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Abstract

Purpose: Improving radiologists’ performance in classification between malignant and benign 

breast lesions is important to increase cancer detection sensitivity and reduce false-positive recalls. 

For this purpose, developing computer-aided diagnosis (CAD) schemes has been attracting 

research interest in recent years. In this study, we investigated a new feature selection method for 

the task of breast mass classification.

Methods: We initially computed 181 image features based on mass shape, spiculation, contrast, 

presence of fat or calcifications, texture, isodensity, and other morphological features. From this 

large image feature pool, we used a sequential forward floating selection (SFFS)-based feature 

selection method to select relevant features, and analyzed their performance using a support vector 

machine (SVM) model trained for the classification task. On a database of 600 benign and 600 

malignant mass regions of interest (ROIs), we performed the study using a ten-fold cross-

validation method. Feature selection and optimization of the SVM parameters were conducted on 

the training subsets only.

Results: The area under the receiver operating characteristic curve (AUC) = 0.805±0.012 was 

obtained for the classification task. The results also showed that the most frequently-selected 

features by the SFFS-based algorithm in 10-fold iterations were those related to mass shape, 

isodensity and presence of fat, which are consistent with the image features frequently used by 

radiologists in the clinical environment for mass classification. The study also indicated that 

accurately computing mass spiculation features from the projection mammograms was difficult, 

and failed to perform well for the mass classification task due to tissue overlap within the benign 

mass regions.

Conclusions: In conclusion, this comprehensive feature analysis study provided new and 

valuable information for optimizing computerized mass classification schemes that may have 

potential to be useful as a “second reader” in future clinical practice.
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1. Introduction

Computer-aided detection and diagnosis schemes are currently being developed for a wide 

range of medical image modalities and applications, such as computed tomography (CT), 

mammography, magnetic resonance imaging (MRI), and virtual colonoscopy. In this study, 

we focus on mass classification in mammography. Most recent statistics report that breast 

cancer is the second most prevalent cancer in women after skin cancer, and ranks second as a 

cause of cancer death in women after lung cancer [1]. It is also a very heterogeneous disease 

[2]. Studies show that the majority of breast cancers are detected among women with no 

known cancer risk factors [3,4]. Thus, a uniform, population-based mammography screening 

protocol is currently recommended for all women who are older than a qualifying age. The 

task of interpreting mammograms is, however, difficult due to the large variability of breast 

abnormalities, overlapping dense fibro-glandular tissues, and the low cancer detection rate 

(i.e., three to five cancers in 1000 non-baseline screening examinations) [5]. The result of 

these issues generates high false positive (FP) recall rates that substantially reduce the 

efficacy of screening mammography.

Although commercialized computer-aided detection schemes have been routinely used in 

clinical practice in many medical institutions to date, these schemes only focus on detecting 

the suspicious mass regions and also produce relatively higher FP rates. Thus, using the 

current computer schemes is unable to help radiologists reduce FP recalls. In order to help 

reduce high FP rates that generate a large number of unnecessary biopsies and/or additional 

expensive imaging examination procedures, developing computer-aided diagnosis (CAD) 

schemes that enable to classify between suspicious breast lesions (e.g., mass-like lesions) 

identified by radiologists into malignant and benign ones has also been attracting research 

interest in recent years [6-9]. Finding optimal features that can be computed from the images 

by the CAD schemes is one of the most important steps to achieve optimal performance in 

classifying between malignant and benign lesions identified from the mammograms. The 

purpose of this study is to investigate an effective artificial intelligent method to search for 

and select optimal or relevant features from a large image feature pool to classify between 

benign and malignant mass regions, and then analyze their performance using a support 

vector machine (SVM) model for the classification task.

To date, many different features have been proposed for mass classification in the literature. 

For example, in [10], Varela et al. investigated a variety of features that incorporated mass 

border information for the classification of mammographic masses. The study compared the 

classification accuracy obtained using different feature space combinations (border, interior 

and outer) on trained 3-layer feed-forward neural networks (with 8 hidden nodes). The 

authors concluded that the border and outer areas contained the most valuable information 

for mass classification. Te Brake et al. [11] presented features related to intensity, contrast, 
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isodensity, location, linear texture, etc. to discriminate malignant masses from normal tissue 

in mammography.

Shi et al. [12] presented a novel mass characterization/classification method based on level 

set segmentation with new image features and patient information. The used image features 

were related to the presence of microcalcifications within or surrounding the mass, 

abruptness of mass margin and patient age. The authors used a linear discriminant analysis 

classifier and stepwise feature selection to merge extracted features into a classification 

score. Nandi et al. presented a novel mass classification method using genetic programing 

and feature selection in [13]. In their experiments, the authors extracted 22 features for each 

region of interest (ROI), namely four edge-sharpness measures, four shape factors and 14 

statistical texture features. They also used five feature selection methods: sequential forward 

selection, sequential backward selection and three statistical measures (Student’s t test, 

Kolmogorov-Smirnov test and Kullback-Leibler divergence) to refine the pool of features 

available to a genetic programming classifier.

Rangayyan et al. [14] proposed acutance and shape measures to discriminate between 

benign and malignant mammographic tumors using 39 images from the Mammographic 

Image Analysis Society (MIAS) database [15] and an additional set of 15 local cases. The 

features were computed on manually-input contours of the tumor ROIs, and the results 

indicated that the computed acutance and shape measures were important for the 

classification task. Retico et al. [16] computed 16 shape, size and intensity features for each 

mass ROI, and used a feed-forward neural network to classify the masses as benign or 

malignant. The experiments were conducted on 226 mass-like lesions (109 malignant and 

117 benign) extracted from a mammographic database.

In [17], Mavroforakis et al. analyzed a list of clinical features for tumor benign/malignant 

classification, and performed statistical analysis on those features including the t-test and 

multivariate analysis of variance. The authors also assessed the discriminative power of each 

of the features using four different classifiers, namely artificial neural networks, SVMs, k-

nearest-neighbor, and linear discriminant analysis. In [18], Kilday et al. introduced a set of 

features based on the normalized radial length, defined as the Euclidean distance of each 

pixel on the object contour to the object’s centroid, which was subsequently applied by other 

groups, also for cancer detection and classification [19-21].

