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Abstract

Background—Genome-wide association studies (GWAS) have identified thousands of genetic

variants that influence a variety of diseases and health-related quantitative traits. However, the

causal variants underlying the majority of genetic associations remain unknown. The Cohorts for

Heart and Aging Research in Genomic Epidemiology (CHARGE) Targeted Sequencing Study
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aims to follow up GWAS signals and identify novel associations of the allelic spectrum of

identified variants with cardiovascular related traits.

Methods and Results—The study included 4,231 participants from three CHARGE cohorts:

the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, and the

Framingham Heart Study. We used a case-cohort design in which we selected both a random

sample of participants and participants with extreme phenotypes for each of 14 traits. We

sequenced and analyzed 77 genomic loci, which had previously been associated with one or more

of 14 phenotypes. A total of 52,736 variants were characterized by sequencing and passed our

stringent quality control criteria. For common variants (minor allele frequency ≥1%), we

performed unweighted regression analyses to obtain p-values for associations and weighted

regression analyses to obtain effect estimates that accounted for the sampling design. For rare

variants, we applied two approaches: collapsed aggregate statistics and joint analysis of variants

using the Sequence Kernel Association Test.

Conclusions—We sequenced 77 genomic loci in participants from three cohorts. We

established a set of filters to identify high-quality variants, and implemented statistical and

bioinformatics strategies to analyze the sequence data, and identify potentially functional variants

within GWAS loci.
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In the past few years, genome-wide association studies (GWAS) have successfully identified

associations of common genetic variations with a variety of diseases and health-related

quantitative traits.1 However, in most cases neither the gene underlying disease

susceptibility nor the spectrum of candidate functional variants has been identified. Within a

genomic locus identified by GWAS, detailed examination of all genetic variants is required

to discover causal variant(s), to estimate their impact on disease susceptibility, and to

identify their functional roles. The large number of low-frequency and rare variants that

exist within any given GWAS locus vastly outnumber common variants and may contribute

significantly to the genetic architecture of disease.2 With the advent of genome sequencing

using next-generation technologies, targeted sequencing can be conducted at high-

throughput to identify lower frequency variants within regions identified by GWAS

associations. Targeted sequencing of protein-coding genes identified by GWAS has been

demonstrated to identify a large excess burden of rare functional alleles in persons at

extreme ends of quantitative traits such as level of circulating triglycerides.3 However, many

GWAS signals have been located in introns or flanking regions of protein coding genes and

are poorly correlated with functional variants in protein-coding genes, and at least 40% of

GWAS signals are located in genomic regions uncorrelated with known missense variants,4

suggesting that most GWAS signals are regulatory in nature.2 Targeted sequencing of

implicated genomic regions beyond exons may identify functional alleles involved in gene

regulation. One emerging feature of GWAS is the existence of multiple apparently

pleiotropic regions that underlie a number of different disease phenotypes, and targeted

sequencing may aid in defining the genetic architecture of such regions.
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The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE)

consortium5 is a collaborative program of prospective population-based cohorts to leverage

existing clinical, laboratory, and computational resources to identify susceptibility genes

using genome-wide approaches such as GWAS for subclinical quantitative measures and

clinical manifestations of cardiovascular, lung, and blood diseases and their risk factors.

CHARGE cohorts have led or contributed to GWAS that have uncovered hundreds of loci

for many dozens of heritable phenotypes. Clinical disease phenotypes studied by GWAS

include atrial fibrillation, stroke and chronic obstructive pulmonary disease. Quantitative

measures of subclinical cardiovascular measures that have been the focus of GWAS include

electrocardiographic intervals, echocardiographic left ventricular internal diameter, and

ultrasonographic carotic artery intimal medial thickness, and quantitative measures of CVD

risk factors such as systolic blood pressure, body mass index and fasting insulin. Common

pleiotropic regions appear to underlie genetic variation contributing to several of these

measures, for example SNPs in 12q24.12 were associated with coronary heart disease,

hypertension, anemia and retinal vein caliber.6

The CHARGE Targeted Sequencing Study aims to follow up GWAS signals to

comprehensively localize the functional variants, to evaluate the contribution of rare variants

to a wide array of cardiovascular related traits. A total of 77 genomic loci previously

implicated by GWAS were selected and sequenced in participants from three CHARGE

cohorts: the Atherosclerosis Risk in Communities Study (ARIC),7 the Cardiovascular Health

Study (CHS),8 and the Framingham Heart Study (FHS).9 Here we summarize the study

design and the bioinformatic and statistical analysis strategies used in the CHARGE

Targeted Sequencing Study.

