution to the stress due to the deviatoric, or 

shear, strain. In this manner, the nonequilibrium Maxwell element only adds 

viscoelasticity to the shear deformation and leaves the volumetric response of Eq. 

(2) unaffected.

3. Next, we calculate the viscous stretching – that is, the strain rate in the dashpot – at 

time tn+1:

(6)

where η is the constant viscosity of the dashpot. See the Appendix for the 

derivation of this important step.

4. Calculation of  allows for the update of Fv by means of the exponential map:

(7)

This brings us to the corrected, updated state in Fig. 5.

5. Finally, we may update the Cauchy stress due to the Maxwell element σneq:

(8)

where  is the Mandel stress at time tn+1.

The total Cauchy stress due to both the equilibrium and non-equilibrium branches (Fig. 2(c), 

left and right branch) may then be calculated by
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(9)

where  is calculated by Eq. 2 using Fn+1. One may then repeat these steps, marching 

forward in time, to calculate the stress history corresponding to a measured deformation 

history39, 40. We encourage readers who are interested in the details of the model as well as 

the derivation of the time-discrete version to refer to the Appendix.

Once the Cauchy stress is calculated, the cell surface tractions can be found using the well-

known Cauchy relation

(10)

where n is the surface normal, and we have dropped the (n+1) subscript for simplicity of 

notation. The surface normal vectors can be determined directly from the laser scanning 

confocal images. Toyjanova et al. previously described such a method in-detail18. The 

magnitude of the three-dimensional traction vector is then calculated as

(11)

where tx and ty are the in-plane traction force components under the cell and tz corresponded 

to the out-of-plane component. The total cell force, a common metric used in cell TFM 

studies, is calculated by integrating the magnitude of the substrate surface tractions over the 

total cell area S, i.e.,

(12)

Another metric that can be calculated from measured tractions – the root mean-squared 

tractions, tRMS is defined as

(13)

where ti is the traction vector located at every ith point along the surface of the cell 

boundary, enclosing total of N points. Further details on how to calculate cell forces from 

3D traction data can be found elsewhere18.

5 Analytical and Experimental 3D VTFM Examples - Influence of Material 

Viscosity on Surface Tractions

Given the slightly higher complexity of a viscoelastic over a purely elastic 3D TFM 

formulation, our intent is to provide the reader with a quantitative metric to determine the 

penalty associated with ignoring the viscous effects for a given substrate material. Figure 6 

plots the ratio between the total traction magnitude that includes the time-dependent 

contribution, |t|, and the purely elastic traction magnitude, |te|, in the absence of the viscous 

dashpot in Fig. 2(c) as a function of the viscoelastic material properties of the substrate. 
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Depending on the intrinsic relaxation time, τ = η/μneq, and the viscosity, η, of the material at 

hand, the error associated with neglecting the viscoelastic nature of the substrate can be 

significant. Since any 3D and 2D TFM framework requires careful material characterization 

of its substrate material, Fig. 6 can be utilized to determine whether a viscoelastic 3D TFM 

framework is necessary or whether a simpler, purely elastic formulation will suffice to 

estimate the cell-generated surface tractions.

Analytically Simulated Viscoelastic Cell Deformation Fields

While Fig. 6 provides a quantitative estimate on the penalty associate with neglecting the 

viscous stresses in a material as a function of the characteristic relaxation time, τ, it is 

important to understand the relationship between τ and the actual imaging intervals utilized 

during live cell imaging. If τ is much less than the minimal time-lapse imaging interval, i.e., 

τ << Δt, then only the elastic contributions of the material behavior can be estimated. This 

concept is illustrated in Fig. 7 using an analytically generated Gaussian displacement dipole 

on a viscoelastic material obeying the constitutive model shown in Fig. 2(c). The material 

constants were chosen such that it matches the properties of embryonic liver and heart 

tissues19. The characteristic relaxation time, τ, is set to 10 seconds. The analytical 

displacement dipole is applied along the free surface of the x1 − x2 plane in the form of

(14)

Fig. 7 (a)–(b) depict the magnitude of the applied Gaussian displacement dipole and its 

associated displacement gradient. Using the displacement data, the viscoelastic cell surface 

tractions are calculated and are plotted in Fig. 7 (d) for different time-lapse imaging 

intervals. Figure 7 (d) presents a panel series of the magnitude of the 3D surface traction 

vector for the analytical displacement dipole shown in Fig. 7(a) for different imaging 

intervals, Δt. Given a material relaxation time, τ of 10 seconds, Fig. 7(c) quantitatively 

describes the effect different time-lapse imaging intervals have on accurately estimating the 

applied traction magnitude. For fast acquisition times, i.e., Δt ≤ 1 second, most of the 

viscoelastic traction magnitudes are sufficiently captured. If the imaging interval is 

increased to ~ 10 seconds, the peak tractions will be underestimated by approximately 17%, 

and with imaging times on the order of 100 seconds most of the viscoelastic material 

response has reached the equilibrium state, resulting in an traction estimation error of ~30%. 