In other earlier work [22,23], Huo et al. examined the relevance of automatic computerized 

schemes to differentiate malignant from benign masses using two features that measure the 

amount of mass spiculation (based on an analysis of the radial gradient of its border/

contour), and with different classifiers. Sahiner et al. [24] presented the rubber band 

straightening transform (RBST) for mass benign/malignant characterization. The RBST 

transforms a band of mass border pixels onto the Cartesian plane. In the RBST-transformed 

image, spiculations approximately resemble vertical lines. The results showed that the 

features extracted from the RBST-transformed image yielded better classification results 

than the same features extracted from the untransformed images. Other studies that 

subsequently incorporated the RBST transform can be found in [25,26].
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Although many image features have been tested independently by different research groups, 

there is no consensus on which features are the optimal features or how to select the optimal 

features for the computer-aided mass classification tasks. Finding the highly-performing and 

robust image features remains a difficult and challenging issue. In this study, we investigated 

a new approach to compare a large number of features that have been previously used, and 

then search for the optimal features for the breast mass classification task. The structure of 

this paper is as follows: In Section 2, the datasets and materials used in this study are 

explained. In Section 3, the methods of the experiments are described. The first subsection 

of Section 3, namely Section 3.1 describes the features computed in our experiments. We 

computed and analyzed altogether 181 shape, texture, contrast, spiculation, and isodensity 

based features as well as features to determine the presence of fat and calcifications in this 

study. Section 3.2 describes the feature selection algorithm (sequential floating forward 

selection with the Bayes classifier [27,28]) to extract relevant features from the initial feature 

set, and Section 3.3 explains the classifier used for the classification task (SVM) and the 

classification (training and validation) methodology. The Results are reported in Section 4, 

and finally, the Discussion and Conclusions are presented in Section 5.

2. Materials

We have assembled a large image database by selecting regions of interest (ROIs) from the 

digitized screen-film-based mammograms. Each ROI depicts one mass region detected by 

radiologists during the original mammogram reading and later verified by pathology 

examinations from the biopsy specimens. Detailed descriptions of the image database and its 

characteristics have been reported in previous studies [19,29,30]. In brief, the original 

screen-film mammograms were collected from several medical institutions, and were 

digitized using several film digitizers (with a pixel size of around 50×50μm and 12-bit gray 

level resolution).

A ROI with a fixed size of 512×512 pixels was extracted from the center of each identified 

suspicious mass region. Using the ROI center as the seed for a region growing algorithm, the 

mass region was segmented by our CAD scheme [31,32] with a defined boundary contour. 

For each segmented mass region, the automated segmentation result was visually examined: 

if there was noticeable segmentation error, the mass boundary was manually corrected (re-

drawn) as reported in our previous study [33]. This process helps yield the high feature 

relevance. Of all the analyzed features, the shape and novel location-based isodensity and 

contrast features would likely be the most affected by the accuracy of the segmentations, as 

an accurate segmentation is a prerequisite for the reliable extraction of these features.

In this study, we used 1200 ROIs (600 malignant masses and 600 benign) randomly selected 

from a local clinical database and the Digital Database for Screening Mammography 

(DDSM) [34]; the ratio of benign/malignant ROIs selected from the local database and from 

the DDSM database was about 50% to 50%. Each ROI image was first reduced 

(subsampled) by a pixel averaging method using a kernel of 8×8 pixels in both the x and y 
directions, thus, increasing the pixel size from 50×50μm in the original digitized image to 

400×400μm in the downsampled image. Figures 1 and 2 show ROI examples of a benign 
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and a malignant mass from our image database, and their corresponding segmentations 

automatically generated by our mass segmentation algorithm.

3. Methods

In this section, we describe the three stages of the classification task, namely feature 

computation (Section 3.1), feature selection (Section 3.2) and classification and 

experimental methodology (Section 3.3).

3.1. Feature computation

In order to extract and select useful features that are fully representative of the mass 

characteristics, they should be extracted from different regions of the mass 

[10,11,19,12,24,32]. We have preliminarily analyzed various features in [35], using 

independent training and testing set experiments. In this study, we extracted and analyzed 

various features based on mass shape, spiculation, contrast, texture, isodensity, as well as the 

presence and location of fat or calcifications. A summary of the computed features 

according to their feature grouping/type and number is given in Table 1. We also combined 

27 previously-computed features [19,32] along with the newly-computed features in Table 1 

for each of the ROIs in our image database. A total of 181 features were thus extracted from 

each of the ROIs to build an initial feature pool. Descriptions of each of the feature groups 

and their computation methodology will be given in turn, in the following subsections.

3.1.1. Shape features—Many different shape or geometric features have been proposed 

in the literature. These include features related to margin sharpness and spiculation, 

circularity, convexity, acutance measure, Fourier descriptors, etc. For a more detailed 

description, the reader is referred to [36]. The shape-based features are computed on all the 

pixels that make up the mass ROI (segmented mass). In this section, we describe all the 

shape features listed in Table 1; there is a mixture of novel and established features in the 

list.

The eccentricity is defined as the ratio of the distance between the foci of the ellipse that has 

the same second-moments as the segmented mass, and its major axis length. Its value varies 

from 0 (a circle) to 1 (a line segment). The equivalent diameter is a scalar that specifies the 

diameter of a circle with the same area as the ROI; it is computed as √4* Area / π whereby 

Area is defined as the number of pixels in the mass ROI. The extent is a scalar that specifies 

the ratio of the pixels in the ROI to the pixels in the total bounding box whereby the 

bounding box is defined as the smallest rectangle containing all the pixels located in the 

region of the mass ROI.

The convex area of the segmented mass specifies the number of pixels in the convex hull of 

the ROI, namely the smallest convex polygon that can contain the ROI. We also computed 

the major and minor axis lengths of the ellipse that has the same normalized second central 

moments as the segmented mass. The orientation of the ellipse that has the same second-

moments as the segmented mass is computed, and it is the angle (ranging from -90 to 90 

degrees) between the x-axis and the major axis of the ellipse. The solidity feature is also 
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computed, and it is defined as the proportion of the pixels in the convex hull that are also in 

the ROI.