Methods

Study Design

The CHARGE Targeted Sequencing Study used a case-cohort study design in which a

random sample was selected from all three cohorts at baseline. We planned for the Cohort

Random Sample to include approximately 2,000 individuals, 1,000 participants from ARIC,

500 participants from CHS, and 500 participants from FHS, with proportions from each

study reflecting relative cohort sizes with equal numbers of men and women. In addition to

the Cohort Random Sample, approximately 200 participants (generally 100 from ARIC, 50

from CHS, and 50 from FHS) from each of 14 key phenotypes were selected for sequencing

on the basis of either case status for discrete phenotypes or extreme values of quantitative

traits. The phenotypes studied (Table 1) were atrial fibrillation, blood pressure, body mass

index, bone mineral density, C-reactive protein, carotid intima-media thickness,

echocardiography, electrocardiographic PR and QRS interval, fasting insulin, hematocrit,

pulmonary function, retinal venule diameter, and stroke. Because individuals initially

selected for the Cohort Random Sample or some Phenotype Groups could satisfy the criteria

for one or more Phenotype Group’s extreme sampling, the achieved number with extreme

values for each phenotype was often larger than the target number of 200. Detailed

information regarding the criteria for the selection of study participants for each phenotype

is provided in the Supplemental Materials.
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Participants in the CHARGE Targeted Sequencing Study had sufficient DNA for

sequencing, self-reported ethnicity as non-Hispanic white, and availability of prior

genotyping results. In addition, participants from ARIC and CHS had no evidence for

relatedness to other individuals within the study. However, FHS participants in one

Phenotype Group could be related to participants in another Phenotype Group, and could be

related to members of the Cohort Random Sample. Institutional Review Boards at

participating centers approved the study, and participants gave informed consent. The

detailed description of each cohort is available in the Supplemental Materials.

Target selection

The 77 targeted regions selected for sequencing encompassed approximately 2 megabases

(Mb) of the genome. Thirty-three of these regions had been shown to be associated with one

of the investigated phenotypes by previous GWAS (Table 2a). The remaining 44 targeted

regions had been shown to exhibit pleiotropy. For this work, we defined evidence of

pleiotropy as a region or locus containing one to many genes having displayed strong

associations (p < 5 × 10−8) with 2 or more traits in multiple genome-wide association studies

(Table 2b).

Library Preparation, Sequencing and Variant Calling

Detailed description of library preparation and sequencing could be found in the

Supplemental Materials. In brief, the targeted regions were captured by a specific SOLiD™

platform-based multiplexed capture sequencing protocol developed at the Baylor College of

Medicine Human Genome Sequencing Center (HGSC). The enriched libraries were then

pooled to form an 8-sample pool for multiplexed sequencing. Each sequencing pool was

subsequently sequenced on one quadrant of a SOLiD™ V4 slide using Life Technologies’

Barcode Fragment Sequencing Kits and methods.

The raw short reads were then aligned to the reference human genome (NCBI Genome

Build 36, hg18) using BFAST,10 producing BAM files containing various mapping

information. For samples requiring multiple sequencing ‘events’, multiple BAM files were

merged to generate a single BAM file per sample. The current project was focused on single

nucleotide polymorphisms (SNPs), whereas neither small indels nor large copy number

variations were investigated. We applied SAMtools11 to each sample-level BAM and

generated pileup format files containing a base-by-base summary of the reads overlapping

each variant site and a variant call. This list of putative SNPs was post-processed to filter

variants with apparent strand-bias, low allele fraction, low coverage, or low quality to

produce a high-quality variant list.