The shape of the curve and the absolute numbers will vary depending on the particular 

viscoelastic material model employed, but can be generated via means of Eqs. 1 – 12.

While Fig. 7 shows that the particular time-lapse imaging interval, Δt, can have a profound 

effect on accurately representing the spatial distribution and magnitude of the traction 

pattern in a viscoelastic medium, practical considerations, such as low signal to imaging 

noise, phototoxicity, and photo-bleaching might limit the range of available imaging 

intervals. Thus, once the material of interest has been characterized and evaluated, the error 

associated with practical imaging intervals can be evaluated by generating the type of plot 

shown in Fig. 7(c). This should allow the user to directly evaluate whether a viscoelastic 

TFM framework is necessary for the desired TFM measurements or whether a simpler, 
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purely elastic formulation suffices. Furthermore, for small linear elastic deformations, the 

reader has several TFM choices with recent developments provided by del Alamo in 3D41, 

and the well-established Fourier Transform Traction Cytometry by Butler et al. in 2D15 as 

means for accurate estimation of cellular traction fields.

Experimentally Observed Viscoelastic Cell Deformation Fields

To illustrate the resolution and applicability of the 3D VTFM technique to capture actual 

cell-induced traction data, Fig. 8 shows snapshots of a MDA-MB-231 cell deforming an 

agarose substrate at two different time points. The left panel shows phase contrast images of 

the cell on top of the agarose substrate, followed by the in-plane and out-of-plane tractions. 

The traction resolution sensitivity was 50 Pa for in-plane and 80 Pa for out-of-plane 

tractions. The observed traction patterns in Fig. 8 are similar in shape and magnitude to 

previously observed traction patterns for mesenchymal cells6, 15, 42–44. As can be seen from 

Fig. 8, the utilization of the 3D VTFM methodology produces high-resolution traction maps 

with similar resolution and sensitivity capabilities to our previously published 3D large 

deformation elastic TFM approach18.

It should be noted that the characteristic relaxation time for the agarose gels used in this 

study was ~ 1:1 seconds, and that time-lapse images were acquired every 100 seconds. Any 

shorter time-lapse intervals yielded negligible material deformations indistinguishable from 

noise.

6 Conclusion

This paper presents a 3D Viscoelastic Traction Force Microscopy (3D VTFM) technique 

that allows the computation of cell-generated material tractions on viscoelastic materials. 

Using a combined experimental and numerical AFM indentation approach, our study details 

how to determine the material properties of the viscoelastic substrate material of interest, 

which in our simple example is an agarose gel. We would like to note, that the extraction of 

the viscoelastic material properties of the substrate material at hand can also be achieved by 

various other mechanical testing approaches besides indentation, including stress relaxation, 

creep and frequency-dependent tests in rheometer or tension/compression setups. As long as 

the material stress-strain state is recorded as a function of time, the viscoelastic material 

properties of the particular substrate material can be determined. Next, utilizing the obtained 

material properties we provide a general, finite deformation framework for integrating the 

viscoelasticity of the substrate material into a 3D TFM methodology. The same general 

framework we described can be simply modified by the reader to allow the incorporation of 

his/her own substrate specific viscoelastic material properties into our 3D VTFM code 

structure to perform 3D traction measurements. Finally, we provide the reader with a 

quantitative estimate on the penalty associated with neglecting the viscous effects for the 

given viscoelastic material, and what the minimum TFM time-lapse interval is required to 

adequately capture the viscous contribution of the material response. We conclude by 

showing traction contour plots of breast cancer cells migrating on collagen-functionalized 

agarose substrates. The 3D VTFM code package can be downloaded from our website 

(http://franck.engin.brown.edu).
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In conclusion, this study provides a new 3D TFM technique that is capable of incorporating 

time-dependent material characteristics for studies that involve more realistic tissue-

mimicking substrate materials. While the last two decades have provided a wealth of cell-

material interactions on elastic substrates, we anticipate that the 3D VTFM technique will 

open up new avenues of cell-material investigations on even more physiologically relevant 

time-dependent materials including native tissue derivatives such as collagen and fibrin gels.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix: Viscoelastic Model Details