The shape factor ratio is (Perimeter2)/ Area as defined in [18,37,36]. The ratio of the major 

axis length to the minor axis length of the ellipse was also computed as a feature, and is self-

explanatory. Finally, we computed the modified compactness that was proposed by 

Rangayyan et al. [14,38] in order to restrict the range of the shape factor ratio to (0, 1), and 

obtain increasing values with higher shape complexity or roughness. The definition of 

modified compactness is given by:  .

3.1.2. Spiculation features—Unlike human eyes that are quite sensitive to the presence 

of mass boundary spiculation, segmenting spiculation patterns both manually and 

automatically is often difficult (as shown in figure 1). In this section, we introduce a new 

method to detect the presence of spiculation within a mass based on the divergence and curl 

of the normalized gradient of the image. The presence of spiculation within the mass region 

has frequently been associated with malignant masses whereas a more homogeneous 

appearance is frequently associated with benign masses [39,40], although benign lesions can 

also be possibly surrounded by the spiculated patterns due to the tissue overlapping on the 

two-dimensional (2D) projection images [41]. Thus, many computerized methods have been 

applied to compute and assess the degree of spiculation as a feature for mass detection 

and/or classification [42-47].

We hereby present novel features to measure the spiculation of the mass regions based on 

the divergence of the normalized gradient (DNG) and the curl of the normalized gradient 

(CNG). The divergence is an operator that measures the magnitude of a vector field’s source 

or sink at a given point. It is a signed scalar that represents the density of the outward flux of 

a vector field from an infinitesimal region around that point. The DNG feature has been 

applied successfully for the detection of lung nodules in computed tomography (CT) images 

in [48,49].

In the context of our application, a benign mass can be modeled as a circular region with 

homogenous intensity against a darker background. The DNG operator applied on the 

normalized image intensity gradient vector field requires the computation of many image 

partial derivatives. For the reduction of noise sensitivity, the original image should be 

blurred with a Gaussian smoothing operator prior to the application of the DNG operator. 

The Gaussian smoothing operator is defined in 2D as  whereby σ 

determines the width or standard deviation of the Gaussian smoothing operator. If we 

consider the Gaussian as an aperture function of some observation, it is also referred to as 

scale [50].

Figure 3 shows the gradient vector field of a 2D circular region with a decreasing intensity 

along its radial axis. The computation of the DNG of this region will produce a maximum 

value at the location of its center point. The DNG is given by , whereby 

 and L is the image intensity.
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On the other hand, if a region is spicular (and non-homogeneous), its gradient vector field 

will look similar to that shown in figure 4. The curl is an operator that measures the degree 

of rotation of a vector field. The direction of the curl is the axis of rotation, and can be 

determined by the right-hand rule. The magnitude of the curl is the magnitude of the rotation 

of the field.

Similar to the computation of the DNG operator, the original image should be blurred with a 

Gaussian smoothing operator prior to the application of the CNG operator, for the reduction 

of noise sensitivity. The computation of the CNG is given by  whereby  is as 

previously defined for the computation of the DNG. From figure 4, it is obvious that the 

field is rotating; the CNG feature will give a high value at the center point of this region. The 

computation of the CNG will produce a high result at the location of the center points of 

spicular regions whereas the DNG will give a high result at the center points of 

homogeneous regions. In the context of our application, we expect a higher result of the 

CNG feature for malignant masses, and a higher result of the DNG feature for benign 

masses.

Also, in order to compute the CNG and DNG features effectively for different-sized masses, 

they have to be computed at multiple scales or standard deviations, σ of the Gaussian 

smoothing operator. We expect the result that maximum responses of the DNG and CNG 

features will be obtained when the width of the Gaussian smoothing operator matches the 

diameter of the mass region. To compute the range and values of σ, we used the method 

proposed by Li et al. [51,52]. Assuming that the diameters of the mass regions are in a range 

of [d0, d1], and the number of scales to be used is N, then we can calculate the scales used 

for a series of Gaussian smoothing filters as follows [51]:

(1)

whereby r = (d1/ d0) 1 /(N–1).

In our experiments, after measuring the sizes of the mass regions, we selected the values of 

d0 = 12, d1 = 100 and N = 9. For each pixel and for both the CNG and DNG features, the 

final feature value is computed as the maximum value from the output of all the individual 

filters at N scales. As the CNG and DNG features should give maximum values at the 

location of the centers of a malignant and benign mass, respectively, we also located the 

maxima points of the CNG and DNG features within each of the segmented mass regions.

The following features were computed over the whole mass region, namely the regions 

within the segmented masks (refer to figures 1 and 2): mean, maximum, minimum, standard 

deviation, and median of the computed CNG and DNG features. The same features (mean, 

maximum, minimum, standard deviation, and median) were also computed over the maxima 
points of the CNG and DNG located within the segmented regions (due to the irregularity of 

the intensities and texture within the mass region, frequently, more than one maxima point is 

obtained per mass region). The total number of computed features to measure spiculation 

within the mass regions is, thus, 20 altogether.
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3.1.3. Features to detect the presence and location of fat within the mass 
regions—Although in the clinical practice radiologists routinely detect and/or examine 

whether there is presence of fat within a mass, which is recognized as a good indicator to 

distinguish between benign and malignant, this feature has rarely been computed and used in 

computerized schemes for classifying masses. We hereby proposed and computed four 

features in this study to determine the location and presence of fat within the mass regions. 

In order to extract the fat regions from the mass ROIs, we applied an empirically determined 

threshold of 2600 to extract the fat regions defined by the locations within the mass 

boundary whose pixel values fell below this threshold. For the first fat-related feature, we 

counted the number of segmented pixels. The second feature is defined as the ratio of the 

value of the first feature to the total pixels of the segmented mass region. In order to 

compute the third feature, we performed connected-component labeling (8-connectivity) on 

the regions extracted from the first (thresholding) step, and counted the number of connected 

regions that were obtained.

The fourth feature is computed to estimate the location of the fat regions within the mass, in 

order to detect their distributions along the border or within the center of the mass region. To 

compute this feature, we first calculated the distances between the centroids (center of mass) 

of all the fat regions (extracted from the third feature) to the centroid of the whole mass 

region. We then computed the average of the distances, and divided this value by the mean 

radial length [18] of the mass region in order to compensate for mass size (i.e. normalization 

for different-sized masses).

