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Abstract
Nuclear erythroid 2-related factor 2 (Nrf2) is a central 
regulator of antioxidative response elements-mediated 
gene expression. It has a significant role in adaptive 
responses to oxidative stress by interacting with the 
antioxidant response element, which induces the ex-
pression of a variety of downstream targets aimed at 
cytoprotection. Previous studies suggested oxidative 
stress and associated damage could represent a com-
mon link between different forms of diseases. Oxidative 
stress has been implicated in various liver diseases, 
including viral hepatitis, nonalcoholic fatty liver disease/
steatohepatitis, alcoholic liver disease and drug-induced 
liver injury. Nrf2 activation is initiated by oxidative or 
electrophilic stress, and aids in the detoxification and 
elimination of potentially harmful exogenous chemicals 
and their metabolites. The expression of Nrf2 has been 
observed throughout human tissue, with high expres-
sion in detoxification organs, especially the liver. Thus, 
Nrf2 may serve as a major regulator of several cellular 

defense associated pathways by which hepatic cells 
combat oxidative stress. We review the relevant litera-
ture concerning the crucial role of Nrf2 and its signaling 
pathways against oxidative stress to protect hepatic cell 
from oxidative damage during development of common 
chronic liver diseases. We also review the use of Nrf2 as 
a therapeutic target to prevent and treat liver diseases.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Chronic liver disease is associated with an 
imbalance, comprising increased reactive oxygen spe-
cies and decreased net antioxidant activity. Oxidative 
stress plays an important role in the pathophysiological 
changes of liver diseases. Nuclear erythroid 2-related 
factor 2 (Nrf2) can activate cytoprotective genes and 
has a crucial role against oxidative stress to protect 
hepatic cells from oxidative damage. This article fo-
cuses on the activation the Nrf2-mediated antioxidant 
response, which prevents the progression of chronic 
liver disease and presents new treatment opportunities. 
Accordingly, integrative therapeutic strategies includ-
ing Nrf2 activators have great potential as therapeutic 
agents against oxidative stress during chronic liver inju-
ries.
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INTRODUCTION
Nuclear erythroid 2-related factor 2 (Nrf2) is a transcrip-
tion factor, first identified in 1994, that belongs to the 
Cap-n-collar basic leucine zipper family[1]. It has a sig-



nificant role in adaptive responses to oxidative stress by 
interacting with antioxidant response element (ARE) se-
quences of  antioxidant and cytoprotective genes[2]. Nrf2 
is considered the main mediator of  cellular adaptation 
to redox stress. In its inactive state, Nrf2 is located in the 
cytoplasm where it interacts with the actin binding pro-
tein, Kelch-like ECH associating protein 1, and is rapidly 
degraded by the ubiquitin-proteasome pathway. However, 
upon exposure to oxidative or electrophilic stress, phos-
phorylation of  Nrf2 leads to their dissociation and sub-
sequent translocation of  Nrf2 to the nucleus[3,4]. In the 
nucleus, Nrf2 binds to ARE sequences and functions in 
partnership with other nuclear proteins as a strong tran-
scriptional activator of  ARE-responsive genes. ARE-me-
diated antioxidant proteins and enzymes[5], such as heme 
oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase 
1 (NQO1), glutathione-S-transferases (GST), group C 
streptococcus (GCS) are involved in the detoxification 
of  increased electrophiles and radicals[6,7]. Therefore, the 
roles of  the Nrf2/ARE pathway in liver diseases have 
been extensively investigated.