In this appendix, we give a detailed account of the finite-deformation viscoelastic model 

used to describe experimental data, as well as a derivation of the time-discrete version 

summarized in Section 4. Mathematically, the viscoelastic model involves the following 

definitions: u(x, t), displacement; y = x + u(x, t), motion; F = ∇y, J = det F > 0, deformation 

gradient; B = FF⊤, left Cauchy-Green tensor. We take the free energy due to the equilibrium 

branch to be given in Neo-Hookean form

(15)

where μ and K are ground-state, equilibrium shear and bulk moduli, respectively. The first 

term represents free energy due to distortional (constant volume) deformation, and the 

second term arises due to purely volumetric deformation. The associated Cauchy stress is 

then

(16)

The Maxwell element in parallel with the Neo-Hookean spring then allows for modeling 

non-equilibrium time-dependent behavior. To describe deformation in this element, the 

deformation gradient, F, is multiplicatively decomposed into elastic and viscous parts: F = 

FeFv; with Fv, Jv = det Fv = 1, denoting the (constant-volume) viscous distortion and Fe, Je 

= det Fe > 0, denoting the non-equilibrium elastic distortion. The free energy due to the non-

equilibrium spring is based on the elastic Hencky (logarithmic) strain, utilizing the following 

definitions: Fe = ReUe, polar decomposition of Fe; , spectral 

decomposition of Ue; and , the elastic Hencky (logarithmic) strain. 

We take the free energy due to the non-equilibrium spring as
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(17)

where μneq is the non-equilibrium shear modulus. The stress conjugate to the elastic strain, 

Ee, is referred to the Mandel stress:

(18)

and the contribution to the Cauchy stress due to the Maxwell element is then given through

(19)

Finally, the evolution of Fv is given by

(20)

with the viscous stretching, Dv, given by

(21)

where η is the Maxwell element viscosity. (We refer to the dashpot as a Mises dashpot since 

this choice of constitutive equation asserts that the viscous stretching and Mandel stress 

tensors are codirectional, a hallmark of Mises plasticity.) Note that since ψneq is taken to not 

depend upon Je, the contribution of the Maxwell element to the stress is purely deviatoric. In 

this way, we have only added viscoelasticity to the shear deformation and left the volumetric 

response of Eq. (16) unaffected. The four material parameters appearing in the model are the 

equilibrium shear modulus μ, the non-equilibrium shear modulus μneq, the Maxwell element 

viscosity η, and the bulk modulus K. The three parameters {μ, μneq, η} are selected to best 

fit the experimental behavior, while the K bulk modulus is chosen so that the equilibrium 

Poisson’s ratio in the linear (small) deformation regime, i.e., ν = (3K − 2μ)/(6K + 2μ), is 0.3, 

following37.

Since experimental measurements are made at discrete time-points, we next derive the time-

discrete version of the model used both to analyze the experimental data as well as the one 

implemented in the Abaqus UMAT used in the simulations. At a time tn, the deformation 

gradient, Fn, and the viscous deformation gradient, , are known. Then, given the 

deformation gradient, Fn+1, at a time tn+1 = tn + Δt, we are to determine the Cauchy stress, 

σn+1, and viscous deformation gradient, , at time tn+1. In the experiments, Δt is the time 

increment between the two successive images. The evolution equation for Fv is implicitly 

integrated by means of an exponential map45, 46:

(22)
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Using (22)1, we have that the elastic deformation gradient at the end of the step is

(23)

where  is the trial value of the elastic deformation gradient. A trial quantity represents the 

value of that quantity evaluated when viscous flow is frozen. With (i) the polar 

decompositions  (ii) the knowledge that 

 share principal directions and therefore commute; and (iii) the 

uniqueness of the polar decomposition; we have that

(24)

Taking the logarithm of (24)2, we have

(25)

Multiplying the deviatoric part of Eq. (25) by 2μneq, by the stress relation Eq. (18), we have

(26)

which upon combining with (22)2 yields

(27)

Finally, the viscous deformation gradient is updated by (22)1, and the Mandel and Cauchy 

stresses due to the Maxwell element are updated by

(28)

The sequence of time-integration steps for the Maxwell element, with reference to the steps 

shown in Fig. 5, is outlined below.