3.1.4. Features to detect the presence of calcifications within the mass 
regions—We computed three features to quantify the presence of calcifications within the 

mass regions. First, we extracted the calcified regions within the mass regions using our 

scheme. The first feature to assess the presence of calcifications within the mass is given by 

the area or number of pixels of the calcified regions. The second feature is computed by 

calculating the ratio of this value to the area of the whole segmented mass region. To 

compute the third and final feature, we performed connected-component labeling (8-

connectivity) on the extracted regions, and counted the number of regions obtained.

3.1.5. Texture-based features—Many previous studies have analyzed the usefulness of 

texture features to discriminate masses [24,10,53,54]. An exhaustive list is provided here [8]. 

In this work, we computed 22 gray level run length based features, and four gray level co-

occurrence matrix based features.

We computed the gray level run length based texture features [55] using the toolbox 

provided by Wei [56]. The gray level run length based features consist of: short run 

emphasis, long run emphasis, low gray level run emphasis, high gray level run emphasis, 

short run low gray level emphasis, short run high gray level emphasis, long run low gray 

level emphasis, long run high gray level emphasis, gray level non-uniformity, run length 

non-uniformity, and run percentage. In order to compute the run length texture features, we 

first reduced the gray level range of the images from 4096 to 256 gray levels resulting in an 

8 bit depth in computing the gray level run length matrix. The scheme computed four run 

length matrices along 0, 45, 90, and 135 degrees. The average and maximum values of the 

Tan et al. Page 8

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2015 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



four run length features computed along the four directions were then computed to obtain 

the final feature values.

We also computed four gray level co-occurrence matrix based features, namely, contrast, 

correlation, energy, and homogeneity using a standard computation method [57]. These 

statistics were computed from a gray level co-occurrence matrix (created by calculating how 

often a pixel with gray level value i occurs horizontally adjacent to a pixel with gray level 

value j).

3.1.6. Contrast-based features—Many contrast-based features are proposed in the 

literature for mass detection or classification [58,22,59]; for an exhaustive list, the reader is 

referred to [36,6,8]. In this work, we use four contrast measures previously proposed in 

[11,10,37] and computed over different regions of the mass and background. The contrast 

features were computed between predefined regions between inner and outer segments of 

the mass. In [11], an area outside the mass contour defined as 0.6R where R is the effective 

radius of the segmented region was used as the definition of the outer region; in [10], the 

background region was defined as the region outside the contour and within 2 cm from it. 

Both methods defined the interior segment of the mass as the region inside its contour.

This work differs from the previous methods in that we examined the effects of computing 

the contrast features over different regions of the mass and over different sizes of the 

background. We proposed this new approach of computing the contrast features as different 

regions of the mass and background have different intensity and structural appearance. The 

region at the center of the mass might have different intensities and structure compared to 

the region around its contour. Similarly, the background region immediately outside the 

mass contour might have a different (higher) intensity and structural appearance than a 

background region that is further away from the mass contour. In our computation, we first 

segmented the background or outer region denoted by O, by dilating the segmented mass 

with a flat, disk-shaped (‘disk’) structuring element (SE). We used three different sizes of 

the disk radius to segment the outer region: the mean radial length of the mass, ½ of the 

mean radial length, and ¼ of the mean radial length.

We also defined the inner region denoted by I, by the interior segment of the mass within its 

contour. By performing an erosion operation on region I, we obtained two separate segments 

of the mass: the eroded image after applying the erosion operator, I1 and the resultant image 

obtained by subtracting I1 from I, denoted by I2. In order to perform the erosion operation, 

we also used a ‘disk’ SE with three disk radius sizes: mean radial length of the mass, ½ of 

the mean radial length, and ¼ of the mean radial length. The contrast-based features were 

computed between the inner and outer regions of the mass (between O and I, O and I1, and 

O and I2). The different regions defined for the computation of the contrast-based features 

are depicted more clearly in figure 5. In figure 5(c), I1 is defined as the innermost region of 

the mass (lighter gray: erosion of I by SE = ¼ of the mean radial length), I2 as the mass 

region adjacent to its contour (white: I - I1), and the outer region O is shown in dark gray 

(dilation of I by SE = ½ of the mean radial length).
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The four computed contrast-based features were previously used in [11,10,37]. The first 

contrast feature is defined in [10] as:

(2)

where EI and EO represent the average values of the inner and outer regions, respectively, 

mdense is the average value of the dense tissue within the mass; we had previously defined 

dense tissue in [60] as the region that encompasses the pixel values above the median value 

of the segmented mass (i.e. 50% of the mass region). mfat is defined as the average value of 

the fat tissue within the mass whereby the fat tissue was earlier defined in Section 3.1.3.

The second contrast feature is also defined in [10], and is computed as:

(3)

where σI and σO are the pixel value standard deviations of the inner and outer regions, 

respectively. We computed the third contrast feature [11], representing the distance between 

the normalized histograms of the inner and outer regions:

(4)

where y denotes the pixel value, and HX(y) denotes the value of the normalized histogram of 

region X.

The fourth contrast feature is the simplest and most commonly-computed contrast feature 

[19,11], and is just the difference between the average values of the regions I and O:

(5)

The four features (C1 to C4) were also computed between the regions I1 and O as well as 

between I2 and O. Taking into account the four contrast features computed over the different 

sizes of the inner and outer regions, namely three sizes of O and five defined inner regions, 

we obtain altogether 5×3 = 15 different regions to compute the contrast-based features. As 

we compute four contrast measures over each region, C1-C4, we obtain altogether 15×4 = 

60 contrast features to be given to the classifier at the classification stage.

3.1.7. Isodensity-based features—Some regions that look suspicious in mammograms 

might actually just be structures that look suspicious due to projection. The region of a mass 

should usually be dense, and the presence of many holes or low-intensity subregions within 

the mass is indicative of structure due to projection [11]. Te Brake et al. [11] presented two 

isodensity-based features to quantify the amount of pixels within the mass region that have a 

lower intensity than its background. In [11], the authors incorporated the use of the 

segmented mass region for the inner region, I and 0.6R for the outer region, O. The authors 

also mentioned that one of the limitations of their method was that the location of the low 
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intensity regions within the mass (or their topology) could not be determined using their 

method. To overcome this limitation, we proposed the use of incorporating different sizes 

and locations of the inner mass region with different sizes of the outer mass region. Thus, 

the isodensity-based features were also computed on inner and outer regions defined on the 

mass segments. The definitions of the two computed isodensity features is given in [11], and 

the reader is referred to that reference for the detailed explanation.

