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Angiogenesis is a complex process finely regulated by the balance between angiogenesis stimulators and inhibitors. As a result
of proangiogenic factors overexpression, it plays a crucial role in cancer development. Although initially mast cells (MCs) role
has been defined in hypersensitivity reactions and in immunity, it has been discovered that MCs have a crucial interplay on the
regulatory function between inflammatory and tumor cells through the release of classical proangiogenic factors (e.g., vascular
endothelial growth factor) and nonclassical proangiogenic mediators granule-associated (mainly tryptase). In fact, in several
animal and human malignancies, MCs density is highly correlated with tumor angiogenesis. In particular, tryptase, an agonist
of the proteinase-activated receptor-2 (PAR-2), represents one of the most powerful angiogenic mediators released by humanMCs
after c-Kit receptor activation. This protease, acting on PAR-2 by its proteolytic activity, has angiogenic activity stimulating both
human vascular endothelial and tumor cell proliferation in paracrine manner, helping tumor cell invasion and metastasis. Based
on literature data it is shown that tryptase may represent a promising target in cancer treatment due to its proangiogenic activity.
Here we focused on molecular mechanisms of three tryptase inhibitors (gabexate mesylate, nafamostat mesylate, and tranilast) in
order to consider their prospective role in cancer therapy.

1. Introduction

Angiogenesis is a complex process, mainly mediated by
endothelial cells, consisting in the formation of new blood
capillaries from existing vessels [1–4]. It is finely regulated by
the balance between several angiogenesis stimulators, such as
vascular endothelial growth factor (VEGF), fibroblast growth
factor-2 (FGF-2), platelet derived growth factor (PDGF),
angiopoietins, tryptase, and some angiogenesis inhibitors,
including thrombospondin, angiostatin, and endostatin [5–
11]. Angiogenesis, further than being involved in normal

physiological processes, has been demonstrated to play a
crucial role in cancer development inducing tumor growth,
invasion, and metastasis [12, 13].

Mast cells (MCs) intervene in tissue angiogenesis through
several classical proangiogenic factors such as VEGF, FGF-2,
PDGF, interleukin-6 (IL-6), and nonclassical proangiogenic
factors, such as tryptase and chymase, stored in their
secretory granules [14–18]. In fact, MCs density is highly cor-
related with the extent of tumor angiogenesis both in benign
tumors (e.g., in keloids) and in animal and human malig-
nancies (systemic mastocytosis, head and neck, colorectal,
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lung, and cutaneous cancer) [19–24]. Tryptase and chymase
stimulate angiogenesis and the response is similar to that
obtained with VEGF [16]. This evidence confirms even more
the angiogenic activity of these two proteases stored in MCs
granules [16].

2. Role of Mast Cell Tryptase in
Angiogenesis and Tumor Growth

MCs are tissue leukocytes originating from hematopoietic
stem cells in bone marrow. Generally, these precursor cells
circulate in blood as agranular cells; then, MCs migrate
into different tissues completing their maturation into gran-
ulated cells under the influence of several microenviron-
mental growth factors. One of these crucial factors is the
stem cell factor (SCF), the ligand of c-Kit receptor (c-
KitR) secreted by fibroblasts and stromal and endothelial
cells. SCF is critically involved in MCs activation [25, 26].
MCs can be naturally found in association with connective
tissue structures (i.e., blood vessels, lymphatic vessels, and
nerves) and in the proximity of skin and mucosa of the
gastrointestinal, respiratory, and genitourinary tracts [27],
which represent common portals of infections [26, 28].
Accordingly, for many years, MCs have been implicated
in the pathogenesis of IgE-associated allergic reactions and
certain protective responses to parasites, bacteria, viruses,
and fungi [29–31]. However, increasing evidence suggests
the involvement of these cells in several biological settings,
such as inflammation, immunomodulation, angiogenesis,
wound healing, tissue remodeling, and cancer [17, 32–41].
Specifically, the multiple functions of MCs depend on their
capability to release panoply of biologically active prod-
ucts upon suitable immunological and nonimmunological
stimulation [42]. These mediators are either preformed in
their secretory granules (biogenic amines, neutral serine
proteases) or synthesized de novo (metabolites of arachi-
donic acid, cytokines) [43, 44]. MCs granules represent
key functional elements, whose content can be released by
two distinct secretory mechanisms: exocytosis (anaphylactic
degranulation) or piecemeal degranulation [25]. Interestingly,
the latter process is the most frequent secretory mechanism
observed in chronic inflammatory settings, such as cancer
[31, 45].

A possible causal relationship between MCs, chronic
inflammation, and cancer has long been suggested. Accord-
ingly, as most tumors contain inflammatory cell infiltrates,
often including abundant MCs, the question about the pos-
sible contribution of MCs to tumor development has pro-
gressively been emerging [31, 39]. MCs have been recognized
as one of the earliest cell types to infiltrate many developing
tumors, particularly malignant melanoma and breast and
colorectal cancer (CRC) [8, 17, 21, 23, 40, 70, 71]. Ample
evidence highlights that MCs accumulate predominantly
around several types of tumors, at the boundary between
malignant and healthy tissues [8, 17]. In particular, these
cells are often strategically located in proximity of blood
vessels within the tumor microenvironment, suggesting an
early role of MCs in angiogenesis and tumor growth; in fact

angiogenesis generates a new vascular supply that delivers
oxygen and nutrients to the rapidly proliferating malignant
tissue [25, 39, 72]. In agreement with this role, MCs are
an abundant source of potent proangiogenic factors, which
represent a major issue linking these cells to cancer [26, 73].
In many experimental tumor settings, MCs promote angio-
genesis by releasing preformed mediators or by activating
proteolytic release of extracellular matrix-bound angiogenic
molecules [25, 32, 72]. In vitro studies have demonstrated that
MC granular components can induce vascularization [25].
Indeed, the addition of either human recombinant tryptase or
chymase is able to stimulate neovascularization in the chick
embryo chorioallantoic membrane assay (CAM) [32, 72].
Based on these results, treatment with cromolyn, an inhibitor
of MCs degranulation, has been shown to restrain expansion
and survival of pancreatic cancer and endothelial cells [15].