REACTIVE OXYGEN SPECIES AND 
THE ROLE OF Nrf2 IN CHRONIC LIVER 
DISEASES
Previous studies suggested that oxidative stress and as-
sociated damage could represent a common link between 
different forms of  chronic liver injury[8-10]. The contribu-
tion of  oxidative stress to lipid peroxidation is one of  the 
critical factors involved in the genesis and the progres-
sion of  nonalcoholic steatohepatitis (NASH)[11]. Viral 
infection or alcohol abuse greatly increases the highly 
variable miscoding etheno-modified DNA like epsilon A 
levels by triggering lipid peroxidation[12]. Oxidative stress 
plays an important role in the pathophysiological changes 
that progress to liver cirrhosis and finally to hepatocel-
lular carcinoma. As a site of  first-pass metabolism, the 
liver is highly susceptible to oxidative damage by reactive 
intermediates when it is exposed to high concentrations 
of  xenobiotics and other chemicals. Therefore, there are 
several defense mechanisms to protect the liver against 
harmful chemicals and their potentially damaging metab-
olites. One of  the most important protective mechanisms 
is the Nrf2/ARE pathway, which regulate phase Ⅱ de-
toxifying enzyme genes and antioxidant-responsive genes, 
including HO-1, NQO1, GST, and GCS (Figure 1). The 
expression of  phase II detoxifying enzyme genes in the 
wild-type and heterozygous Nrf2-knockout mice is clear-
ly induced as compared to homozygous Nrf2-knockout 
mice in which the inducible expression of  these genes is 
dramatically reduced[13]. NQO1 is cytoprotective against 
oxidative stress by scavenging superoxides, preserving 
various endogenous antioxidants, and catalyzing reduc-
tive metabolism of  chemicals[7,14,15]. Therefore, NQO1 
plays an essential role in protecting the cell against reac-
tive oxygen species (ROS) and electrophiles. The role of  

Nrf2 in transcriptional activation of  NQO1 was further 
confirmed by results from studies on Nrf2-/- mice. Mice 
lacking the Nrf2 gene exhibited a marked decrease in 
the expression and induction of  NQO1[16]. In addition, 
the Nrf2/ARE pathway induces the expression of  anti-
oxidant and cytoprotective genes, including antioxidant 
proteins and enzymes[17,18]. The antioxidant proteins pro-
vide the necessary protection against oxidative and elec-
trophilic stress[19]. Several studies have shown that Nrf2 
is also a prevailing factor in the regulation of  ARE-medi-
ated activation of  other defensive genes, including GST, 
GCS, and HO-1[20,21]. Therefore, activation of  Nrf2 by 
glycyrrhetinic acid[22], sulforaphane[23], or caffeine[24] can 
induce the antioxidant enzymes system, protect the liver 
from oxidative stress, prevent inflammation and fibrosis, 
and attenuate liver injury. This indicates that Nrf2 has a 
crucial role against oxidative stress to protect hepatic cells 
from oxidative damage. 

Nrf2 IN VIRAL HEPATITIS
Hepatitis B virus (HBV) and hepatitis C virus (HCV) 
infections are major risk factors in the pathogenesis of  
chronic liver diseases. Permanent overproduction of  vi-
ral proteins can result in increased level of  radicals and 
other ROS[25,26]. Firstly, oxidative stress is common among 
HBV infected patients with chronic liver disease, and 
several studies have used HBV transgenic mice or HBV 
DNA transfection of  cells in vitro to show that HBV can 
induce oxidative stress[27-29]. A series of  studies demon-
strated that HBV, via its association with mitochondria, 
induces oxidative stress, which in turn leads to activation 
of  a series of  transcription factors, including nuclear 
factor-kappaB (NF-κB), signal transducer and activator 
of  transcription-3, and rapidly accelerated fibrosarcoma-1 
(Raf-1)[30,31]. Recent research reported the capacity of  
HBV to stimulate the expression of  a variety of  cytopro-
tective genes that are regulated by Nrf2/ARE[32-34]. The 
HBV-dependent induction of  these genes is primarily 
initiated by HBV regulatory proteins, and is mediated 
by methyl ethyl ketone (MEK) and c-Raf[35]. It was also 
demonstrated that increased augmentation of  liver regen-
eration is regulated by Nrf2 during HBV infection, which 
acts as a liver regeneration and antioxidative protein and, 
therefore, links oxidative stress to hepatic regeneration to 
ensure survival of  damaged cells[36,37]. Secondly, oxidative 
stress has been recognized as a fundamental factor in the 
pathological changes observed during HCV infection. 
Oxidative injury occurs as a direct result of  HCV core 
protein expression both in vitro and in vivo[12]. One study 
demonstrated that HCV-mediated phosphorylation/acti-
vation of  Nrf2 is mediated by the mitogen-activated pro-
tein (MAP) kinases (p38 MAPK) and janus kinase, and 
both ROS and Ca2+ signaling are necessary in the Nrf2-
activation process[38,39]. Another study investigated the 
molecular mechanisms underlying oxidative stress and 
stress response induced by the individual HCV proteins 
and indicated that all five proteins [core, E1, E2, non-
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structural protein 4B (NS4B), and nonstructural protein 
5A (NS5A)] of  HCV stimulated generation of  ROS and 
Nrf2 activation by protein kinase C in response to ROS. 
Especially in the early stage of  expression, HCV proteins 
induced a strong upregulation of  the antioxidant defense 
system via Nrf2 to protect HCV infected hepatic cells 
from oxidative damage[40]. In addition, expression of  core, 
E1, E2, NS4B, and NS5A proteins resulted in the activa-
tion of  Nrf2 in a ROS-independent manner. The effect 
of  core and NS5A was mediated through casein kinase 
2 (CK2) and phosphoinositide-3 kinase (PI3K), whereas 
those of  NS4B, E1, and E2, were not mediated by either 
protein kinase C, CK2, PI3K, p38 MAPK, or extracellu-
lar signal-regulated kinase[41,42] (Figure 2). Increasing levels 
of  HO-1, a key cytoprotective gene, help to protect liver 
cells from the damaging effects of  the HCV. A mecha-
nism for this action was to increase expression of  the 
positive transcription factor Nrf2[43]. Some studies have 
demonstrated that Nrf2 activation could also prevent and 
potentially alleviate liver diseases. These findings indicat-
ed that the anti-HCV action of  drugs[44,45] was reflected 
the stimulation of  Nrf2-mediated HO-1 expression. 
These results suggested that targeting the Nrf2/HO-1 
signaling pathway might be a promising strategy for drug 
development. In conclusion, Nrf2 activation appears to 
be an common mechanism for potential protective ef-
fects against oxidative stress due to viral hepatitis.