As performed in Section 3.1.6 for the computation of the contrast-based features, we 

compute the isodensity features over three sizes of O and five defined inner regions (5×3 = 

15 regions). Altogether, 15×2 = 30 isodensity features were then computed using our 

proposed method.

3.1.8. Previously-computed features—In addition, we had previously computed 27 

ROI or local morphological features as shown in Table 2. A detailed description of these 

features has been provided in our previous publications [19,32,61]. The features in Table 2 

consist of different intensity, contrast, shape, border segment, and topology based features.

3.2. Feature selection – Fast and accurate SFFS algorithm

We have altogether 181 computed features for our image database of 1200 mass ROIs. Due 

to the curse of dimensionality [62], and to avoid the risk of “over-fitting” on the training set, 

we employed a feature selection method proposed by Ververidis and Kotropoulos [27,28].

In general, feature selection methods can be broadly divided into wrappers and filters 
[63,64]. Filters perform feature selection independently of the classifier whereas wrappers 
select features that optimize the correct classification rate (CCR). The method proposed by 

Ververidis and Kotropoulos [27,28] is an improvement of the well-known Sequential 

Forward Floating Selection (SFFS) feature selection method proposed by Pudil et al. [65]. It 

uses the CCR of the Bayes classifier as the criterion employed in SFFS in a wrapper-based 

framework. A popular technique of estimating the CCR is to use N-fold cross-validation. In 

this technique, the dataset is split into N parts. N-1 parts are used as the training data, and 

the remaining part is used as the testing data to estimate the CCR. Each of the N parts is 

used in turn as the testing data. The resulting CCRs of each part are finally averaged to 

obtain the mean CCR (MCCR). In [27], the authors implement repeated N-fold cross-
validation, which is simply the N-fold cross-validation repeated many times [66] as the 

variance of the MCCR estimated by repeated N-fold cross-validation varies less than that 

measured by N-fold cross-validation.

In [27], the authors used statistical tests employing a proved lemma to improve the speed 

and accuracy of SFFS, when the criterion for feature selection is the CCR of the classifier. 

The authors showed that using this method in the context of speech emotion recognition, 

SFFS computational time was reduced, and the CCR for the selected feature subset varied 

less than the CCR of the conventional SFFS method. Although their approach was tested on 

the Bayes classifier and for speech emotion recognition, it can also be applied to other 

applications. However, we chose to re-use the Bayes classifier due to its speed in training 

and validation compared to other classifiers, such as artificial neural networks.
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We reused all the standard parameters that were recommended in [27], except two 

parameters, M, the total number of feature insertions and exclusions, and γ, the difference 

between the cross-validated CCR required to add another feature. First, instead of M = 25 

recommended in [27], we chose M = 35 as initial experiments showed that the CCR graph 

frequently peaked beyond M = 25 and between the value of 25 and 35. Secondly, although γ 

= 0.0125 was used in the previous experiment [27], the study also indicated that γ should be 

selected based on the computational load that one can afford (a lower value of γ means a 

higher consistency of features selected by the algorithm, but a higher computational time is 

required). As a trade-off between computational time requirement and consistency of 

selected features, we selected γ = 0.0075 for our task.

Specifically, the subset of selected features begins with an empty set, as was also 

implemented in [27], and proceeds with M feature insertions and exclusions. At each 

insertion step, the feature that maximizes the MCCR is added to the current feature subset. 

After the insertion of a feature, a conditional deletion step is examined. At a deletion step, a 

feature that maximizes the MCCR on the new feature subset is sought. If the deletion of this 

feature improves the highest MCCR of the original/previous feature subset, it is deleted from 

the feature subset. Otherwise, an inclusion step follows. After deleting a particular feature, 

another feature that satisfies the conditions of the deletion step is searched for another 

deletion. The feature selection algorithm can also start with a randomly-selected feature 

subset, however, initialization with a random feature subset might include features that are 

irrelevant or redundant that might be unbeneficial to the classifier in the long run.

3.3. Classification and experimental methodology

Many classifiers have been proposed for mass classification in the literature including 

artificial neural networks [10,67,68], linear discriminant analysis [24,69] and dynamic fuzzy 

neural networks [70]. In this study, we trained and optimized a SVM classifier using the 

LIBSVM package [71].

In order to train and validate our SVM classifier, we applied a 10-fold cross-validation 

scheme whereby the 600 malignant ROIs and 600 benign ROIs were randomly and 

individually segmented into 10 exclusive partitions or subgroups. In each training and 

testing cycle, 9 malignant and 9 benign subgroups were used to train the model. After 

training, the model was applied to each ROI in the remaining one malignant and one benign 

subgroup to generate a likelihood score of the ROI being malignant. The scores range from 0 

to 1 with a higher score indicating a higher probability of the ROI being cancerous. This 

procedure was iteratively executed 10 times using the different combinations of 9 positive 

and 9 negative subgroups. In this way, each of the 1200 malignant and benign cases will be 

tested once with a model-generated probability score. Feature selection using SFFS and the 

optimization of the SVM parameters were performed only on the training partitions, in order 

to minimize the possibility of introducing bias during the SVM optimization process.

We designed a LIBSVM classifier with the radial basis function (RBF) kernel, defined as 

, α > 0, on the training set of instance-label pairs (xi,yi), i 

= 1,...,l where xi ∈ Rn and . A recommended five-fold cross-
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validation method with a parallel “grid-search” [72] was used to determine the penalty 

parameter of the error term and α. We performed linear normalization of all input features to 

normalize the feature values between 0-1. For input feature vector xi, the corresponding 

linearly-normalized feature vector xi’, is expressed as :

(6)

In order to evaluate the accuracy of our system, we calculated the area under a receiver 

operating characteristic (ROC) curve (AUC). AUC was computed using a ROC curve fitting 

program that applies an expanded bi-normal model and the maximum likelihood estimation 

method (ROCKIT http://www.-radiology.uchicago.edu/krl/, University of Chicago, USA, 

1998). We computed AUC along with the corresponding 95% confidence interval. Since we 

used a 10-fold cross-validation method, 10 SVMs with 10 different combinations of feature 

sets were independently built and tested. The detailed features selected and implemented in 

the 10 SVMs are not exactly identical. We thus also performed an analysis of the features 

that were most frequently selected by the SFFS-based feature selection method for our task 

of mass classification.