1. Compute the trial elastic deformation gradient, , and its associated kinematic 

quantities using the viscous deformation gradient from the previous time 

increment:

(29)

2. Compute the trial Mandel stress:

(30)

3. Calculate the viscous stretching
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(31)

4. Update the viscous deformation gradient:

(32)

5. Update the Mandel stress and Cauchy stress due to the Maxwell element:

(33)

This completes the calculation of the contribution to the Cauchy stress due to the Maxwell 

element. The contribution due to the equilibrium Neo-Hookean spring is simply computed 

from the deformation gradient at the end of the step Fn+1:

(34)

allowing for the calculation of the total Cauchy stress:

(35)

References

1. Pelham RJ Jr, Wang Y-L. Cell locomotion and focal adhesions are regulated by substrate flexibility. 
Proc Natl Acad Sci USA. 1997; 94:13661–13665. [PubMed: 9391082] 

2. Dembo M, Wang Y-L. Stresses at the cell-to-substrate interface during locomition of fibroblasts. 
Biophys J. 1999; 76:2308–2016.

3. Munevar S, Wang Y-L, Dembo M. Traction Force MIcroscopy of Migrating Normal and H-ras 
Transformed 3T3 Fibroblasts. Biophys J. 2001; 80:1–14. [PubMed: 11159379] 

4. Wang JH-C, Lin J-S. Cell traction force and measurement methods. Biomech Model Mechan. 2007; 
6:361–371.

5. PaszeK MJ, et al. Tensional homeostasis and the malignant phenotype. Cancer cell. 2005; 8:241–
254. [PubMed: 16169468] 

6. Maskarinec SA, Franck C, Tirrell DA, Ravichandran G. Quantifying cellular traction forces in three 
dimensions. Proc Natl Acad Sci USA. 200); 106:22108–22113.

7. Franck C, Maskarinec SA, Tirrell DA, Ravichandran G. Three-dimensional traction force 
microscopy: a new tool for quantifying cell-matrix interactions. PLoS ONE. 2011; 6:1–15.

8. Jannat RA, Dembo M, Hammer DA. Traction forces of neutrophils migrating on compliant 
substrates. Biophys J. 2011; 101:575–584. [PubMed: 21806925] 

9. Kraning-Rush CM, Carey SP, Califano JP, Smith BN, Reinhart-King CA. The role of the 
cytoskeleton in cellular force generation in 2D and 3D environments. Phys Biol. 2011; 8:015009. 
[PubMed: 21301071] 

10. Kim JH, et al. Propulsion and navigation within the advancing monolayer sheet. Nat Mater. 2013; 
12:856–863. [PubMed: 23793160] 

11. del Alamo JC, et al. Three-Dimensional Quantification of Cellular Traction Forces and 
Mechanosensing of Thin Substrata by Fourier Traction Force Microscopy. PloS one. 2013; 
8:e69850. [PubMed: 24023712] 

Toyjanova et al. Page 16

Soft Matter. Author manuscript; available in PMC 2015 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Fung, YC. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag; 
1993. 

13. Katsuda S, Kaji T. Atheroschlerosis and extracellular matrix. J Atheroscler Thromb. 2003; 10:267–
274. [PubMed: 14718743] 

14. Iyo T, Sasaki N, Nakata M. Anisotropic viscoelastic properties of cortical bone. J Biomech. 2004; 
37:1433–1437. [PubMed: 15275852] 

15. Butler JP, Tolić-NØrrelykke IM, Fabry B, Fredberg JJ. Traction fields, moments, and strain energy 
that cells exert on their surroundings. Am J Physiol-Cell Ph. 2002; 282:C595–C605.

16. Sabass B, Gardel ML, Waterman CM, Schwarz US. High resolution traction force microscopy 
based on experimental and computational advances. Biophys J. 2008; 94:207–220. [PubMed: 
17827246] 

17. Polio SR, Rothenberg KE, Stamenovic D, Smith ML. A micropatterning and image processing 
approach to simplify measurement of cellular traction forces. Acta Biomater. 2012; 8:82–88. 
[PubMed: 21884832] 

18. Toyjanova J, Bar-Kochba E, Lòpez-Fagundo C, Reichner J, Hoffman-Kim D, Franck C. High 
Resolution, Large Deformation 3D Tractions Force Microscopy. PloS ONE. 2014; 9(4):e90976. 
[PubMed: 24740435] 