Tryptase and chymase are preformed active serine pro-
teases and are stored in large amounts in MCs secretory
granules [74], whose angiogenic role has been established
[16, 75]. In particular, tryptase represents one of the most
powerful angiogenic mediators released by human MCs
upon c-KitR activation, and it may be angiogenic via several
mechanisms [24]. This protease directly stimulates human
vascular endothelial cell proliferation acting on protease-
activated receptor-2 (PAR-2) by its proteolytic activity [24,
75, 76], leading to direct angiogenic effect (Figure 1). This
particular proliferative pathway has been showed by Yoshii
et al. [50] who have demonstrated that tryptase induces PAR-
2-mediated proliferative effects on a human colon carcinoma
cell line (DLD-1 cells) in a mitogen-activated protein kinase
(MAP) kinase- and cyclooxygenase- (COX-) dependent
manner. PAR-2 activation also leads to the release of IL-6
and granulocyte-macrophage colony stimulating factor (GM-
CSF), which, in turn, act as angiogenic factors [77]. The
important role of tryptase in neovascularization is also shown
by its ability to degrade connective tissue matrix in order
to provide rooms for neovascular growth. Tryptase may also
contribute indirectly to tissue neovascularization by activat-
ing latent matrix-metalloproteinases (MMPs) and plasmino-
gen activator, which, in turn, degrade extracellular matrix
(ECM) with consequent release of ECM-bound angiogenic
factors, such as VEGF and FGF-2 [25, 26, 52]. The disruption
of local ECM leads also to release of SCF. Interestingly,
tumor-derived SCF has been recently implicated both in
MCs recruitment into the tumor environment as well as in
increased MCs release and production of VEGF and FGF-2
[78, 79].

With reference to the above-described mechanisms that
link tryptase to tumor angiogenesis and cancer progression,
several studies have reported a linear correlation between
mast cells density positive to tryptase (MCDPT) and angio-
genesis in solid tumors, such as human malignant melanoma
[80, 81], endometrial carcinoma [41], breast cancer [8, 82],
uterine leiomyomas [83], gastric cancer [23, 24, 40], and CRC
[21, 84]. Regarding hematological tumors, angiogenesis has
been shown to increase with the MCDPT in B cell non-
Hodgkin’s lymphomas [85] as well as in the bone marrow of
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Figure 1: Tryptase, released after MCs activation of c-KitR/SCF-mediated, acting on PAR-2 by its proteolytic activity, has angiogenic activity
stimulating both human vascular endothelial and tumor cell proliferation in paracrine manner, helping tumor cell invasion and metastasis.
In cancer treatment, tryptase may represent a promising target by tryptase inhibitors (gabexate mesylate, nafamostat mesylate, tranilast)
due to their potential antiangiogenic activity. c-KitR, c-Kit receptor; PAR-2, proteinase-activated receptor-2; VEGFR, vascular endothelial
growth factor receptor; SCF, stem cell factor, VEGF, vascular endothelial growth factor; NHERF-1, Na+/H+ exchanger regulatory factor-
1; MEKK-1, mitogen-activated protein kinase/extracellular signal-related kinase-1; MEKK-4, mitogen-activated protein kinase/extracellular
signal-related kinase-4; JNK, c-Jun N-terminal kinase; c-Jun, Jun protooncogene; SAPK, mitogen-activated protein kinase-9; GEF, rho/rac
guanine nucleotide exchange factor; Rho, rhodopsin transcription termination factor; SOS, SOn of sevenless protein; Grb2, growth factor
receptor-bound protein 2; Shc, Shc transforming protein kinase; Ras, Ras protein kinase; Raf, Raf protein kinase; mitogen-activated protein
kinase/extracellular signal-related kinase-1/2; Erk, Elk-related tyrosine kinase; DAG,Diacylglycerol; IP-3, inositol triphosphate; PK-C, protein
kinase-C; COX-2, cyclooxygenase-2; PGE2, prostaglandin E2; PGES-1, prostaglandin E synthase-1; PK-A, protein kinase-A.

patients with multiple myeloma, monoclonal gammopathies
of undetermined significance [86], myelodysplastic syn-
drome [87], and B-cell chronic lymphocytic leukemia [85]. In
themajority of studies, MCDPT correlates with angiogenesis,
tumor aggressiveness, and poor prognosis [25], even if some
human studies have demonstrated a correlation between high
mast cells density (MCD) and improved overall survival
[88–91], suggesting that MCs effects on tumor fate may
depend on some bias related to cancer (e.g., type of surgical
treatment with relative lymph node collection, histology,
stage tumor, small sample size) and differentmethods ofMCs
evaluation (e.g., histochemistry with toluidine blue, Giemsa
stain, primary antibody antitryptase or antichymase for

immunohistochemistry, standardization of MCs count with
reference to magnification, MCs location, and microscopic
field of evaluation).

Overall, despite conflicting reports on the role of MCD-
and MCDPT-mediated angiogenesis in tumor development,
literature data indicate that tryptase may represent a promis-
ing target in adjuvant cancer treatment [25, 26], leading to
considering the therapeutic use of drugs which specifically
inhibit its angiogenic activity. Therefore, tryptase inhibitors,
such as gabexate mesylate and nafamostat mesylate [92–94],
might be evaluated in clinical trials as new antiangiogenic
agents in combination with chemotherapy in the treatment
of cancer.
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3. Potential Role of Mast Cells Tryptase
Inhibitors in Cancer

In the light of the aforementioned complex relationship
between MCs tryptase and angiogenesis in tumor develop-
ment, we have described the possible molecular mechanisms
of three drugs targeting tryptase functions, such as gabexate
mesylate, nafamostat mesylate, and tranilast, in order to
discuss their prospective role in cancer therapy.

3.1. Gabexate Mesylate. Gabexate mesylate (GM) is a syn-
thetic inhibitor of trypsin-like serine proteases [95–97] that
shows an antiproteinase activity on various kinds of plasma
proteases, such as thrombin, plasmin, trypsin, kallikrein, C1
esterase in the complement system, and factor Xa in the coag-
ulation cascade. Accordingly, GM has been therapeutically
used for disseminated intravascular coagulation (DIC) and
acute pancreatitis [95] in Japan, Italy, Korea, and Taiwan.
In addition, several recent studies have reported that this
protease inhibitor exerts a significant antitumorigenic effect,
both in vitro and in vivo [46, 47, 94].