Quality Control (QC)

Because data from sequencing experiments can have errors at multiple levels, such as

variant calls and read mapping, we implemented a multilevel approach to identify sites with

true variation for use in downstream association analyses. All QC procedures were carried

out in the statistical platform R or Java, in combination with SAMtools.11
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Preliminary QC Procedures in Sequencing Laboratory

The first level of quality control took place through laboratory procedures. After sequencing

a sample to the target depth, we evaluated several QC metrics including alignment rate and

uniqueness to validate that the sequencing performed as expected. Base and quality calling

for the SOLiD data was performed on-instrument using standard vendor software and

settings. To gauge the overall performance of the capture process, sample-level BAMs were

also subjected to a capture analysis QC pipeline to obtain additional metrics such as the

proportion of the aligned reads that mapped to the targeted region and the proportion of

targeted bases at various coverage levels. Samples that met a minimum of 65% of the

targeted bases at 20× or greater coverage were submitted for subsequent analysis and QC.

For each successfully sequenced sample, we confirmed sample identity and checked purity

using the ERIS tool suite (https://github.com/dsexton2/ERIS) to compare sequence data to

genotypes from available GWA SNP arrays. Using an ‘e-GenoTyping’ approach, we

screened all sequence reads for exact matches to ‘probe’ sequences defined by the variant

and position of interest, along with 11 bases of sequence flanking either side of the SNP site.

In this process, we removed SNP array sites that were non-specific and over- or under-

covered before comparing the read data to the variants for all samples in the project. Based

on our previous empirical experience, we used thresholds of 90% self-concordance and

next-best matches below 75% to identify samples that demonstrated minimal contamination

and confirmed sample identity. We informatically unswapped any samples with clear

evidence of mislabeling by attaching the appropriate sample names. Any samples that

appeared to be either cryptically swapped or significantly contaminated were resequenced

and rescreened for inclusion in the study.

Variant-level QC

Each cohort individually implemented an extensive QC pipeline for all of their own samples

that passed the laboratory QC procedures. Our QC pipeline consisted of a series of variant-

level filtering steps followed by QC on individual samples (summarized in Table 3). Before

applying these steps, we first pre-filtered the raw data to remove any variants that mapped

more than 100 base pairs from the requested target capture region. We further removed

potentially low quality reads by filtering variants with a Phred-scaled base quality score12

(−10 log10 p, where p is the probability of calling error) less than 30, with less than two

reads of the alternate alleles, and variants with a depth of coverage of less than 10 total

reads.

At the “sample-SNP” filtering stage, we assessed each variant within each sample in terms

of allelic imbalance and strand bias. Heterozygote genotypes were removed if their alternate

to reference allele ratio was disproportionate, defined to be smaller than 0.2 or larger than

0.8 for one allele. We did not take into account of copy number variations (Supplemental

Materials). For strand bias, we kept only variants with alternate allele reads obtained from

both the positive and negative strands.

Finally, each variant was evaluated across all samples. We removed SNPs that had greater

than 20% missingness, had more than 2 observed alleles, or were part of an overly dense
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SNP cluster (3 or more variants in a 10 bp window) since too many variants within a short

genomic interval can indicate regional sequencing errors. Then, using only samples from the

Cohort Random Sample, we filtered SNPs that deviated from the expectations of Hardy-

Weinberg equilibrium (HWE, P<1×10−5) to identify excess heterozygosity that may have

been induced by mismapped reads.

Sample-level QC

After variant-level QC was completed, each cohort conducted a quality assessment of the

final sequence data based on a number of measures. Within each cohort, a sample was

flagged as potentially poor quality if it fell beyond the lower or upper 2.5th percentile of any

of 8 selected measures: mean mapping quality score across all variants; mean fold coverage;

mean transition to transversion (Ti/Tv) ratios; mean heterozygote to homozygote ratio; mean

nonsynonymous to synonymous ratio; number of singletons; number of doubletons; and

percentage of sites with coverage greater than 20×. However, none of samples showed

systematically low quality. We therefore kept all the sequenced samples, but recorded these

quality metrics in a joint sample information file. Phenotype groups, however, could further

examine these samples, and decide whether to remove some of them in their respective

association analyses.