Nrf2 IN NAFLD/NASH
Nonalcoholic fatty liver disease (NAFLD) is a common 
cause of  chronic liver disease worldwide, especially in 
developed countries[46]. The progression of  NAFLD de-

pends on multiple mechanisms operating simultaneously 
to produce cell injury, apoptosis, inflammation, fibrosis, 
and, ultimately, NASH[47,48]. Following the accumulation 
of  triglycerides in the liver, impairment of  mitochondrial 
respiratory chain activity results in the overproduction of  
ROS and the depletion of  mitochondrial glutathione[49-51]. 

Other characteristics of  NASH include reduced super-
oxide dismutase[52], catalase activity[53] and upregulated 
cytochrome P450 2A5 (CYP2A5), which is modulated 
through Nrf2[54] and increased lipid peroxidation within 
hepatocytes[55,56]. Nrf2 also modulates genes involved in 
metabolic regulation, which play an important role in 
nutrient homeostasis[57]. Nrf2 activation with 1-[2-cyano-
3-,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole (CD-
DO-Im) has been shown to effectively prevent hepatic 
lipid accumulation in wild-type mice, but not in Nrf2-
disrupted mice[58-60]. When feeding the high-fat diet to the 
wild-type and the Nrf2-null mice, the wild-type mice in-
creased hepatic fat deposition without inflammation or fi-
brosis (i.e., simple steatosis), while the Nrf2-null mice had 
significantly more hepatic steatosis and substantial inflam-
mation[61,62]. Nrf2 expression and activation is reduced in 
the liver, with histological criteria of  NASH[63]. Another 
way in which Nrf2 activation might be protective against 
NAFLD and NASH is through several preventive effects 
on inflammation[64]. Several chemotherapeutic agents 
have been shown in a variety of  cell culture and rodent 
systems to induce Nrf2 and cause simultaneous repres-
sion of  NF-κB[65]. Evidence shows that Punicalagin may 
be a useful nutrient for the treatment of  NAFLD by ac-
tivating Nrf2, resulting in improved mitochondrial func-
tion, elimination of  oxidative stress and inflammation. 
Probiotics also showed remarkable induction of  Nrf2 
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Figure 1  Nrf2 in chronic liver diseases. NRF2: Nuclear erythroid 2-related factor 2; ARE: Antioxidant response element; GST: Glutathione-S-transferases; NQO1: 
NAD(P)H: quinone oxidoreductase 1; HO1: Heme oxygenase-1; GCS: Group C streptococcus.
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important downstream effects of  increased acetaldehyde 
production include GSH depletion, lipid peroxidation, 
and the generation of  ROS and acetaldehyde adducts[78]. 
There is increasing evidence that homocysteine activates 
the Nrf2-mediated antioxidant response, which protects 
cells from oxidative damage[79], whereas Nrf2 dysregula-
tion of  GSH synthesis contributes to the pathogenesis 
of  alcoholic liver disease (ALD)’s pathological condi-
tions[80,81]. In alcohol-related liver disease, free radicals 
play a part in the pathogenesis of  liver damage. Chronic 
ethanol treatment increases the production of  ROS, 
lowers cellular antioxidant levels, and enhances oxida-
tive stress in many tissues, especially the liver[82]. Second, 
ethanol metabolism by CYP2E1 occurs during chronic 
alcohol consumption, when alcohol dehydrogenase 
reaches saturation, and results in the generation of  addi-
tional acetaldehydes, ROS, and free radicals. Activation of  
Nrf2 is critical in combating the oxidative stress caused 
by ROS generated during the normal catalytic cycle of  
CYP2E1. This is supported by preclinical studies show-
ing that ethanol-induced CYP2E1 expression also results 
in upregulation of  Nrf2 and its targets, namely HO-1[83]. 
It has been reported that Nrf2-null mice have increased 
liver-associated mortality when fed high doses of  ethanol 
compared with wild-type mice. This detrimental effect of  
alcohol on Nrf2-null mice was shown to be the result of  
increased lipogenesis, depletion of  total and mitochon-
drial glutathione, and a Kupffer cell-mediated aggravation 
of  the inflammatory response. This suggested that Nrf2 
plays a role in protecting against ethanol-induced dam-
age[84]. Ethanol induced oxidative stress via induction of  
CYP2E1 upregulates Nrf2 activity, which in turn regu-

