Table 5.
Coefficients of the regression of de-regressed EBV on GEBV
Trait | Scenario | BSSVS | BayesC | RR-BLUP | BLUP-SSVS | BLUP-C |
---|---|---|---|---|---|---|
Protein | FULL | 0.926 | 0.907 | 0.753 | 0.894 | 0.876 |
RAN50 | 0.779 | 0.747 | 0.633 | 0.905 | 0.896 | |
TOP50 | 1.045 | 1.035 | 0.786 | 1.001 | 0.994 | |
BOT50 | 1.001 | 1.021 | 0.599 | 0.991 | 0.979 | |
UD | FULL | 0.967 | 0.969 | 0.800 | 0.929 | 0.933 |
RAN50 | 0.919 | 0.905 | 0.763 | 0.958 | 0.950 | |
TOP50 | 1.150 | 1.153 | 0.958 | 1.076 | 1.078 | |
BOT50 | 1.246 | 1.148 | 0.622 | 1.107 | 1.109 | |
SCS | FULL | 1.006 | 1.015 | 0.888 | 0.983 | 0.979 |
RAN50 | 1.000 | 0.999 | 0.883 | 0.994 | 0.988 | |
TOP50 | 1.497 | 1.499 | 1.243 | 1.116 | 1.118 | |
BOT50 | 1.190 | 1.208 | 0.830 | 1.154 | 1.156 | |
IFL | FULL | 0.914 | 0.912 | 0.682 | 0.886 | 0.883 |
RAN50 | 0.887 | 0.893 | 0.675 | 0.890 | 0.892 | |
TOP50 | 1.268 | 1.292 | 0.699 | 1.000 | 1.001 | |
BOT50 | 1.177 | 1.178 | 0.691 | 0.994 | 0.995 | |
DLO | FULL | 0.840 | 0.837 | 0.615 | 0.816 | 0.805 |
RAN50 | 0.673 | 0.683 | 0.509 | 0.818 | 0.814 | |
TOP50 | 1.017 | 1.018 | 0.788 | 0.928 | 0.932 | |
BOT50 | 0.637 | 0.695 | 0.392 | 0.931 | 0.933 | |
LON | FULL | 0.850 | 0.847 | 0.649 | 0.825 | 0.813 |
RAN50 | 0.721 | 0.718 | 0.543 | 0.836 | 0.836 | |
TOP50 | 1.032 | 1.029 | 0.821 | 0.935 | 0.937 | |
BOT50 | 0.543 | 0.708 | 0.417 | 0.941 | 0.945 |
Regressions are performed for six traits, five different models and four training scenarios using all (FULL), at random 50% (RAN50), the best 50% (TOP50), or the worst 50% (BOT50) of the training dataset.