SNP Information and Functional Annotation

A SNP information file combining information across the three cohorts and all sequence

data was produced after QC, including summaries and functional annotations for the SNPs.

The summaries included the SNP position, reference and alternative alleles, sample size,

genotype counts, allele counts, allele frequencies, average mapping quality, average SNP

calling quality, lower 2.5 and upper 97.5 percentiles of read depths, genotype missing rate,

and minimum p-value of the Hardy-Weinberg equilibrium test within the Cohort Random

Sample. Functional annotations were produced using a combination of ANNOVAR,13

dbNSFP14 and custom internal tools. SNP positions referring to the RefSeq15 gene

definition were annotated with ANNOVAR. Functional predictions for nonsynonymous

mutations, including LRT,16 SIFT,17 PolyPhen-2,18 and MutationTaster,19 were annotated

with dbNSFP. Other essential functional annotations included conservation scores, such as

GERP++,20 allele frequencies observed in the 1000 Genomes Project,21 and various

regulatory region annotations from the ENCODE Project,22 the ORegAnno database23 and

the TRANSFAC database24 accessed through the UCSC Genome Browser.25 We

recommended that phenotype working groups take into account various types of supporting

evidence in the interpretation of association results.

Statistical Analysis

Common Variants—The CHARGE Analysis and Bioinformatics Committee

recommended performing single marker analyses for each common variant within a target.

Although individual Phenotype Groups implemented this threshold differently, common

variants were loosely defined as those with allele frequency of ≥1%, which corresponded to

variants where there were at least 50 individuals with one or two minor alleles across the

entire study.
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We performed two regression analyses – an unweighted analysis to obtain p-values for

association and a weighted analysis to obtain effect estimates and estimated standard errors.

The weighted analysis accounted for the sampling design by assigning different weights to

extreme samples and to individuals from the Cohort Random Sample. Extreme samples

were weighted by 1, whereas individuals of Cohort Random Sample were weighted by the

inverse of their probability of inclusion in each cohort. More details of the sampling weight

is described at Lumley T, Dupuis J, Rice KM, Barbalic M, Bis JC, Cupples LA, et al. http://

stattech.wordpress.fos.auckland.ac.nz/files/2012/05/design-paper.pdf. For both analyses, we

used data from all subjects. To produce p-values for association between each variant and

the phenotype of interest, we used standard regression methods: linear regression or linear

mixed effects models (FHS) for continuous phenotypes, logistic regression or generalized

estimating equation models (FHS) for dichotomous outcomes, and Cox proportional hazards

regression with robust variance or Cox proportional hazards regression (with clustering on

pedigrees with robust variance in FHS)26,27 for survival outcomes. The different models

used in FHS aimed to address relatedness in FHS subjects. Because these analyses were

intended to follow up on GWAS loci, working groups typically used the same phenotype

definition, adjustment variables, and additive genetic models (0/1/2 copies) as in the

discovery GWAS analyses.

Results from each study (estimated regression coefficient (beta-hat) and estimated standard

error) were then shared and combined, applying inverse-variance weighted fixed effects

meta-analysis. P-values from this meta-analysis were reported. Because of our sampling

scheme, we reported the corresponding meta-analytic estimate of effect (beta-hat) from the

weighted analysis and p-values from the unweighted analysis. Each working group made

their own decisions towards control of type I error. Some groups used an alpha cutoff

according to their priori hypotheses and others used more than one cutoff, depending on the

focus of their investigation. All the analyses were performed using R software (www.r-

project.org/).