Furthermore, to analyze the benefit/usefulness of the modified SFFS feature selection 

algorithm, we compared its performance with the SVM classifier trained with all 181 

features. We also compared modified SFFS’s performance with a different feature selection 

method, namely sequential forward selection (SFS) using an evaluation criterion based on 

achieving a small within-class distance and a large between-class distance [73,74]. The 

performances of the different methods were analyzed by comparing their AUC results, and 

statistical significance tests at the 5% significance level were performed on the average AUC 

results computed per fold.

4. Results

Figure 6 shows the ROC curves using the SVM classifier-generated probability scores for all 

1200 images in our dataset. The area under the ROC curve, AUC = 0.805 with a standard 

deviation of 0.012 and 95% confidence interval of [0.779, 0.828] was obtained for the 

modified SFFS feature selection algorithm. For SFS feature selection combined with SVM, 

AUC = 0.749 with a standard deviation of 0.014 and 95% confidence interval of [0.721, 

0.775]. For SVM trained with all features, AUC = 0.807 with a standard deviation of 0.012 

and 95% confidence interval of [0.782, 0.831]. None of the three methods had differences in 

AUC results that were statistically significant at the 5% significance level, although the 

computed p-values were much lower for modified SFFS compared with SFS (p = 0.0801), 

and for SVM trained with all features compared with SFS (p = 0.0503). For modified SFFS 

compared with SVM trained with all features, the computed p-value was much higher (p = 

0.7420).

We also obtain the confusion matrix in Table 3 using the classifier prediction score of 0.5 as 

a threshold on the probability scores generated by the features selected by modified SFFS 

and trained with the SVM classifier. Table 3 shows that 74.4% (893/1200) of the ROIs are 
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correctly classified by our system whereas 25.6% (307/1200) of ROIs are misclassified, at 

this prediction threshold. In the cancer image subgroup, 75.5% (453/600) are correctly 

predicted whereas in the benign image subgroup, the prediction accuracy is 73.3% 

(440/600). These results indicate that malignant images are more accurately classified or 

predicted by our classification scheme than benign images at this particular threshold.

Table 4 displays the frequency of the selection of features by the SFFS-based feature 

selection algorithm according to their feature groups or type. In the far-left column of Table 

4, the feature type or group is shown. The middle column of Table 4 displays the fraction of 

that feature group out of all available features (181); for example, in the first row of Table 4, 

there are 11 shape features altogether out of the total of 181 computed features. Finally, the 

far-right column displays the percentage of features that were selected in each group, namely 

the average percentage value of selected features within a group, and the standard deviation 

intervals computed over the 10-fold cross-validation experiment. For example, in the first 

row, an average of 60% of 11 shape features (60% × 11 = 6.6 features) were selected over 

the 10-fold cross-validation experiment with standard deviation intervals of 15% or 1.65 

features.

5. Discussion

Improving classification accuracy of breast lesions has high clinical impact to help increase 

cancer detection sensitivity while also reducing the FP recall rates and/or the number of 

unnecessary benign biopsies. For this purpose, selecting optimal image features and 

accurately assessing their values play a critical role in lesion classification. Although 

radiologists routinely assess three image features (namely lesion density in relationship to its 

background, lesion boundary shape, and the presence of fat inside the lesion) in interpreting 

mammograms, previously-developed CAD schemes typically used many different image 

features. Since the features used by different schemes also vary substantially, there is no 

agreement or accepted reference on what are the most effective features for classifying 

between malignant and benign masses. In this work, we conducted a comprehensive feature 

analysis that covered the majority of feature categories used in the previous CAD schemes. 

From these feature categories, we extracted and computed 181 features to build an initial 

feature pool. We examined and applied a novel wrapper-based SFFS feature selection 

algorithm. Although this new algorithm has shown to perform faster and more accurately 

than the conventional SFFS algorithm in a speech emotion recognition problem [27,28], to 

the best of our knowledge, it has never been previously applied to the field of CAD of 

medical images.

In this study we demonstrated that using this modified SFFS algorithm to select mass image 

features, a SVM classifier yielded an AUC value of 0.805 for image-based evaluation on our 

dataset. This value is very comparable with the AUC result achieved by training the SVM 

using all 181 features (AUC = 0.807). The SFFS method also selects only 25.8±6.4 features 

on average per fold, thus requiring a much lower feature computation time requirement 

compared with SVM trained on all features. To compute all 181 features on the whole image 

database of 1200 ROIs, the total processing time using a regular Dell precision T3600 

workstation was around 23 minutes whereas the processing time required to compute 26 
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features selected by SFFS on the same workstation was around 2 minutes. This represents a 

speed-up of around 11 fold (i.e. around 11 times faster) in the feature computation time 

requirement with SFFS feature selection. The classifier training and validation time 

requirement will also likely be less for the 26 features; however, the improvement gained at 

this stage is likely to be negligible compared to the speed-up obtained by SFFS at the feature 

computation stage.

Although the image-based classification results are typically lower than the case-based 

classification in which the information of two mass regions depicting on craniocaudal (CC) 

and mediolateral oblique (MLO) is combined, the classification performance of our study is 

higher or very comparable with respect to other methods reported in the literature [53,75,10] 

as references (shown in Table 5). Furthermore, the performance of our mass classification 

system is also comparable to the average performance of radiologists (e.g. AUC = 0.81 in 

[22]).

