Skip to main content
. 2014 Sep 25;46(1):52. doi: 10.1186/s12711-014-0052-x

Table 5.

Coefficients of the regression of de-regressed EBV on GEBV

Trait Scenario BSSVS BayesC RR-BLUP BLUP-SSVS BLUP-C
Protein FULL 0.926 0.907 0.753 0.894 0.876
RAN50 0.779 0.747 0.633 0.905 0.896
TOP50 1.045 1.035 0.786 1.001 0.994
BOT50 1.001 1.021 0.599 0.991 0.979
UD FULL 0.967 0.969 0.800 0.929 0.933
RAN50 0.919 0.905 0.763 0.958 0.950
TOP50 1.150 1.153 0.958 1.076 1.078
BOT50 1.246 1.148 0.622 1.107 1.109
SCS FULL 1.006 1.015 0.888 0.983 0.979
RAN50 1.000 0.999 0.883 0.994 0.988
TOP50 1.497 1.499 1.243 1.116 1.118
BOT50 1.190 1.208 0.830 1.154 1.156
IFL FULL 0.914 0.912 0.682 0.886 0.883
RAN50 0.887 0.893 0.675 0.890 0.892
TOP50 1.268 1.292 0.699 1.000 1.001
BOT50 1.177 1.178 0.691 0.994 0.995
DLO FULL 0.840 0.837 0.615 0.816 0.805
RAN50 0.673 0.683 0.509 0.818 0.814
TOP50 1.017 1.018 0.788 0.928 0.932
BOT50 0.637 0.695 0.392 0.931 0.933
LON FULL 0.850 0.847 0.649 0.825 0.813
RAN50 0.721 0.718 0.543 0.836 0.836
TOP50 1.032 1.029 0.821 0.935 0.937
BOT50 0.543 0.708 0.417 0.941 0.945

Regressions are performed for six traits, five different models and four training scenarios using all (FULL), at random 50% (RAN50), the best 50% (TOP50), or the worst 50% (BOT50) of the training dataset.