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Abstract

We present a method for identifying colitis in colon biopsies as an extension of our framework for

the automated identification of tissues in histology images. Histology is a critical tool in both

clinical and research applications, yet even mundane histological analysis, such as the screening of

colon biopsies, must be carried out by highly-trained pathologists at a high cost per hour,

indicating a niche for potential automation. To this end, we build upon our previous work by

extending the histopathology vocabulary (a set of features based on visual cues used by

pathologists) with new features driven by the colitis application. We use the multiple-instance

learning framework to allow our pixel-level classifier to learn from image-level training labels.

The new system achieves accuracy comparable to state-of-the-art biological image classifiers with

fewer and more intuitive features.
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1. INTRODUCTION

Screening for colitis based on microscopic review of tissue sections taken by endoscopic

biopsy occupies a prominent position in the overall practice of a general pathologist. As an

example, in one tertiary pediatric hospital (the Children’s Hospital of Pittsburgh, CHP),

screening for colitis occupies approximately 10–20% of pathologists’ time, making it both

extremely important for patient care and one of the most common specimens in diagnostic

pathology. Upper and lower gastrointestinal endoscopic biopsies are performed in many
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clinical scenarios including abdominal pain, vomiting, diarrhea, etc. In the majority of cases,

a lower gastrointestinal endoscopy will be performed to exclude colitis.

Colitis is broadly defined as any pathological inflammatory state of the colon that can have

multiple causes including infection, ischemia, immunological, and others. For example,

inflammatory bowel disease (IBD; which includes ulcerative colitis and Crohns disease) is a

major cause of colitis in children and adults and contributes heavily to the need for

endoscopic biopsy both for diagnosis and subsequent follow-up after treatment. For

instance, in the United States, the Centers for Disease Control and Prevention estimates that

1.4 million people have IBD, creating a health care cost of $1.7 billion [1]. Based on this

estimation, the number of endoscopic biopsies of the colon for suspected IBD only (not

including endoscopies done for other clinical scenarios) would be substantially greater since

more individuals will undergo endoscopy biopsy than have actual disease. For instance, at

CHP, approximately 1200 biopsies of the colon were done in 2011 out of approximately

3500–4000 endoscopies performed.

After standard tissue fixation and processing which include the generation of H&E-stained

slides, a pathologist examines the colon tissue sections with a microscope and assesses for

the presence or absence of colitis (see Figure 1 for examples of tissue sections from normal

colon and colitis). Visual features used in this process include an increase in the number of

mucosal inflammatory cells, involvement of the crypt epithelium by inflammatory cells, and

overall architectural distortion. While histological examination of tissue specimens by a

pathologist is standard practice in medicine and biomedical research, and many facets of the

tissue processing and imaging can be/have been automated, the microscopic analysis of all

tissue sections as described is still performed by eye and is time consuming and costly.

Similar to systems available for screening of Pap smear cytological preparations, an

automated image analysis tool that could screen images of tissue sections of frequently

recurring specimens (such as endoscopic biopsies) for the presence or absence of a disease

could prove valuable.

Related work on automated histology mainly includes systems for detecting or grading

cancer [2–5]. Our lab, among others [6], has begun to develop a general framework for

automated histology. Using our histopathology vocabulary (HV), we have had success with

the identification and delineation of tissues in images of H&E-stained teratomas [7]. Here,

we build upon this framework to develop a system for automated detection of colitis.

2. DOMAIN-BASED CLASSIFICATION FRAMEWORK

The problem at hand is a standard image-processing task: classification. We classify images

into one of two diagnostic categories: normal or colitis. Here, we face a trade-off between

universality and specificity: do we develop a general method that will work reasonably well

in a number of application domains, or a specific method that will work extremely well in

just this one application?

To address this trade-off, we adopt the following methodology: We aim to design a feature

set understood by both pathologists and engineers based on the actual visual cues used by

pathologists; we term this colitis histopathology vocabulary. We have used this method in
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[7] to design a general HV appropriate for many histopathology applications; here, we refine

the HV to add colitis-specific features.

The method consists of the following steps:

Formulation of initial set of descriptions. The pathologist provides descriptions of the

characteristics that best describe a given tissue and ranks them by their effectiveness in

identifying the tissue.

Computational translation of key terms. From this set, the engineer distills the key

terms and finds their computational synonyms, creating a computational vocabulary.

For example, the pathologist’s term “long nuclei” can be translated into a computational

term “nucleus eccentricity > 0.75”.

Computational translation of descriptions. Entire pathologist’s descriptions are

similarly translated. For example, the pathologist’s description “small, oval-shaped

nuclei” can be translated into two key terms as “mean nucleus eccentricity > 0.75” +

“nucleus size < 0.2”.

Verification of translated descriptions. The pathologist then receives the descriptions

translated using the computational vocabulary and tries to identify the tissue being

described, emulating the overall classification system with translated descriptions as

features and the pathologist as the classifier.