Proteolytic degradation of ECM components is a crucial
step for tumor cell invasion and metastasis. Among several
classes of degrading ECM proteinases, MMPs (MMP-2 and
MMP-9) and urokinase-type plasminogen activator (uPA)
have been closely associated with the metastatic phenotype
of cancer cells [98–102]. These enzymes are also implicated
in tumor angiogenesis [103]. Therefore, inhibitors of MMPs
and uPA are able to inhibit invasion and metastasis [104,
105] by reducing angiogenesis in vitro and in vivo [106–
109]. Furthermore, serine plasma proteases, such as thrombin
and plasmin, are closely associated with activation pathways
of certain MMPs (MMP-2, MMP-3, and MMP-9) [110, 111],
indicating that multispecific protease inhibitors could be
useful tools for an antimetastatic and antiangiogenic strategy.
Based on these findings, GM has been shown to inhibit
proliferation, invasion, andmetastasis of human colon cancer
cell lines through the inhibition of both MMPs and uPA-
plasmin system, consequentially limiting angiogenesis [46].
Although the inhibition of the uPA systemmay be involved in
downregulation ofMMPactivity, the results of this study have
suggested that GM has a direct inhibitory effect on MMPs,
whose related-mechanism is unknown [46].

Interestingly, the inhibition of MMPs by GM and, in
general, its anti-invasive, antimetastatic, and antiangiogenic
properties could also be explained through its potent and
selective inhibition of human tryptase [92]. Indeed, as above
described, in the early stages of tumor development several
tumor-derived factors (i.e., SCF, adrenomedullin) recruit and
activate MCs in tumor microenvironment, leading to the
release of tryptase [25, 26], which, in turn, can indirectly
stimulate tumor angiogenesis by activating latent MMPs and
uPA [23, 24, 75]. Accordingly, Yoshii et al. [50] demon-
strated the specific localization of MCDPT in the invasive
front of tumor tissues by examining 30 cases of human
colon adenocarcinoma. A previous study [49] has found the
proliferation of DLD-1 colon cancer cells expressing PAR-
2 in response to PAR-2 activating peptide (AP). Moreover,
tryptase also enhanced DLD-1 cell proliferation by means

of a specific stimulation of PAR-2 via MAPK- and COX-
dependent manners. Furthermore, these proliferative effects
were concentration-dependently inhibited by nafamostat
mesylate, a very potent inhibitor of human tryptase [93, 112],
suggesting that PAR-2 activation was dependent on tryptase
proteolytic activity. In the same study, PAR-2 density in
tumor tissues was higher than that in the normal tissues, as
revealed by the immunohistochemical analysis.This suggests
that tryptase released by MCs surrounding tumor tissues
may induce the PAR-2-mediated proliferation of colon cancer
cells in a paracrine way [49]. Similarly, tryptase has been
reported to stimulate angiogenesis directly [75] via PAR-2
activation on vascular endothelial cells [24, 76]. Moreover,
increasing evidences support that MCs tryptase is involved
in angiogenesis through the direct degradation of connective
tissue matrix [25, 26, 75], with consequent release of matrix-
associated angiogenic substances, such as VEGF or FGF-
2 [40, 72, 113–116]. These findings as a whole suggest that
MCs tryptase may sustain colon cancer cell growth in two
ways: direct proliferative effect via PAR-2 stimulation and
indirect support through angiogenesis stimulation. Thus,
tryptase may be considered a novel target of colon cancer
therapy. Taken together, all the reported evidences suggest
that the inhibition of colon cancer growth, invasion, and
metastasis by GM may be also due to its selective inhibition
of MC tryptase. Therefore, GM could be potentially useful
for antimetastatic and antiangiogenic treatment of colon
cancers. Noteworthy, this assumption is corroborated by a
recent study by Brandi et al. [47] aimed to investigate the
antitumor efficacy of GM, alone, and in combination with the
antiepidermal growth factor receptor (EGFR) monoclonal
antibody cetuximab, in a group of human CRC cell lines with
a different expression pattern ofwild-type/mutatedV-Ki-ras2
Kirsten rat sarcoma viral oncogene homolog (K-RAS), pro-
tooncogene B-Raf murine sarcoma viral oncogene homolog
B1 (BRAF), and phosphatidylinositol-4,5-bisphosphate 3-
kinase, catalytic subunit alpha oncogene (PIK3CA). Besides
confirming the lack of response to cetuximab in CRC cells
bearing such mutations [117–119], results demonstrated that
GM significantly inhibited the growth, invasiveness, and
tumor-induced angiogenesis in all CRC cells tested in this
study [47]. In particular, the antiangiogenic effect of GM in
combination with the anti-EGFR antibody was found to be
not superior than that observed with GM as single agent,
suggesting that the inhibition of tumor angiogenesis may be
largely related to GMmechanism of action, most notably the
inhibition of MCs tryptase. Therefore, also considering its
good toxicological profile, these findings indicate that GM
could represent a valuable therapeutic option for patients
with EGFR-expressing metastatic CRC (mCRC), particularly
for those ones bearing KRAS, BRAF, and PIK3CAmutations,
either as monotherapy or in combination with standard
chemotherapy [47].

The antimetastatic and antiangiogenic mechanisms of
GM have also been investigated in pancreatic cancer cell
lines. As in colon cancer, MMPs and uPA play a crucial
role also in the progression of pancreatic cancer [48]. In
addition, a previous study by Uchima et al. [48] reported
the involvement of tumor-associated trypsinogen (TAT) and
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Table 1: All preclinical studies mentioned above that have considered gabexate mesylate.