Although previous CAD schemes have used many complicated texture features that may not 

be recognizable by the human eye, aiming to improve classification of breast masses, 

radiologists actually use and access much simpler image features including mass shape, 

presence of fat within the mass region and mass density compared to its background in their 

decision making. From the results in Table 4, it can be observed that the shape features were 

selected most frequently by the SFFS-based algorithm. This was followed by the features to 

detect the presence of fat and the isodensity features. These results correlate well with our 

observation of the visual preference of the feature selection made by the radiologists in 

reading mammograms. Hence, the results of this study indicated that although there may be 

quite a big difference between human vision and computer vision, a computer-aided scheme 

that uses a small number of simple features mimicking the common features used by 

radiologists may also perform well in the mass classification task. We believe that a 

computer-aided scheme that uses the same types of features with the radiologists can have a 

number of advantages. For example, the computed feature values can be more robust due to 

the elimination of the inter-reader variability during the subjective assessment of these 

features. The combination of these features can also be made by more powerful machine 

learning or statistical models (e.g., SVM), so that the classification results may not be 

duplicated with radiologists’ decisions. Finally, due to the simplicity of the features used in 

the scheme, the scheme classification results can be more explainable to the radiologists and 

thus increase their confidence to consider the scheme classification results. This is also very 

important when applying an automated scheme in clinical practice. Therefore, this result, 

combined with the similar AUC results obtained by our SVM classification scheme 

compared to the average performance of radiologists, indicates that our proposed mass 

classification scheme has potential to function as a “second reader” in assisting radiologists 

to make better decisions about whether to recall the women and/or recommend lesion biopsy 

in clinical practice.

From Table 4 we also found that the spiculation features were not selected frequently by the 

SFFS algorithm, and implemented in the SVM classifier indicating that these features did 

not perform well in the mass classification task when applied to our dataset. To understand 

this unexpected result, we examined the spiculation feature values computed on some of the 
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malignant and benign mass ROIs in our image database. Figure 7 and figure 8 display an 

example of a malignant mass and a benign mass, respectively. In both figures, the DNG and 

the CNG features were computed, and their maximum values corresponding to the location 

of the maxima points within the segmented mass were located and computed across several 

scales, σ. Note that in figure 8, there are two maxima points of the CNG feature within the 

image computed at the same scale; the maximum (returned) value is the blue ‘plus’ marker 

located close to the center of the mass region.

From figures 7 and 8, we observed that the maximum values of the DNG and the CNG 

features are close to the mass center. Some other examples of the maximum DNG and CNG 

features obtained on some of the benign and malignant masses in our database are displayed 

in figure 9; the top row of figure 9 displays the malignant masses whereas the benign masses 

are shown in the bottom row.

From our experiments and the results displayed in figure 9, we found that the DNG feature 

yields slightly higher values for the malignant masses. We had initially expected the benign 

masses to yield a higher value of the DNG due to their assumed homogeneous intensity; 

however, the results indicate that the region within the benign masses, in general, might not 

be homogeneous. Another surprising result that is linked to the first result is that the CNG 

feature is also high for the benign masses. Our initial hypothesis was that the CNG feature 

will yield a high value for malignant masses due to its spicular interior and produce a low 

value for benign masses. However, the results show that both the malignant and benign 

masses yield a high value of the CNG feature. These unexpected results could be due to 

tissue overlap within the benign mass regions. The results indicate that it may not be feasible 

to measure the amount of spiculation in 2D mammographic images using the DNG and 

CNG features; however, these features may be useful for measuring spiculation in higher 

dimensions (3D). This hypothesis needs to be analyzed in our future work/studies.

We also recognized that this preliminary study has a number of limitations. For example, 

this is only a technology development study. We only assess the mass classification 

performance of a standalone computerized scheme. No observer performance study was 

involved. As a result, a number of empirically-determined thresholds or parameters (e.g., a 

fixed threshold of 2600 to detect fat inside the mass region) may not be optimal. In order to 

overcome these limitations, the adaptive thresholds or image processing methods need to be 

developed and tested with the feedback from the observers (e.g., radiologists) in the future 

studies. In addition, although a number of previous studies have shown that the use of 

computer-aided diagnosis schemes could be beneficial in the clinical practice, evaluating the 

impact of our scheme on radiologists’ performance is also an important avenue for future 

studies.

In summary, we developed and tested a new computer-aided breast mass classification 

scheme through a comprehensive image feature selection process. From a large pool of 181 

image features computed from many different feature categories, we demonstrated that using 

an efficient and accurate SFFS-based feature selection algorithm, relevant features were 

selected and provided to a SVM model in a 10-fold cross-validation experiment, whereby 

feature selection and parameter tuning were performed only on the training subsets in order 
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to minimize bias due to parameter optimization/tuning of the SVM model. In this limited 

study performed on 1200 ROIs, our CAD system performs competitively with an image-

based AUC of 0.805 in this challenging task of mass classification in mammography. It is in 

the agenda to examine the performance of our scheme on a more extensive and diverse 

image database in future work to further evaluate the feasibility or potential of using CAD 

schemes as a “second reader” to assist radiologists in breast mass classification in future 

clinical practice.
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Fig. 1. 
Example of a malignant mass ROI and its corresponding segmentation mask
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Fig. 2. 
Example of a benign mass ROI and its corresponding segmentation mask
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Fig. 3. 
An example of the vector field of the gradient of a circular region with a decreasing intensity 

along its radial axis. The computation of the divergence of the normalized gradient (DNG) 

of this region will produce a maximum value at the location of its center point
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Fig. 4. 
An example of the vector field of the gradient of a circular region with spicular texture or 

intensities. The computation of the curl of the normalized gradient (CNG) of this region will 

produce a maximum value at the location of its center point
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Fig. 5. 
A (a) malignant mass, (b) its original segmentation mask and (c) different regions defined 

for computation of the contrast-based features: I1 (innermost lighter gray region of the 

mass), I2 (white region of the mass adjacent to its contour), and O (darker gray background 

region). Three sets of contrast features are computed from (1) between O and I whereby I is 

the interior segment of the mass within its contour (I1 + I2), (2) between O and I1, and (3) 

between O and I2
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Fig. 6. 
ROC curves of the fast and accurate SFFS feature selection algorithm (SFFS), SVM trained 

with all features (All feas), and SFS based on a small within-class distance and a large 

between-class distance (SFS) of applying our image-based mass classification system to 

correctly classify the mass ROIs in our image database as benign or malignant. The 

computed AUC results and 95 confidence intervals are as follows – SFFS: 0.805 [0.779, 

0.828]; All feas: 0.807 [0.782, 0.831] and SFS: 0.749 [0.721, 0.775].