Refinement of insufficient terms. If the pathologist is unable to identify a tissue based on

translated descriptions, or if a particular translation is not understandable, then that

translation is refined and presented again to the pathologist for verification.

Histopathology vocabulary. If the pathologist is able to identify a tissue based on

translated descriptions, then the discriminative power of the key terms is validated, and

these terms are included as HV terms to create features.

Using this method we designed an initial HV vocabulary consisting of background/fiber

color, cytoplasm color, clear areas (lumen), nuclei color, nuclei density, nuclei shape, nuclei

orientation and nuclei organization. In the same work, we used pixel-level classification to

identify and delineate tissues.

For the colitis problem, we identified inflammation, marked by an increase in the number

and variety of cells present, as an important indicator of colitis. In our previous work, the

nucleus density feature was based only on nucleus coverage (i.e. the local percentage of

pixels inside nuclei), and neglected counting individual nuclei. To better describe

inflammation, we include a more robust analysis of nuclei and a description of red blood

cells, resulting in the following colitis HV set:
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3. COLITIS CLASSIFICATION ALGORITHM

The colitis classification algorithm has two parts. First, we extract the colitis HV features for

each pixel in the input image. We then classify all of its pixels, and assign the label colitis if

the number of colitis pixels is above a threshold.

3.1. Feature Extraction

To compute the colitis HV features, we (1) locate the regions of nuclei, red blood cells,

background tissue, and empty slide in each image; (2) use moment filters to count the nuclei

and compute their size and eccentricity; and (3) gather local information at each pixel with

an averaging filter.

We use color to assign each pixel to one of the four objects of interest. Since each of these

objects has a distinct color under H&E staining, we use our prior knowledge to assign a set

of color values to each object (shades of blue for nuclei, red for red blood cells, pink for

background, and white for empty slide). For each image, we adjust these color values by

running five iterations of k-means clustering. This step helps account for illumination and

staining intensity variations. We then label pixels according to their nearest cluster

(Euclidean distance in RGB space).

Moment Filters—After labeling each pixel of the image as nucleus, red blood cell,

background tissue, or empty slide, we need to count the nuclei in the image and analyze

their shape.

To do this, we use the pixel labels to create a nucleus mask, 1N, a binary version of the input

image that takes a value of 1 wherever nuclei are present. Similarly, we create masks for red

blood cells and background tissue, 1R and 1B, respectively. We extract local shape

information from the nucleus mask using local moment filters in an approach similar to [8].

Briefly, we begin with a windowing filter, w, that is nonnegative, symmetric, and sums to 1.

From this window, we define the order-p, q local moment filter

At location [m, n], the local moment transform of an image, I, is

(1)

We choose w to be Gaussian with a standard deviation of ⅓ the expected radius of a nucleus

(in pixels).

We apply (1) to each image to obtain m00, m10, m01, m11, m20, and m02, convert them to

central moments,
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and form the inertia matrix , which describes the horizontal and

vertical spread of the pixels within the support of w centered at the location [m, n], but

calculated around the local center of mass [m + x̄, n + ȳ] rather than around [m, n]. From J,

we calculate the local eccentricity

(2)

In a departure from [8], we then use the shape information computed by the moment filters

to locate nucleus centers. We take as candidates each position where m00 reaches a local

maximum, that is, every pixel for which m00 is larger than at any of its eight neighbors. We

then remove candidates for which m00 is too small (less than 0.25) or for which the

eccentricity is too high (greater than 0.1). Intuitively, this scheme tags pixels that are the

centers of nucleus-sized blobs, rejecting those that are too oblong to be nuclei. An example

comparing this scheme to simple maxima detection is shown in Figure 2.

Features—We use the nucleus center detections to form a new mask, 1C, which takes the

value of 1 for those pixels that have been labeled as nucleus centers in the previous step. We

proceed to use 1N and 1C and an averaging filter, ŵ (Gaussian with standard deviation of

nine times the expected nucleus radius) to create the feature set we list in Table 1, where —

and represent pointwise multiplication and division, respectively. These six features form a

length-10 (because of two color features) feature vector for each pixel in the image.

3.2. Pixel-level classification

After feature extraction, we classify pixels using an artificial neural network (MATLAB

Neural Network Toolbox). The network has ten input nodes, no hidden layers, and one

output node, with a bias connected only to the output node; activation functions are linear

throughout. For training, we throw away all nontissue pixels, then label the remaining pixels

according to the image they come from. We call this version of the system the pixel-level

classifier (PLC).

Since our goal is to label images rather than pixels, we need a way to convert the pixel-level

labels into into image-level labels. We accomplish this by selecting a threshold and labeling

any image with a number of inflamed pixels greater than the threshold as colitis. The

threshold is selected from the training data so as to give the least training error at the image

level.
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3.3. Multiple-instance learning

The PLC training we just described overlooks an important aspect of the colitis problem:

even a small region in an image can contain features diagnostic of colitis. Thus, even in an

colitis-labeled image, some pixels actually belong to normal tissue. To understand how to

adapt our PLC training to this problem, we look at the classification task in the multiple-

instance learning (MIL) framework [9].