Author, reference,
year Drug/s Tumor target Molecular mechanisms of action Results

Yoon et al. [46] 2004 gabexate mesylate several human colon
cancer cell lines

(1) down-regulation of MMPs
(2) inhibition of uPA-plasmin
system

inhibition of angiogenesis, tumor
cell growth, invasion, metastasis

Brandi et al. [47] 2012
(1) gabexate mesylate
(2) gabexate mesylate
plus cetuximab

several human
colorectal cancer cell
lines (wt/mut KRAS,
BRAF, PIK3CA)

not analyzed

(1) inhibition of tumor cell
growth, angiogenesis, invasion,
metastasis
(2) antitumoral efficacy of the
combination therapy was not
superior than gabexate mesylate
alone

Uchima et al. [48]
2003 gabexate mesylate

several human
pancreatic cancer cell
lines

down-regulation of uPA, TAT,
PAT, MMPs, TGF-𝛽1, VEGF

inhibition of angiogenesis, cell
growth, invasion, metastasis

MMPs, Metalloproteinases; uPA, urokinase-type plasminogen activator; wt, wild-type; mut, mutated; TAT, Tumor-associated trypsinogen; PAT, Pancreatic
acinar trypsinogen; TGF-𝛽1, Tumor growth factor-beta1; VEGF, Vascular endothelial growth factor.

pancreatic acinar trypsinogen (PAT) in pancreatic cancer
invasion and metastasis. Both these serine proteases can be
activated by uPA, which is produced by pancreatic cancer.
Following, they are able to degrade ECM components and
can also directly activate TAT, PAT, pro-MMPs, and pro-uPA,
leading to further ECM breakdown. The resulting vicious
cyclewould activate latent ECM-degrading proteases, thereby
promoting tumor cell invasion and metastasis. In particular,
PAT and TAT had been shown to continuously stimulate
pancreatic cancer cell proliferation by activating PAR-2 [120].
Furthermore, several investigations reported that transform-
ing growth factor-beta 1 (TGF-𝛽1), produced in the tumor
microenvironment, could be a strong mediator of pancreatic
cancer cell invasion, metastasis, and angiogenesis by upregu-
lating VEGF,MMP-2, and uPA secretion [121–123]. High uPA
levels, in turn, could activate latent TGF-beta1, resulting in a
positive feedback loop on tumor progression [123]. Starting
from these data, Uchima et al. [94] suggested that GM
inhibited the invasiveness, proliferation, and potential liver
metastatic of pancreatic cancer cell lines by downregulating
TAT and uPA activities, reducing PAR-2 activation, and
inhibiting the production of TGF-𝛽1 and VEGF. Moreover,
in pancreatic cancer the inhibitory effects of GM may be, in
part, associated with tryptase inhibition. In fact, similarly to
TAT, MCs tryptase may be responsible for PAR-2-mediated
pancreatic cell proliferation, since tryptase is a natural agonist
of this receptor [124].Moreover, tryptase-mediated activation
of latent MMPs and uPA [25, 26, 75] may induce further
TAT, MMPs, and uPA activation and ECM degradation,
thus triggering an ECM-protease network responsible for
tumor cell invasion and metastasis [48, 94]. In this context,
tryptase inhibition by GM may downregulate TAT and uPA
enzymatic activities. The resulting downregulation of uPA
levels may decrease the activation of latent TGF-𝛽1, thereby
impairing the abovementioned cycle vicious of uPA and TGF-
𝛽1 and downregulating VEGF production. On the other
hand, tryptase inhibition may also directly suppress the pro-
duction of TGF-𝛽1 and VEGF involved in tumor growth and
angiogenesis. In agreement with this proposed mechanism,

tryptase has been reported to increase the production of
TGF-𝛽1 in other pathophysiological settings [125, 126]. The
findings about the GM mechanism of action in pancreatic
cancer cells, together with our considerations, indicate that
this protease inhibitor could be a useful therapeutic option
for antimetastatic and antiangiogenic treatment of pancreatic
cancer.

The above studies are summarized in Table 1.

3.2. NafamostatMesylate. Similarly toGM, nafamostatmesy-
late (NM) is able to inhibit a variety of trypsin-like serine
proteases and some proteases implicated in the coagulation
cascade [127, 128]. Interestingly, Mori et al. [93] have demon-
strated that NM inhibits human tryptase with potency 1000
times higher than that of GM, concluding that NM is an
extremely potent and selective inhibitor when employed at
relatively low concentration. They have also suggested that
such inhibitory action on tryptase activity can account for
some therapeutic effects of NM in specific clinical conditions.
Indeed, human tryptase may be involved in the pathogenesis
of several MCs-mediated allergic and inflammatory diseases,
such as rhinitis and asthma. It is also implicated in specific
gastrointestinal, dermatological, and cardiovascular disor-
ders [129–131]. Therefore, NM has been widely used for the
treatment of acute pancreatitis and DIC in Japan [132, 133].