19. Forgacs G, Foty RA, Shafrir Y, Stinberg MS. Viscoelastic Properties of Living Embryonic 
Tissues: a Quantitative Study. Biophys J. 1998; 74:2227–2234. [PubMed: 9591650] 

20. Ahearne M, Yang Y, Haj El AJ, Then KY, Liu K-K. Characterizing the viscoelastic properties of 
thin hydrogel-based constructs for tissue engineering applications. J R Soc Interface. 2005; 2:455–
463. [PubMed: 16849205] 

21. Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA. Nonlinear elasticity in biological 
gels. Nature. 2005; 435:191–194. [PubMed: 15889088] 

22. Levental I, Georges PC, Janmey PA. Soft biological materials and their impact on cell function. 
Soft Matter. 2007; 3:299–306.

23. Balgude AP, Yu X, Szymanski A, Bellamkonda RV. Agarose gel stiffness determines rate of DRG 
neurite extension in 3D cultures. Biomaterials. 2001; 22:1077–1084. [PubMed: 11352088] 

24. Raz-Ben Aroush D, Zaidel-Bar R, Bershadsky AD, Wagner HD. Temporal evolution of cell focal 
adhesions: experimental observations and shear stress profiles. Soft Matter. 2008; 4:2410–2417.

25. Sasaki N, Imai T, Hashimoto A, Yasuda H. Effect of pericellular matrix formation by chondrocytes 
cultured in agarose gel on the viscoelastic properties of agarose gel matrix. J Biorheol. 2010; 
23:95–101.

26. Hanazaki Y, Ito D, Furusawa K, Fukui A, Sasaki N. Change in the viscoelastic properties of 
agarose gel by HAp precipitation by osteoblasts cultured in an agarose gel matrix. J Biorheol. 
2011; 26:21–28.

27. Bar-Kochba E, Toyjanova J, Andrews E, Kim K-S, Franck C. A fast iterative digital volume 
correlation algorithm for large deformations. Exp Mech. 53(2) Special Issue on DIC. 

28. Franck C, Hong S, Maskarinec SA, Tirrell DA, Ravichandran G. Three-dimensional full-field 
measurements of large deformations in soft materials using confocal microscopy and digital 
volume correlation. Exp Mech. 2007; 47:427–438.

29. Darling EM, Zauscher S, Guilak F. Viscoelastic properties of zonal articular chondrocytes 
measured by atomic force microscopy. Osteoarthritis and cartilage. 2006; 14:571–579. [PubMed: 
16478668] 

30. Darling EM, Zauscher S, Block JA, Guilak F. A thin-layer model for viscoelastic, stress-relaxation 
testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? 
Biophys J. 2007; 92:1784–1791. [PubMed: 17158567] 

31. Hutter JL, Bechhoefer J. Calibration of atomic-force microscope tips. Rev Sci Instrumm. 1993; 
64:1868–1873.

32. Darling EM, Topel M, Zauscher S, Vail TP, Guilak F. Viscoelastic properties of human 
mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J 
Biomech. 2008; 41:454–464. [PubMed: 17825308] 

33. Normand V, Lootens DL, Amici E, Plucknett KP. New Insight into Agarose Gel Mechanical 
Properties - Biomacromolecules. Biomacromolecules. 2000; 1:730–738. [PubMed: 11710204] 

Toyjanova et al. Page 17

Soft Matter. Author manuscript; available in PMC 2015 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. Roberts JJ, Earnshaw A, Ferguson VL, Bryant SJ. Comparative study of the viscoelastic 
mechanical behavior of agarose and poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 2011; 
99B:158169.

35. Pernodet N, Maaloum M, Tinland B. Pore size of agarose gels by atomic force microscopy. 
Electrophoresis. 1997; 18:55–58. [PubMed: 9059821] 

36. Narayanan J, Xiong J-Y, Liu X-Y. Determination of agarose gel pore size: Absorbance 
measurements vis a vis other techniques. Journal of Physics. 2006; 28:83–86.

37. Zhao X, Huebsch N, Mooney DJ, Suo Z. Stress-relaxation behavior in gels with ionic and covalent 
crosslinks. J. Appl. Phys. 2010; 107:1–5.

38. Farid H, Simoncelli EP. Differentiation of discrete multi-dimensional Signals. IEEE Trans Image 
Process. 2004; 13:496–508. [PubMed: 15376584] 

39. Anand L, Ames NM, Srivastava V, Chester SA. A thermo-mechanically coupled theory for large 
deformations of amorphous polymers. Part1: Formulation. Int J Plasticity. 2009; 25:1474–1494.