Tan et al. Page 27

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2015 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
A malignant mass, the maxima point where the DNG feature is maximal (red ‘cross’ marker; 

DNG = 3.5, computed at σ = 3.9), and the maxima point where the CNG feature is maximal 

(blue ‘plus’ marker; CNG = 6.8, computed at σ = 14.7)
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Fig. 8. 
A benign mass, the maxima point where the DNG feature is maximal (red ‘cross’ marker; 

DNG = 4.5, computed at σ = 6.6), and the maxima point where the CNG feature is maximal 

(blue ‘plus’ marker; CNG = 31.8, computed at σ = 31.7). The green ‘dot’ marker shows the 

location of another lower maxima point of the CNG, computed at the same scale as the other 

(blue) maxima point
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Fig. 9. 
Examples of (a) first malignant mass (DNG = 10.9; CNG = 39.8), (b) second malignant 

mass (DNG = 4.6; CNG = 9.5), (c) third malignant mass (DNG = 4.4; CNG = 5.3), (d) first 

benign mass (DNG = 12.6; CNG = 10.2), (e) second benign mass (DNG = 1.6; CNG = 9.9), 

(f) third benign mass (DNG = 0; CNG = 8.8)
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Table 1

Summary of newly-computed CAD image features according to feature type, number and description

Feature type Feature
number

Description

Shape 1-11 Eccentricity, equivalent diameter, extent, convex area, major axis length,
minor axis length, orientation, solidity, shape factor ratio, ratio of major
to minor axis length, modified compactness

Fat 12-15 Size (pixel number), size factor ratio (size/mass area), region number,
average distance to the mass center (average distance/mean radial length
of mass region)

Presence of
calcifications

16-18 Size (pixel number), size factor ratio (size/mass area), region number

Texture 19-44 4 gray level co-occurrence matrix based features, 22 average and
maximum values of gray level run length based texture features
(computed along 0, 45, 90, and 135 degrees)

Spiculation 45-64 Features computed on the maxima points and on the whole image of the
divergence of the normalized gradient and the curl of the normalized
gradient of the segmented mass regions

Contrast 65-124 Contrast-based features (previously defined in [11,32,10]) computed for
different-sized regions and locations of the segmented mass and
background

Isodensity 125-154 Isodensity-based features (previously defined in [11]) computed for
different-sized regions and locations of the segmented mass and
background
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Table 2

List of local image features previously proposed in [19,32,61]

No. Feature

1 Region conspicuity

2 Region size

3 Region contrast

4 Average local noise (pixel value fluctuation)

5 Standard deviation of local noise

6 Skewness of local noise

7 Mean radial length / region size

8 Standard deviation of radial lengths

9 Skewness of radial lengths

10 Ratio between the maximum and minimal radial length

11 Shape factor ratio (perimeter of boundary2 / region size)

12 Region circularity

13 Standard deviation of pixel values inside growth region

14 Skewness of pixel values inside growth region

15 Kurtosis of pixel values inside growth region

16 Average value of gradient of boundary contour pixels

17 Standard deviation of gradient of boundary contour pixels

18 Skewness of gradient of boundary contour pixels

19 Standard deviation of pixel values in the surrounding background

20 Skewness of pixel values in the surrounding background

21 Kurtosis of pixel values in the surrounding background

22 Average noise of pixel values in the surrounding background

23 Standard deviation of pixel value noise in the surrounding background

24 Skewness of pixel value noise in the surrounding background

25 Ratio of number of “minimum” pixels inside growth region

26 Average pixel value depth of “minimum” pixels inside growth region

27 Center position shift (distance between gravity center and local minimum) / region size
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Table 3

A confusion matrix of prediction results using the fast and accurate SFFS feature selection algorithm, and 

obtained by applying a threshold of 0.5 on the classifier-generated probability scores

Prediction -> Benign images Malignant images

Benign images 440 160

Malignant images 147 453
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Table 4

Features selected by the SFFS-based feature selection algorithm in the ten-fold cross-validation experiments. 

The 181 proposed features can be divided into 8 feature groups or types listed in the far-left column. The 

fraction of the features represented in each group is shown in the middle column. The last column displays the 

average percentages of the features selected by the SFFS-based algorithm along with their standard deviation 

intervals

Feature type Fraction Average percentage and std. dev. intervals

Shape 11/181 60.0±15.0%

Fat 4/181 40.0±24.2%

Presence of calcifications 3/181 6.7±14.1%

Texture 26/181 18.8±6.4%

Spiculation 20/181 14.0±7.0%

Contrast 60/181 7.7±3.9%

Previously-computed morphological features 27/181 17.4±4.3%

Isodensity 30/181 22.0±5.5%
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Table 5

Performance level (AUC values) and database description of several previously reported studies applying CAD 

schemes for mammographic mass classification

CAD system Year AUC Comments on number of masses and on reported AUC
values

Varela et al. [10] 2006 0.81 1076 mass ROIs trained and tested using a leave-one-
case-out method

Shi et al. [12] 2008 0.84 329 ROIs (132 benign and 197 malignant) evaluated as an
independent test set

Retico et al. [16] 2006 0.80 226 massive lesions (117 benign and 109 malignant)
trained and tested using 5 replications of the two-fold
cross-validation method [76]

Mudigonda et al. [53] 2000 0.85; 0.67 (jack-
knife classification)

54 images (28 benign and 26 malignant) from a local
database and the MIAS database

Land [77] 2004 0.78 1979 cases (994 benign and 985 malignant) trained and
tested using a five-fold cross-validation method

Huo [23] 2000 0.82 or 0.81 110 cases (50 malignant and 60 benign) evaluated as an
independent test set. AUC value depends on the dataset
and on whether the hybrid or ANN classifier was used

Heidt [78] 2009 0.60 206 ROIs (92 benign and 114 malignant) trained and
tested using a ten-fold cross-validation method

Eltonsy [79] 2007 0.80 350 cases (82 normal and 268 malignant) trained and
tested using a five-fold cross-validation method
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