Rare Variants—Single-marker based association analysis generally has low power for rare

variants. Therefore, a number of methods for rare variant tests have recently been

developed. Basu and Pan28 performed an extensive comparison of many of the currently-

available methods under different circumstances. For the CHARGE Targeted Sequencing

Study, we recommended that working groups use analyses that either collapse variants in

each genomic region using a burden test or jointly analyze associations with variants in each

genomic region using the Sequence Kernel Association Test (SKAT).

Collapsing Tests—The primary recommendation for analyses that collapse variants in a

genomic region into a single summary measure was to use the T1 count, defined as the

number of variants with at least 1 rare allele among variants in the region with a study-wide

MAF < 1%. A secondary recommendation was a Madsen-Browning type test, which

aggregates all variants with MAF< 1% in a genomic region, weighting each variant by a

function of its MAF.29 Although all variants in a region can be considered in the Madsen-

Browning test statistic, we recommended restricting to rare variants with MAF < 1%. For

these methods that collapse variants, the same regression analyses described above for
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common variants were used, with the aggregate collapsed regional burden replacing the

usual genotype dosage.

Joint Analysis of Variants—The recommendation for jointly analyzing variants in a

genomic region was a specific version of a general score test available as the Sequence

Kernel Association Test (SKAT).30 The SKAT score test can be written as a weighted sum

of squares of z-statistics from score tests in single-variant regression models. These single-

variant tests were computed in each study and meta-analyzed using standard methods to give

the SKAT statistic using weights based on combined allele frequencies across all studies.

The reference distribution for the SKAT test requires the covariance matrix of the genetic

variants, which was computed as a simple weighted average of the covariance matrices in

the three cohorts. Each study implemented the SKAT analyses using custom R scripts that

included a SKAT extension to account for familial relatedness.31 The scripts are provided in

the CHARGE wiki website (http://depts.washington.edu/chargeco/wiki/CHARGE-S).

Simulations confirmed that this approach agrees closely with the SKAT test performed on

individual data, and that the power is higher than when the meta-analysis is performed on p-

values (Lumley T, Brody J, Dupuis J, Cupples LA http://

stattech.wordpress.fos.auckland.ac.nz/files/2012/11/skat-meta-paper.pdf).

Results

A total of 4,646 samples were target captured and sequenced for the project. After applying

initial sequencing QC for sample identity, contamination and target coverage described

above, 4,440 samples qualified for additional analysis, providing a 95.5% capture

sequencing and QC success rate. Data produced from all these samples is summarized in

Figure 1. Individual samples from the three cohorts (ARIC, CHS and FHS) plus one

additional sample set (200 lone atrial fibrillation cases from Massachusetts General

Hospital) are shown with the percent coverage of the target bases at 20× coverage in relation

to the actual Mbs generated. Approximately 70–80% of short reads were successfully

aligned to the reference genome (hg18) across the three studied cohorts. We found that 40–

45% of short reads were mapped to the target regions. After removal of duplicate and low-

quality reads, approximately 21% of total aligned reads were kept for downstream analyses.

On average 82% of the targeted bases were covered at ≥ 20×, and the average coverage for

each sample was ~45×. Nearly all of the targeted probe sets were successfully captured, and

95–96% of the targeted bases had ≥1 read for coverage. The number of targeted bases with a

given depth of coverage closely followed a Poisson distribution, indicating uniform capture

and sequencing of the targeted regions. After removing duplicate samples, a total of 4,231

unique individuals from the three cohorts were used for downstream analysis, including

2,003 from ARIC, 1,132 from CHS, and 1,096 from FHS. The Cohort Random Sample

included 1,917 individuals and the remaining 2,314 individuals were distributed across the

fourteen Phenotype Groups. Demographic characteristics of the investigated participants are

presented in Table 4.

A total of 52,736 variants were identified that passed QC among the three cohorts. This

number included 30,912 variants in ARIC, 21,150 in CHS, and 21,267 in FHS. Across all

samples, the average Ti/Tv ratio after SNP filtering was 2.44, in accordance with what
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would be expected given that the CHARGE targeted sequencing regions were a mixture of

exonic, intronic and intergenic regions. A cross-validation with previous genotype data

showed a concordance rate of 98.0% (Supplemental Materials). The summary statistics of

SNPs found in each individual are shown in Supplemental Table 1.