and its targeted antioxidative enzymes; they enhanced 
Nrf2 expression by precluding ubiquitination, which sup-
pressed hepatic oxidative stress and prevented the pro-
gression of  NAFLD[66]. Another mechanism for potential 
treatment of  NAFLD and NASH is through activation 
of  superoxide dismutase and catalase, which are antioxi-
dant enzymes with decreased activity in this disease state. 
Finally, it is possible that activation of  Nrf2 could play a 
role in regulating transforming growth factor-β (TGF-β). 
A recent study demonstrated that sulforaphane attenu-
ates hepatic fibrosis through Nrf2-mediated inhibition of  
TGF-β signaling in a human hepatic stellate cell line[67]. In 
addition, activators of  Nrf2 could abolish fibrosis in a rat 
model of  NASH[68]. Altogether, activation of  the Nrf2-
mediated antioxidant response, which protects hepatic 
cells from oxidative damage, prevents the progression of  
NAFLD and presents new opportunities for treatment 
of  NASH patients[69].

Nrf2 IN ALCOHOLIC LIVER DISEASE
Chronic alcohol consumption has long been associated 
with progressive liver disease[70,71]. The liver is the major 
site of  ethanol metabolism and thus sustains the most 
injury from chronic alcohol consumption[72,73]. The me-
tabolism of  alcohol takes place via three main enzymatic 
pathways: oxidation of  ethanol by alcohol dehydrogenase 
in hepatocytes, microsomal oxidation catalyzed by cyto-
chrome P450 2E1 (CYP2E1), and nonoxidative metabo-
lism catalyzed by fatty acid ethylester synthase[74-77]. First, 
ethanol metabolism by alcohol dehydrogenase results in 
acetaldehyde, which is a weak profibrogenic factor. Some 
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lates ethanol induction of  CYP2A5 and protects against 
ethanol-induced steatosis[85]. The prominent microvesicu-
lar steatosis and mild necrosis in hepatic histopathology 
were notably attenuated in accordance with the modula-
tion of  Nrf2 in clinical administration of  artemisia capil-
laris for alcoholic-associated liver injury[86]. It remains 
unclear whether Nrf2 plays a major role in the pathogen-
esis of  this disease state. Bardag-Gorce et al[87] found that 
the Nrf2 level was significantly decreased in the liver of  
a rat model of  alcoholic liver disease. However, Wang et 
al[88] came to the opposite conclusion, that hepatic very 
low-density lipoprotein receptor (VLDLR) overexpres-
sion plays an important role in the pathogenesis of  ALD. 
Oxidative stress-induced Nrf2 activation plays a critical 
role in alcohol-induced VLDLR upregulation in hepa-
tocytes, and enhances VLDLR expression in primary 
hepatocytes[89,90]. Hence, further research is required to 
determine the role that Nrf2 activation might play in al-
leviating alcoholic liver disease.