The antitumor potential of NM is suggested by Yoshii
et al.’s study previously described [50]. In fact, the in vitro
analysis showed that NM concentration-dependently inhib-
ited the tryptase-induced enhancement of proliferation of
DLD-1 cells, thus suggesting that tryptase inhibition may
mediate the anticancer effect of NM. It has also been reported
that NM inhibits liver metastases of colon cancer cells in
mice [134]. Moreover, previous studies showed that NM
inhibited the proliferation and invasion of pancreatic cancer
cells by antagonizing TAT-induced activation of PAR-2 in
vitro, in the same fashion of GM [51, 52]. Indeed, several stud-
ies have recently revealed that NM exerts antiproliferative,
antiangiogenic, and antimetastatic effects also in pancreatic
cancer, proposing the use of this serine protease inhibitor
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in combination with standard chemotherapy regimens for
pancreatic cancer management [53–56]. In particular, the
blockade of nuclear factor kappa-B (NF-𝜅B) activation has
been reported to underlie antitumor effects of NM [55]. In
this regard, Karin and Lin have demonstrated that NF-𝜅B
plays an important role in the modulation of inflamma-
tory responses, cell proliferation, apoptosis, and oncogenesis
including invasion and angiogenesis [55]. Typically, inactive
NF-𝜅B is sequestered in the cytoplasm by nuclear factor of
kappa light polypeptide gene enhancer in B-cells inhibitor
alpha (IkB𝛼); however, a specific activation signaling leads
to IkB𝛼 phosphorylation and consequent release of NF-
𝜅B protein, which translocates into the nucleus, where it
induces the transcription of target genes [135]. Most notably,
constitutive activation of NF-𝜅B has been identified in a
variety of tumors including pancreatic cancer [135] and it
is known to contribute to the aggressive phenotype [136]
and chemoresistance [137]. The resulting overexpression of
downstream target genes of NF-𝜅B, such as intercellular
adhesion molecule-1 (ICAM-1) [138], IL-8 [136, 139], VEGF
[136, 139, 140], MMP-9 [140], and uPA [141], promotes cell
adhesion, angiogenesis, invasion, and metastasis. Interest-
ingly, some cancer chemotherapy drugs, such as oxaliplatin
and gemcitabine, have been shown to activate NF-𝜅B by
themselves, thereby reducing their antitumor efficacy [142–
144]. Based on these findings, a NF-𝜅B inhibitor like NMmay
be able to suppress proliferation, angiogenesis, andmetastasis
both in pancreatic cancer and in othermalignancies, opening
an avenue for novel therapeutic approaches. In the study by
Fujiwara et al. [55], NM has been shown to downregulate
activities of phosphorylated IkB𝛼, NF-𝜅B, and its target
genes, resulting in inhibition of cell adhesion, invasion, and
increase of a particular programmed cell death (anoikis) in
human pancreatic tumor cell lines. In vivo, intraperitoneal
administration of pancreatic cancer cells, pretreated with
NM, in nudemice revealed reduced peritonealmetastasis and
neovascularization and increased survival compared with
controls. This suggests that NM may potentially reduce the
incidence of postoperative recurrences due to peritoneal dis-
semination in pancreatic cancer patients [145]. In accordance
with these findings, the authors have already reported the
ability of NM to inhibit NF-𝜅B activation and induce caspase-
8-mediated apoptosis when this serine protease inhibitor was
used asmonotherapy or with gemcitabine, in vitro and in vivo
[53, 146, 147]. Most notably, they reported a better clinical
outcome of combination therapy of gemcitabine or paclitaxel
with NM in comparison with gemcitabine or paclitaxel alone
in pancreatic cancer-bearing mice through the inhibition of
chemotherapeutic drug-induced NF-𝜅B activation [53, 55]. It
was also demonstrated the clinical usefulness of intra-arterial
NM administration combined with gemcitabine in patients
with unresectable pancreatic cancer [54, 148]. Accordingly,
Gocho and colleagues [56] have recently proven that NM
enhances the antitumor effect of oxaliplatin by inhibiting
oxaliplatin-induced NF-𝜅B activation. This leads to down-
regulation of the cellular inhibitor of apoptosis proteins, c-
IAP1 and c-IAP2, resulting in cleavage of poly ADP-ribose
polymerase (PARP) and caspase-8-mediated apoptosis in
vitro and in vivo: the inhibition of NF-𝜅B activity results

in chemosensitization of pancreatic cancer. Therefore, com-
bination chemotherapy with NM and oxaliplatin exerts a
synergistic cytotoxic effect in pancreatic cancer both in vitro
and in vivo.

Taking into account the above-illustrated pathophysio-
logical pathways, we propose that the potent inhibition of
MCs tryptase may also be involved in the antitumor activities
of NM. Firstly, this hypothesis is supported by the ability of
tryptase to stimulate cell proliferation and invasion of cancer
cells in vitro through the activation of PAR-2. We herein
report the evidence of these tryptase-mediated proliferative
effects only in colon cancer cells [50]; however, tryptase, being
a natural agonist of PAR-2 [124], may be potentially able to
activate this receptor class expressed also in the gastrointesti-
nal tract, pancreas, liver, kidney, and sensory neurons [149–
151], triggering a proliferative response. Moreover, the above
mentioned antiproliferative effect of NM in pancreatic cancer
cells by blocking TAT-induced PAR-2 stimulation [51, 52]
may be indirectly related to tryptase inhibition. In fact, we
have previously reported that tryptase can activate the uPA
system [25, 26, 75], which, in turn, activates TAT leading
to stimulation of PAR-2 on the surface of pancreatic cancer
cells [94]. On the other hand, the inhibition of tryptase-
mediated activation of PAR-2 on vascular endothelial cells
could contribute to antiangiogenic effects of NM.

MCs tryptase may contribute to cancer pathways trig-
gered by the constitutive activation of NF-𝜅B. In particular,
tryptase may upregulate the levels of several target genes
overexpressed owing to the pathological NF-𝜅B activation,
such as VEGF, IL-8, MMP-9, and uPA, thereby contribut-
ing to promote angiogenesis, invasion, and metastasis in a
variety of tumors. Interestingly, several studies have reported
that PAR-2 is able to mediate some important tryptase-
induced inflammatory processes, such as microglia acti-
vation and skin inflammation [152, 153]. In particular, it
has been shown that MC tryptase, via PAR-2, may induce
the upregulation/release of proinflammatory cytokines (i.e.,
IL-6, IL-8, TNF-𝛼) and activate important inflammatory
signaling cascades such as NF-𝜅B pathway in human dermal
microvascular endothelial cells andmicroglia: MAPK signal-
ing pathways are involved in NF-𝜅B activation and conse-
quent production/release of proinflammatory cytokines by
tryptase [152, 153]. Furthermore, according to Ma et al. [154]
tryptase could phosphorylate protein-kinase B (PKB, also
known as AKT) through PAR-2, activate phosphoinositol-3-
kinase (PI3K)/PKB pathway, and upregulate the expression of
NF-𝜅B in inflammatory settings. Most notably, PKB/AKT is
involved in cellular survival pathways by inhibiting apoptotic
processes [155]; hence, it has been implicated as amajor factor
in many types of cancers [156].

In the light of these last findings, MCs tryptase may
probably contribute to the aggressive behavior and chemore-
sistance of pancreatic cancer cells, by activating NF-𝜅B.
Therefore, the inhibitory effect of NM on NF-𝜅B activities
may also indirectly depend on the selective tryptase inhibi-
tion. On the other hand, tryptase inhibition could also justify
the apoptotic effect of NM through the downregulation
of PI3K/protein kinase B (PKB) signaling pathway. As a
whole, the above detailed findings and mechanisms suggest
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Table 2: All studies mentioned above that have considered nafamostat mesylate.