Figure 2 displays the distribution of functional classes and MAF combining filtered variants

from all cohorts. The majority of variants were located within the intergenic (31.0%) or

intronic regions (50.7%), and only 11.7% of variants were within known protein coding

regions. A total of 4,800 (9.1%) were common variants (MAF ≥1%), and the remaining

47,936 were rare variants. Overall, most (93%) common variants were observed in multiple

cohorts, while rare variants were more likely to be unique to a single cohort. Of the common

variants, 98% have already been reported in phase 1 of the 1000 Genomes Project,21

whereas only 15% of rare variants have been reported. Among the 4800 common variants

identified in this project, only 2501 (52.1%) of them were available in the HapMap CEU

panel, which was used for genotype imputation and thus GWAS. In particular, we identified

70 damaging variants (missense, nonsense, or splicing variants), of which only half were

available in the HapMap CEU panel. As an example, four gene regions were selected for

sequencing because of prior associations with circulating C-reactive protein levels.32 We

found 13 SNPs remained significant after adjusting for multiple testing, including one

missense SNP rs2228145 within the IL6R locus (Supplemental Materials). The SNP was not

studied in GWAS, but it was in linkage disequilibrium with the GWAS lead SNP

(rs4129267) at the IL6R locus. Previous studies have found that rs2228145 was strongly

associated with circulating concentrations of interleukin-6 soluble receptor,33,34 which is a

pro-inflammatory cytokine regulating a variety of inflammatory responses.35,36 Our results

suggest that rs2228145 might be the functional SNP explaining the association of the IL6R

locus with C-reactive protein levels.

Discussion

The objective of the CHARGE Targeted Sequencing Study was to localize the GWA signals

and to evaluate the contribution of rare variants to 14 phenotypes. We implemented a case-

cohort study design, in which both a random sample of participants and participants with

extreme trait values were selected from each of three participating cohorts. We also

developed and implemented robust analysis strategies to analyze sequence data in relation to

each individual phenotype. In addition, our sequencing project was able to accommodate

different hypotheses proposed by Phenotype Groups regarding to the target selection. For

some targets (e.g., ZFHX3 and SCN5A), only exonic regions were sequenced, and for some

other targets (e.g., PLN and SCN10A), the entire gene region was sequenced. Some targeted

regions were even outside of any known gene regions (e.g., 2q36.3 and MEF2C),

demonstrating the flexibility of our target selection. The full data set has been registered

with dbGaP and will be deposited soon.

Our study design provides a cost-effective way to evaluate genetic associations for multiple

phenotypes. The same Cohort Random Sample was included in the analyses of all

phenotypes, and thus sample sizes were larger than would be achieved with phenotype-

specific analysis populations. In addition, analyses were typically conducted across all
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available samples from the Phenotype Groups. That is, extreme samples chosen by one

phenotype working group were used by others, significantly increasing the overall sample

size and allowing more rare variants to be observed in each analysis. Because the Phenotype

Group sampling was based on trait values, we applied a weighting approach so that the

distributions of all variables would be the same as in the full cohort.37 While testing can, in

our circumstances, be performed without the sampling weights, they are needed for unbiased

estimation of effects (Lumley T, Dupuis J, Rice KM, Barbalic M, Bis JC, Cupples LA, et al.

http://stattech.wordpress.fos.auckland.ac.nz/files/2012/05/design-paper.pdf). Under

plausible scenarios, for a single phenotype, our design’s use of the Cohort Random Sample

is less powerful than sampling extreme values from both tails, but for studying multiple

phenotypes the repeated use of the Cohort Random Sample provides greater power.38 An

alternative sampling strategy that selected control subjects only from those participants

without extreme values for any phenotype of interest, might offer larger power if a small

number of phenotypes were studied. Given that a small proportion of samples in this study

had familiar relatedness, we have very limited power to perform family cosegregation

analysis of rare variants.