Nrf2 IN DRUG-INDUCED LIVER INJURY 
(DILI)
Xenobiotic agents can initiate liver injury through reac-
tive-intermediate formation, protein adduct accumula-
tion, and alterations in drug-metabolizing enzymes. Acute 
hepatic failure secondary to acetaminophen (APAP) poi-
soning is associated with high mortality[91]. APAP overdose 
is the most frequent cause of  drug-induced liver failure 
in the United States and most of  Europe[92,93]. Therefore, 
APAP-induced toxicity has become an essential model 
for studying drug-induced liver disease[94,95]. Electrophiles, 
radicals, and ROS are often generated as intermediates 
or by-products of  APAP metabolism. These reactive 
intermediate toxicities provoke covalent bonding with 
biomolecules and leads to lipid peroxidation, and ulti-
mately oxidative stress[96-98]. Recently, studies showed that 
nimesulide-induced electrophile stress activates Nrf2 in 
human hepatocytes and mice[99]. The oxidative stress that 
occurs with APAP toxicity suggests a role for Nrf2 in the 
toxicological events of  APAP. This view is supported by 
several studies showing that Nrf2 plays a critical role in 
protecting the liver against DILI. Nrf2-deficient mice are 
highly susceptible to APAP-induced liver injury[100]. In 
Nrf2-null mice, APAP exposure enhanced liver injury and 
mortality compared with wild-type mice[101]. In addition, 
the Nrf2 activator CDDO-Im is protective against APAP 
hepatotoxicity by inducing HO-1, NQO1, and glutamate-
cysteine ligase catalytic subunit in the wild-type, but not 
the Nrf2-null mice[102]. However, some evidence indicates 
that autoprotection against APAP could contribute to 
this development of  resistance to hepatotoxicity, and 
Nrf2 activation is expected to play a role in the protective 
adaptation. APAP treated hepatocytes showed enhanced 
antioxidant defense via delaying tyrosine phosphoryla-
tion of  Nrf2 and its nuclear exclusion, ubiquitination and 
degradation[103]. Pretreatment of  mice with a low hepato-
toxic dose of  APAP resulted in resistance to the toxicity 

of  a subsequent higher dose of  APAP. Upregulation of  
Lgals3, one of  the genes supporting the Nrf2 hypothesis 
led to suppression of  apoptosis and reduced mitochon-
drial dysfunction[104]. The mechanisms underlying the pro-
tective effects of  Chinese traditional medicines against 
N-nitrosodimethylamine, or CCl4, or APAP-induced liver 
injury have been investigated. Treatment with rutin[105], 
safflower[106], betanin[107], or Piper puberulum[23] signifi-
cantly increased Nrf2 and HO-1 expression in injured 
livers. These results indicated that the hepatoprotective 
effect of  Nrf2 against DILI functions via the activation 
of  Nrf2 and subsequent induction of  the expression of  
genes controlled by Nrf2. Furthermore, oleanolic acid 
is a triterpenoid with many beneficial effects and has 
been demonstrated to protect against varieties of  hepa-
totoxicants via activation of  Nrf2[108]. However recently, 
high-doses and long-term use was reported to produce 
hepatotoxicity[109]. Apart from DILI, endotoxemia cor-
relates with the degree of  liver failure and may contribute 
to worsening of  liver diseases. In most cases, lipopolysac-
charide (synonymous with endotoxin) is a liver failure 
causing endotoxin, which lowers the hepatic GSH levels 
by inhibiting sumoylation of  Nrf2[110]. Thus, Nrf2 may 
serve as a major regulator of  several cellular defense as-
sociated pathways by which hepatic cells combat oxida-
tive stress by xenobiotics.

CONCLUSION
Oxidative stress is implicated in the pathogenesis of  
liver disease. During oxidative stress, Nrf2 is activated to 
protect the liver via target gene expression. Therefore, 
Nrf2 activators have great potential as therapeutic agents 
against oxidative stress during chronic liver injury.
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