Author, reference,
year Drug/s Tumor target Molecular mechanisms of action Results

Jikuhara et al. [49]
2003

nafamostat
mesylate

human colon cancer
cell line (DLD-1)

(1) inhibition of PAR-2
stimulation via MAPK- and
COX-dependent manner
(2) inhibition of VEGF and
FGF-2 levels

inhibition of tumor cell growth,
angiogenesis, invasion,
metastasis

Yoshii et al. [50] 2005 nafamostat
mesylate

human colon cancer
cell line (DLD-1)

(1) Inhibition of PAR-2
stimulation via MAPK- and
COX-dependent manner
(2) Inhibition of the release of
IL-6 and GM-CSF

inhibition of angiogenesis, cell
growth, invasion, metastasis

Tajima et al. [51] 2001 nafamostat
mesylate

several human
pancreatic cancer cell
lines

antagonizing TAT-induced
activation of PAR-2

inhibition of tumor cell growth
and invasion

Ohta et al. [52] 2003 nafamostat
mesylate

several human
pancreatic cancer cell
lines

antagonizing TAT-induced
activation of PAR-2

inhibition of tumor cell growth
and invasion

Uwagawa et al. [53]
2009

(1) nafamostat
mesylate
(2) nafamostat
mesylate plus
gemcitabine

human pancreatic
cancer cell line
(Panc-1)

Down-regulation of NF-𝜅B with
reduction of ICAM-1, IL-8,
VEGF, MMP-9, uPA, RRM1

(1) inhibition of tumor cell
adhesion and growth,
angiogenesis, invasion metastasis
(2) increase of apoptosis
(3) increase of body weight loss
of mice

Uwagawa et al. [54]
2009

nafamostat
mesylate plus
intra-arterial
gemcitabine

unresectable locally
advanced or
metastatic pancreatic
cancer
(20 pts)

not analyzed

(1) CBR of 60%
(2) reduction of CA19-9 serum
level in 90% of pts
(3) improvement in
health-related quality of life

Fujiwara et al. [55]
2011

nafamostat
mesylate

human pancreatic
cancer cell lines
(AsPC-1, BxPC-3,
PANC-1)

down-regulation of IkB𝛼, NF-𝜅B
with reduction of ICAM-1, IL-8,
VEGF, MMP-9, uPA

(1) increase of cell adhesion,
programmed cell death
(2) inhibition of angiogenesis,
invasion, metastasis in peritoneal
dissemination

Gocho et al. [56] 2013

(1) nafamostat
mesylate
(2) nafamostat
mesylate
plus oxaliplatin

human pancreatic
cancer cell line
(Panc-1) and
pancreatic cancer
mouse model

down-regulation of NF-𝜅B with
reduction of ICAM-1, IL-8,
VEGF, MMP-9, uPA, c-IAP1,
c-IAP2

(1) increase of cell adhesion,
caspase-8-mediated apoptosis
(2) inhibition of PARP,
angiogenesis, invasion and
metastasis,
(3) synergistic cytotoxic effect

PAR-2, Protease-activated receptor-2; MAPK, mitogen-activated protein kinase; COX, cyclooxygenase; IL, Interleukin; GM-CSF, Granulocyte-macrophage
colony stimulating factor; TAT, Tumor-associated trypsinogen; IkB, Inhibitor of NF-𝜅B; NF-𝜅B, Nuclear factor-kappaB; MMPs, metalloproteinases; uPA,
urokinase-type plasminogen activator; ICAM-1, Intercellular Adhesion Molecule-1, VEGF, Vascular endothelial growth factor, IAP, Inhibitors of apoptosis.

a potential usefulness of NM in preoperative management
of pancreatic cancer patients, because its use may reduce
postoperative recurrences and improve survival by inhibition
of metastasis induced by surgical resection [157]. Moreover,
taking into account the improved outcomes and relatively low
toxicity of preclinical and clinical studies of the combination
therapy with traditional chemotherapeutic agents and NM,
these combination chemotherapy regimens could represent a
novel promising strategy for pancreatic cancer treatment.

The above studies are summarized in Table 2.

3.3. Tranilast. Among pharmacological agents that affect
several inflammatory and allergic pathways mediated by
MCs tryptase, also tranilast (TN) has progressively attracted

considerable attention because of its antitumor potential.
Since 1982, this drug has been approved in Japan and Korea
for the systemic and topical treatment of bronchial asthma,
atopic dermatitis, and allergic conjunctivitis, with indications
for keloids and hypertrophic scar added in 1993 [158]. Follow-
up studies have revealed that clinical effectiveness of TN in
such applications depends on inhibition of the release of
biologically active mediators fromMCs [158, 159]. Moreover,
tranilast was reported to inhibit the VEGF-induced angio-
genesis both in vitro and in vivo, and most notably, these
antiangiogenic activities have been shown to be concomitant
with inhibitory effects on MCs degranulation [160].

TN was also reported to inhibit the release of TGF-
beta, IL-1beta, prostaglandin (PG) E2, and IL-2 from human
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monocytes and macrophages [161, 162]. In the late 1980s,
Isaji et al. [160] discovered the antiproliferative properties
of TN. In particular, it was found that this agent inhibited
fibroblast proliferation in vitro, resulting in suppression
of proliferative inflammation in vivo. Subsequent studies
confirmed the ability of TN in inhibiting tumor cell growth
and proliferation in various models of cancer [59, 163, 164].
Overall, data from in vitro and in vivomodels for proliferative
disorders, clinical studies, and case reports have corroborated
the antiproliferative and antitumor potential of TN [165],
providing important insights into its mechanisms of action.
Two studies, addressing antiproliferative activity of TN in
several breast cancer cell lines, revealed that TN inhibits
cell proliferation, by arresting cell cycle progression, and
downregulates TGF-𝛽 signaling pathway [57, 58]. Moreover,
Chakrabarti et al. [57] demonstrated that TN is able to inhibit
MAPK signaling pathway.

TN was also reported to suppress the proliferation of
cultured human leiomyoma cells by inhibiting cell cycle
modulators, such as cyclin-dependent kinase 2 (CDK-2)
[164].

As concerns pancreatic cancer, Hiroi et al. [59] reported
that TN significantly inhibited proliferation of PGHAM-1,
a hamster pancreatic cancer cell line. Moreover, TN was
able to inhibit tumor angiogenesis in response to VEGF.
Interestingly, in another study by Mitsuno et al. [60] TN was
found to enhance chemotherapeutic effect of gemcitabine,
as above reported for NM [53, 54]. However, unlike NM-
induced effect, this chemosensitization was associated with
the downregulation of ribonucleotide reductase M1 (RRM1)
[53, 54].