In summary, we sequenced and analyzed 77 genomic loci associated with various

phenotypes as implicated in previous GWAS. A cost-effective case-cohort study design and

robust analysis strategies were implemented to analyze sequence data.

Supplementary Material
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Figure 1.
Distribution of Targeted Sequence Coverage in 4,646 samples using SOLiD multiplexed

capture sequencing. Each dot represents one sample. The x-axis represents the total depth of

each sample (in terms of raw aligned bases), whereas the y-axis represents the proportion of

targeted regions with more than 20× coverage. ARIC = Atherosclerosis Risk in

Communities, CHS = Cardiovascular Health Study, FHS = Framingham Heart Study, MGH

= Massachusetts General Hospital.
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Figure 2.
Minor allele frequency distributions for variants passing QC (all three cohorts combined).

(A) Distribution of functional classes in common/rare variants (B) Minor allele frequency

spectrum (C) Frequencies of minor allele count <= 10
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Table 1

Phenotype Groups and Sample Selection Strategies

Phenotype Group Strategy
Targeted Number of Extreme Participants*

FHS CHS ARIC

EKG PR interval High residual† 50 50 100

EKG QRS interval High 50 50 100

Stroke Ischemic stroke 50 70 80

Blood Pressure
Low residual† 25 25 54

High residual† 25 25 46

Body Mass Index High residual† 50 50 100

Fasting Insulin High 50 50 100

Bone mineral density by DEXA Low z-score 100 100 -

Left ventricular diastolic diameter High residual† 100 100 -

C-reactive protein High residual† 50 50 100

Hematocrit Low residual† 50 50 100

Retinal venule diameter High residual† - 34 166

Carotid wall thickness High 50 50 100

Pulmonary: FEV1/FVC Low - - 200

Atrial Fibrillation
Lone atrial

- - -
fibrillation‡

*
These numbers represent the number of participants with extreme phenotypes targeted for selection by each Phenotype Group, but do not reflect

the additional participants who may have met the criteria for an extreme phenotype but had already been selected by other Phenotype Groups or as
part of the Cohort Random Sample

†
Extreme samples were selected by taking either the extreme high or low distribution based on age, sex, and phenotype specific variable adjusted

residuals

‡
200 cases with lone atrial fibrillation were selected from Massachusetts General Hospital

Circ Cardiovasc Genet. Author manuscript; available in PMC 2015 June 01.
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Table 3

SNP Quality Filters

Stage SNPs should satisfy all the following criteria

Pre-Filter

Off-target distance ≤100 bp

Phred score ≥30

Depth of coverage ≥10

Depth of alternate allele coverage ≥2

Sample SNP
Allelic imbalance Between 0.2 and 0.8

Strand bias At least one read on each strand

Whole SNP

% Missing < 20%

HWE exact test* P≥ 1×10−5

# Alleles ≤2

SNP cluster ≤ 2 SNPs in 10bp

*
HWE: Hardy-Weinberg Equilibrium, calculated based on Cohort Random Sample only
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Table 4

Characteristics of Study Participants

Sample Size, N Women, N (%) Age*, mean (SD)

ARIC

All 2,003 978 (48.8%) 54.8 (5.69)

Cohort Random Sample 946 469 (49.6%) 54.5 (5.64)

Phenotype Groups 1057 509 (48.2%) 55.1 (5.72)

CHS

All 1,132 607 (53.6%) 72.5 (5.46)

Cohort Random Sample 471 240 (51.0%) 72.5 (5.40)

Phenotype Groups 661 367 (55.5%) 72.5 (5.50)

FHS

All 1,096 564 (51.5%) 61.2 (11.83)

Cohort Random Sample 501 249 (49.7%) 62.0 (9.35)

Phenotype Groups 595 315 (52.9%) 60.5 (13.55)

ARIC = Atherosclerosis Risk in Communities, CHS = Cardiovascular Health Study, FHS = Framingham Heart Study

*
Age in FHS was assessed at the time when DNA was drawn. Phenotype Groups might use the age at other exams.
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