40. Henann DL, Bertoldi K. Modeling of elastocapillary phenomena. Soft Matter. 2014; 10:709–717. 
[PubMed: 24836202] 

41. del Alamo JC, et al. Three-Dimensional Quantification of Cellular Traction Forces and 
Mechanosensing of Thin Substrata by Fourier Traction Force Microscopy. PLoS ONE. 2013; 
8:e69850, 1–14. [PubMed: 24023712] 

42. Aratyn-Schaus Y, Gardel ML. Biophysics Clutch Dynamics. Science. 2008; 322:1646–1647. 
[PubMed: 19074337] 

43. Maruthamuthu V, Sabass B, Schwarz US, Gardel ML. Cell-ECM traction force modulates 
endogenous tension at cell-cell contacts. Proc Natl Acad Sci USA. 2011; 108:4708–4713. 
[PubMed: 21383129] 

44. Legant WR, Choi CK, Miller JS, Shao L, Gao L, Betzig E, Chen CS. Multidimensional traction 
force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc Natl Acad 
Sci USA. 2013; 110:881–886. [PubMed: 23277584] 

45. Weber G, Anand L. Finite deformation constitutive equations and a time integration procedure for 
isotropic, hyperelastic-viscoplastic solids. Comput Method Appl M. 1990; 79:173–202.

46. de Souza Neto, EA.; Perić, D.; Owen, DRJ. Computational Methods for Plasicity: Theory and 
Applications. 1st ed. Singapore: Wiley; 2008. 

Toyjanova et al. Page 18

Soft Matter. Author manuscript; available in PMC 2015 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Schematic of (a) the agarose substrate preparation and (b) a representative volumetric image 

of the agarose substrate embedded with green fluorescent microspheres recorded by laser 

scanning confocal microscopy. (Online version in colour)
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Fig. 2. 
Schematic of (a) the experimental setup of AFM indentation of the agarose substrate with a 

spherical cantilever tip radius of 2.5 μm. (b) Modeling setup mimicking the indentation 

experiment. The reference point (RF) to control the indentation is set at the center of the 

sphere. (c) Schematic of the finite-deformation viscoelastic agarose constitutive model. 

(Online version in colour)
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Fig. 3. 
Representative experimental indentation results for agarose substrates (dots) and 

corresponding numerical results (solid line) as computed from fitted material constants. (a) 

Force (nN) vs. indentation depth, δ (μm) at a loading rate of 10 μm/sec. (b) A representative 

force relaxation plot for agarose substrates. (Online version in colour)
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Fig. 4. 
Representative loading-unloading indentation results for loading rates of (a) 0.1 μm/sec, (b) 

1 μm/sec, and (c) 10 μm/sec. Dotted curve denotes experimental results, continuous solid 

lines are best fits based on the fitted agarose material constants. (Online version in colour)
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Fig. 5. 
Schematic of the time-discrete algorithm for the non-equilibrium, Maxwell branch of the 

constitutive model.
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Fig. 6. 
Plot of the ratio of the total traction magnitude to the purely elastic traction contribution vs. 

relaxation time, τ = η/μneq. The calculations are shown for (η)/(μτ) of 0.6 (triangle), 2 

(diamond), 5 (square) and 10 (circle). (Online version in colour)
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Fig. 7. 
Analytical traction example of (a) prescribed Gaussian displacement dipole and its (b) 

associated displacement gradient magnitude. (c) Plot of the magnitude of the maximum total 

surface tractions, |tmax| (Pa), vs. imaging time interval, Δt (seconds). (d) Contour maps of the 

calculated surface tractions at imaging time intervals of Δt = 0.1 seconds, Δt = 10 seconds, 

and Δt = 1000 seconds. (Online version in colour)
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Fig. 8. 
Experimental example of a migrating MDA-MB-231 cells on the surface of an agarose 

substrate. The phase contrast image (left panel) presents the outline of the cell, followed by 

contour plots of surface tractions, t1, t2, and t3 in kPa. (Online version in colour)
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Table 1

Table of the viscoelastic material constants for agarose substrate

μ Shear modulus of hyperelastic spring 1600 Pa

K Bulk modulus of hyperlastic spring 3700 Pa

μneq non-equilibrium shear modulus 700 Pa

η Maxwell element viscosity 800 Pa·s
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