Let X be a set of N digital images, . Each xi contains multiple instances (pixels)

, where P and Q denote the height and width of each image, respectively. Each xi,j

has a corresponding label, yi,j where yi,j ∈ {0, 1} (in our case, 0 denotes normal and 1

colitis), but only the overall label for each image,  with yi ∈ {0, 1}, is known during

training. For each image, the relationship between yi and  is given by

In other words, a pathologist may label (diagnose) an image as colitis based on only a small

region of the image.

The goal is to create an image-level classifier function d such that d(x*) = y* for any unseen

image, x*, accomplished by learning a pixel-level classifier function p such that p(x*,*) = y*,*

for any unseen pixel, x*,*, such that

We thus see that some of the training labels for the PLC training described earlier were

incorrect: some colitis pixels should have been labeled as normal. To address this issue, we

first use the basic PLC to identify the top 50% most inflamed pixels in each colitis image

and create a new training set with only these pixels labeled as colitis, and retrain the

classifier. We call the retrained classifier the PLC-MIL.

4. EXPERIMENTS AND RESULTS

We compared the performance of the PLC-MIL to two freely avail able biological image

classifiers. The first is WND-CHARM [10], which extracts a large number generic image-

level features, then classifies images with a nearest neighbor algorithm. We used the

expanded color feature set. The second is the multiresolution classi fication (MRC) system

[11], which decomposes the image into sub spaces via a multiresolution transform, extracts

features and classi fies within each subspace separately, then combines these local de cisions

via weighted voting. We used two levels of a wavelet packet decomposition and the

expanded Haralick texture feature set.
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Feature extraction for WND-CHARM required a powerful desk top computer (2× Intel

Xeon E7540 2.00GHz and 64GB RAM), while the PLC and MRC features were computed

on a laptop (In tel Core i7 2.67 GHz and 4 GB of RAM). For a single image, feature

extraction required 30 seconds for the PLC, 5 seconds for the MRC, and 140 minutes for

WND-CHRM. Each classifier was evaluated at each magnification level (40×, 100×, 200×,

and 400×) with a leave one-out cross-validation over 20 normal and 20 colitis images.

Table 2 summarizes the results. They show that no classifier consistently better than the

others at all scales. For all four classi fiers, accuracy is generally higher at lower

magnifications and de creases as magnification increases. While the PLC classifier per

forms well, the PLC-MIL classifier improves its performance at high magnification.

Notably, the PLC-MIL performs comparably to both the MRC and WND-CHRM, with the

advantage of simple, physio logically meaningful features and pixel-level labels (see Figure

3)

5. CONCLUSIONS AND FUTURE WORK

We presented a framework and algorithm for classification of colon biopsy images. We

build upon our previous work on automated histology and the HV and show that the colitis

HV, especially when applied in a MIL framework, is well-suited to detecting colitis in

images of colon biopsies. The PLC-MIL classifier compares favorably to generalized

biomedical image classifiers, while using a small set of features, easily understood by

physicians and fast to compute.

A near-future task is to, for any misclassified image, investigate which regions were mis-

labeled. For those regions, we can see identify which aspect of the system (feature extraction

or classification) failed, a task made easier because our features can be understood in simple

terms. At a broader level, we plan to continue expanding the HV framework to create a truly

general automated histology system.
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Fig. 1.
Example normal and colitis hematoxylin and eosin (H&E)-stained images at different

magnification levels.
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Fig. 2.
Example nucleus detections (marked with black dots) from simple maxima detection (a) and

moment filter-based detection (b). The moment-filter approach rejects the two objects at the

center-left because they are overly oblong.
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Fig. 3.
Example pixel-level classification results for PLC-MIL (100×). These results are

physiologically reasonable: inflammation (black) is detected in regions of high nuclei

density and not in crypts or in areas of hemorrhage (generally artifacts of the procedure).
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Table 1

Colitis HV feature set.

Feature name Expression

Nucleus density w̄* 1C

Average nucleus size [w̄* (m00 · 1C)]/[w̄ * 1C]

Average nucleus eccentricity [w̄* (e · 1C)]/[w̄ * 1C]

Average nucleus color [w̄ * (I · 1N)]/[w̄ * 1N ]

RBC coverage w̄ * 1R

Average background color [w̄ * (I · 1B)]/[w̄ * 1B]
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Table 2

Comparison of classification accuracy (in %).

Magnification WND-CHRM MRC PLC PLC-MIL

40× 100.0 95.0 97.5 97.5

100× 97.5 90.0 90.0 87.5

200× 87.5 85.0 77.5 90.0

400× 77.5 85.0 80.0 85.0
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