Further experiments revealed that TN treatment inhib-
ited prostate cancer cell proliferation in vitro by promoting
apoptosis. In addition, it was reported the ability of TN to
downregulate TGF-beta production from bone stromal cells
and other different cell types, thereby suppressing TGF-𝛽-
stimulated osteoclast differentiation which underlies, in part,
osteoblastic bone metastasis [61, 166]. Noguchi et al. [62]
demonstrated that three weeks of TN treatment significantly
reduced the tumor growth and metastasis, when adminis-
tered daily by intraperitoneal injection (4mg/animal), in a
mouse model of oral squamous cell carcinoma. TN has also
been reported to exert antitumor effects in gastric cancer [63]
and malignant glioma [64] through different mechanisms.
Izumi et al. [61] have reported that the treatment with oral
TN (300mg/day) promoted a reduction of prostate-specific
antigen (PSA) levels in 4 out of 16 patients with advanced
castration-resistant prostate cancer (CRPC). Accordingly, in
the subsequent follow-up pilot study, oral treatment with TN
(300mg/day) for amedian period of fivemonths documented
a continuous PSA inhibition in 3 out of 21 patients with
advanced CRPC. Overall survival rates at 12 and 24 months
were 74.5% and 61.5%, respectively [167]. As a whole, these
results suggest that TN could be used to improve the prog-
nosis of patients with advanced CRPC. However, the two
clinical investigations had some limitations: (1) open-label
studies with one arm; (2) short follow-up period; (3) small
sample size; (4) all patients were Japanese. Therefore, the
reported findings need further confirmation. Finally, several

case studies have reported that transdermal application of
TN was able to relieve both itching and pain associated with
hypertrophic, keloid scars [168].

Several important pathways have been recognized as
potential targets of TN antitumor activity. In particular, the
TN inhibitory effects on cell proliferation depend mainly on
its ability to interfere with TGF-𝛽 signaling and also reduce
TGF-𝛽 secretion [57, 61, 63, 64]. Also, TN-mediated inhibi-
tion of cell proliferation has been markedly associated with
blockade of cell cycle progression and consequent cell arrest
in the 𝐺0/𝐺1 transition [58, 59, 164, 169]. Probably, TN can
induce cell cycle arrest also through the inhibition of calcium
influx, which is crucial for 𝐺1/𝑆 transition, as demonstrated
by Nie et al. [65]. After TN treatment, the induction of
apoptosis has been reported in several breast and prostate
cancer cell lines [61, 66]. In particular, Subramaniam et al.
[58] showed that TN induced p53 upregulation, enhanced
RAC-alpha serine/threonine-protein kinase (AKT1) phos-
phorylation, and reduced phosphorylation of extracellular
regulated kinase 2 (ERK2). Another work by Subramaniam
et al. [66] detected an increased level of a PARP-cleavage
product in human cancer cell lines treated with TN.

TN also acts as a nontoxic agonist of the aryl hydrocarbon
receptor (ARH) [58, 170], whose function is involved in
anticancer effects [67, 68]: ARH presence in the cell is critical
for TN-mediated cell cycle arrest. Interestingly, the AHR also
antagonizes TGF-𝛽 activity [171] and exerts ligand-dependent
inhibitory effects on NF-𝜅B signaling [172]. These AHR-
mediated activities may contribute to the antiproliferative,
antiangiogenic, and antimetastatic effects of TN.

The ability of TN to inhibit MAPK signaling pathway
could also explain its antimetastatic potential, because this
pathway is known to be implicated during the epithelial
to mesenchymal transition (EMT), which is important for
tumor cell invasion [57]. Moreover, the downregulation of
certain MMPs, such as MMP-9, contributes to TN-mediated
inhibition of tumor cell invasion during metastasis: such
reduction of MMP-9 levels has been also linked to inhibition
of TGF-𝛽 signaling [58].

In addition to the above detailed potential targets, the
antitumor action of TN relies on the blocking of the release
of chemical mediators from MCs [57, 61, 64, 159], which
is also the mechanism responsible for its antiallergic and
anti-inflammatory efficacy [158]. In agreement with this
correlation, Yamamoto et al. [158] have recently docu-
mented that TN downregulated neurofibroma cell (NF1 cells)
proliferation through not only suppression of cell-growth
promoting pathways but also the inhibition of biologically
active mediators by MCs. Interestingly, this study supports
the involvement of tryptase in the antitumor activities of
TN. Indeed, following its addition to NF1 cells cocul-
tured with MCs, this agent was reported to significantly
inhibit NF1 cell proliferation and lower the levels of TGF-
𝛽, SCF, and tryptase. These findings suggest that TN inhibits
tumor proliferation also through the downregulation of MC
tryptase, whose PAR-2-mediated proliferative and angiogenic
effects have been previously described [50, 76]. Furthermore,
tryptase has been reported to activate PI3K/PKB pathway
via PAR-2 cleavage/activation and subsequently upregulate
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Table 3: All studies mentioned above that have considered tranilast.

Author, reference, year Drug/s Tumor target Molecular mechanisms
of action Results

Chakrabarti et al. [57]
2009 tranilast

several mouse, rat and
human breast cancer cell
lines

(1) down-regulation of
TGF-𝛽 pathway
(2) inhibition of MAPK
pathway

inhibition of tumor cell
proliferation, angiogenesis,
apoptosis, migration

Subramaniam et al. [58]
2010 tranilast mouse breast cancer cell

line (4T1)

(1) down-regulation of
TGF-𝛽 pathway
(2) induction cell arrest
in the G0/G1 transition,
PARP cleavage, AKT1
phosphorylation
(3) up-regulation of p53
(4) reduction of ERK1/2
phosphorylation

inhibition of tumor cell
proliferation, angiogenesis,
apoptosis, migration

Hiroi et al. [59] 2002 tranilast hamster pancreatic cancer
cell line (PGHAM-1)

(1) down-regulation of
TGF-𝛽 pathway with
reduction of MMP-9 and
VEGF levels
(2) induction cell arrest
in the G0/G1 transition

inhibition of tumor cell
proliferation, angiogenesis

Mitsuno et al. [60] 2010
(1) tranilast plus
gemcitabine
(2) gemcitabine

human pancreatic cancer
cell line (KP4)

decrease of RRM1
expression

(1) inhibition of tumor cell
proliferation, angiogenesis,
apoptosis
(2) synergistic cytotoxic
effect of combination
therapy

Izumi et al. [61] 2009 tranilast

(1) prostate cancer cell lines
and bone-derived stromal
cells
(2) SCID mice
(3) advanced
hormone-refractory
prostaste cancer (21 pts)

down-regulation of
TGF-𝛽1 pathway

(1) induction of apoptosis
(2) reduction of invasion
and bone metastasis, PSA
levels, improve prognosis

Noguchi et al. [62] 2003 tranilast mouse model of oral
squamous cell carcinoma not analyzed

decrease of tumor growth,
angiogenesis, cervical
lymph node metastases

Yashiro et al. [63] 2003 tranilast

human gastric carcinoma
cell line (OCUM-2D) and
gastric fibroblast cell line
(NF-10)

down-regulation of
TGF-𝛽 pathway

decrease of tumor growth,
angiogenesis, invasion

Platten et al. [64] 2001 tranilast human malignant glioma
cell line

down-regulation of
TGF-𝛽1-2 pathway

decrease of tumor growth,
angiogenesis, migration,
invasion

Nie et al. [65] 1997 tranilast breast cancer cell lines
(MCF-7)

induction cell arrest in
the G0/G1 transition

decrease of tumor growth

Subramaniam et al. [66]
2011 tranilast

human breast cancer cell
lines (triple
positive-BT-474, triple
negative-MDA-MB-231)

(1) up-regulation of p53
(2) induction cell arrest
in the G0/G1 transition,
AKT1 and ERK2
phosphorylation,
PARP-cleavage product

induction of apoptosis,
tumor growth, migration

Zhang et al. [67] 2009 tranilast several ER negative human
breast cancer cell lines

agonizing ARH with
down-regulation of
TGF-𝛽 and NF-𝜅B
pathways

(1) induction of apoptosis
(2) inhibition of
angiogenesis, cell growth,
invasion and metastasis

Hall et al. [68] 2010 tranilast several human breast
cancer cell lines

agonizing ARH with
down-regulation of
TGF-𝛽 and NF-𝜅B
pathways

(1) induction of apoptosis
(2) inhibition of
angiogenesis, cell growth,
invasion and metastasis
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Table 3: Continued.

Author, reference, year Drug/s Tumor target Molecular mechanisms
of action Results

Isaji et al. [69] 1997 tranilast human pancreatic cancer
cell lines

decrease of VEGF and
MMPs levels

inhibition of angiogenesis,
cell growth, migration

TGF-𝛽1, Tumor growth factor-beta1, MMPs, metalloproteinases; MAPK, mitogen-activated protein kinase uPA, PARP, poly ADP-ribose polymerase;
urokinase-type plasminogen activator; AKT1, RAC-alpha serine/threonine-protein kinase; ERK, Extracellular regulated kinase 2; VEGF, Vascular endothelial
growth factor; RRM1, Ribonucleotide reductase M1.

NF-𝜅B expression [154], promoting tumor cell survival
and chemoresistance [56, 155, 156]. Thus, the inhibition of
tryptase release may represent a further molecular mecha-
nism involved in the induction of apoptosis and cell cycle
arrest upon TN treatment. Because tryptase-mediated PAR-
2 activation triggers the MAPK signaling pathway, which
is involved in the EMT process [57], tryptase inhibition by
TN may also mediate its anti-invasion and antimetastatic
properties.

The inhibitory effect on tryptase release could contribute
to the ability of TN treatment to target TGF-beta-regulated
signaling cascade and reduce TGF-𝛽 production. As above
described, indeed, in the tumor microenvironment, tryptase
may upregulate uPA levels, [25, 26, 75] thereby activating
latent TGF-𝛽 which, in turn, upregulates the production
of uPA, MMP-2, and VEGF. This vicious cycle has been
implicated in angiogenesis, tumor cell invasion, and metas-
tasis [94]. By the way, tryptase can also participate to the
neovascular growth by activating latent MMPs, which, in
turn, promote tumor invasiveness and release of angiogenic
factors (VEGF or FGF-2) from their matrix-bound state [25,
26, 75]. Therefore, also taking into account the previously
reported study by Isaji et al. [69], the downregulation of
tryptase release may probably contribute to the TN-induced
inhibition of tumor angiogenesis in response to VEGF, as
observed in experimental pancreatic cancer [59].

In the light of the exposed considerations, we suggest
that the inhibition of tryptase functions may underlie the
anti-invasion, antimetastatic, and antiangiogenic effects of
TN treatment. As concerns safety, TN shows relatively low
toxicity in [61, 69, 173], making it a promising candidate for
further clinical investigations. Based on the encouraging in
vitro and in vivo research data, TN seems to be a safe and
effective agent for the treatment of several proliferative and
angiogenic diseases.

The above studies are summarized in Table 3.

4. Concluding Remarks

Several literature data support a potential implication ofMCs
tryptase in three pivotal processes involved in cancer devel-
opment and metastasization: cell growth, tumor-induced
angiogenesis, and invasion [174, 175]. Therefore, this serine
protease may be considered a novel promising target for the
adjuvant treatment of tumors through the selective inhibition
of angiogenesis, proliferation, and tissue remodelling. In
agreement with these considerations, compounds targeting
tryptase functions, although designed as antiallergic drugs,
could exert a useful antitumor activity as well. In this regard,

it is of interest to underline that many new anticancer drugs
used in clinical field, such as sorafenib [18], sunitinib [176],
pazopanib [177] axitinib [178], and masitinib [179] are all
targeted against c-KitR, whose activation leads to the release
of tryptase by MCs [24].

In particular, we herein discuss the antitumor and
antiangiogenic potential of three agents which are able to
inhibit the functions of MCs tryptase: gabexate mesylate,
nafamostat mesylate, and tranilast. Although no definitive
experimental data are available to confirm the role that
tryptase released from mast cells stimulate tumor angio-
genesis, the above hypothesis is supported by a pilot study
in the in vivo chorioallantoic membrane assay [16]. In this
study an angiogenic activity of human recombinant tryptase
comparable to the angiogenic activity induced by the VEGF
has been demonstrated. Data from this study suggest that
the inhibition of tryptase is intriguing hypothesis worthy to
further investigation.

The new antiangiogenic approach here reviewed should
be substantially strengthened by future awaited clinical stud-
ies having the aim to evaluate the truly efficacy of the tryptase
inhibitors as a novel tumor antiangiogenic therapy.
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