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Abstract

Over the past two decades, there has been a notable rise in the use of antipsychotic drugs, as they are used to treat an
increasing number of neuropsychiatric disorders. This rise has been led predominantly by greater use of the second
generation antipsychotic (SGA) drugs, which have a low incidence of neurological side-effects. However, many SGAs cause
metabolic dysregulation, including glucose intolerance and insulin resistance, thus increasing the risk of cardiometabolic
disorders. The metabolic effects of the novel SGA lurasidone, which was approved by the Food and Drug Administration in
2010, remain largely unknown. As rodent models accurately predict the metabolic effects of SGAs in humans, the aim of the
present study was to use sophisticated animal models of glucose tolerance and insulin resistance to measure the metabolic
effects of lurasidone. In parallel, we compared the SGA olanzapine, which has established metabolic effects. Adult female
rats were treated with vehicle, lurasidone (0.2, 0.8 or 2.0 mg/kg, s.c.) or olanzapine (10.0 mg/kg, s.c.) and subjected to the
glucose tolerance test (GTT). Separate groups of rats were treated with vehicle, lurasidone (0.2, 0.8 or 2.0 mg/kg, s.c.) or
olanzapine (1.5 and 15 mg/kg, s.c.) and tested for insulin resistance with the hyperinsulinemic-euglycemic clamp (HIEC).
Compared to vehicle treated animals, lurasidone caused mild glucose intolerance in the GTT with a single dose, but there
was no effect on insulin resistance in the GTT, measured by HOMA-IR. The HIEC also confirmed no effect of lurasidone on
insulin resistance. In contrast, olanzapine demonstrated dose-dependent and potent glucose intolerance, and insulin
resistance in both tests. Thus, in preclinical models, lurasidone demonstrates mild metabolic liability compared to existing
SGAs such as olanzapine. However, confirmation of these effects in humans with equivalent tests should be confirmed.
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Introduction

Second generation antipsychotic (SGA) drugs are widely used

for the treatment and management of schizophrenia and other

psychiatric disorders [1–3]. The use of SGAs has increased

substantially in recent years, and the 1-year prevalence of

antipsychotic drug use now exceeds 3% of the population in some

countries [4]. While SGAs have a lower likelihood of neurological

side-effects than the first generation antipsychotic drugs, they are

frequently associated with serious cardiometabolic side-effects [5–

8]. This has led to the development of newer SGA drugs with the

goal of improving tolerability and reducing the risk of adverse

events, such as weight gain, insulin resistance, glucose intolerance

and dyslipidemia. These sequelae are established components of

metabolic syndrome, which predisposes patients to secondary

diseases, such as Type 2 Diabetes Mellitus (DM) and cardiovas-

cular disease [9]. The incidence of SGA-induced metabolic side-

effects is high [10]. For example, in a large head-to-head clinical

trial of SGA drugs, the Clinical Antipsychotic Trial of Intervention

Effectiveness (CATIE) study [a major, multi-center trial sponsored

by NIMH] observed that 43% of patients treated with SGAs had

metabolic syndrome. When controlling for BMI, CATIE men

were 85%, and CATIE women 137% more likely to have

metabolic syndrome than non-psychiatric counterparts [11].

Within the SGA class, there is a wide spectrum with regards to

the risk of metabolic side-effects, which is most commonly

measured by weight gain. Head-to-head comparisons have

confirmed that the drugs olanzapine and clozapine cause greatest
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weight gain [12–14], followed by drugs such as risperidone and

quetiapine, while more ‘‘weight-neutral’’ drugs including ziprasi-

done and aripiprazole have notably fewer metabolic side-effects.

However, the risk for hyperglycemia and insulin resistance

associated with SGAs may be independent of effects on body

weight [15]. Numerous reports have detailed hyperglycemia and

new-onset diabetes in the absence of substantial weight gain in

SGA-treated patients [14]. Furthermore, studies in non-psychiatric

subjects have shown that the same SGAs that cause metabolic

dysregulation in patients also cause rapid-onset glucose intolerance

before major weight gain can occur [16,17]. For example, in a

recent double-blind, placebo-controlled crossover trial of olanza-

pine in non-psychiatric subjects, 3-day treatment with a clinical

dose of olanzapine caused significant impairments in the glucose

tolerance test [18]. Another recent study with non-psychiatric

subjects used the hyperinsulinemic euglycemic clamp (HIEC) to

show that treatment with olanzapine for nine days caused

significant insulin resistance in the absence of weight gain,

increases in food intake, or hunger [19].

Rodent models reliably parallel many aspects of the metabolic

dysregulation caused by SGA treatment in humans [20]. Most

animal models show findings consistent with clinical studies, as

SGA drugs that cause greater metabolic dysregulation in humans

result in more pronounced metabolic effects in rodent paradigms

[21–33]. With a strong predictive validity, these models are

therefore useful in evaluating the metabolic side-effects of novel

antipsychotic drugs where a more thorough metabolic evaluation

has not been conducted in humans, due to the invasive nature of

the required procedures. In October 2010, the novel SGA

lurasidone was approved by the US Food and Drug Administra-

tion for the treatment of adults with schizophrenia, and

subsequently for bipolar disorder (June 2013) [34]. Studies have

generally reported that lurasidone is well tolerated in clinical trials,

with a lower incidence of weight gain than most current SGAs

[35,36]. However, to our knowledge, there has not yet been an

evaluation of lurasidone with regards to the potential side-effects of

glucose intolerance and insulin resistance, in any species. The goal

of the current study was therefore to evaluate the effects of

lurasidone on these two key indices of metabolic health, across a

wide range of doses, using ‘‘gold-standard’’ techniques such as the

HIEC. As a comparator, we concurrently measured the metabolic

effects of olanzapine, which is a drug with established metabolic

liability [36].

Methods and Materials

Animals
Adult, female Sprague-Dawley rats weighing 250–275 g

(Charles River, Montreal, Canada) were maintained under a 12-

hour light/dark cycle (lights on at 07:00 h) at 2261uC and

habituated to the UBC colony one week prior to experimentation.

Rats were pair-housed and allowed free access to food and water.

Female rats were used as they tend to show antipsychotic-drug

induced metabolic disturbances that are more consistent and

robust than males [20,22]. Animals were treated in accordance

with the NIH Guidelines for the Care and Use of Laboratory

Animals; all procedures were approved by the UBC Animal Care

and Use Committee.

Pharmacological Agents and Solutions
Lurasidone and olanzapine [Toronto Research Chemicals Inc.,

Toronto, ON] were formulated in 50% polyethylene glycol 400,

40% distilled water and 10% ethanol (PEG solution), as previously

[37–39]. All drug solutions were dissolved at a volume of 1 ml/kg

on the day of the experiment. Recombinant human insulin

(Humulin R) [Eli Lily, Indianapolis, IN] and dextrose (50%) were

prepared using 0.9% saline.

Intraperitoneal Glucose Tolerance Test (IGTT) (see
Figure 1A for experimental protocol)
Rats were fasted overnight (1662 hours) and randomly assigned

to one of five treatment groups: lurasidone (0.2, 0.8, 2 mg/kg, s.c.),

olanzapine (10 mg/kg, s.c.) and vehicle (PEG solution, s.c.) [n = 8

per group]. Blood glucose measurements were determined using a

hand-held glucometer (One Touch Ultra) by wrapping the rat in a

towel and producing a drop of blood from the saphenous vein with

a 25-gauge needle. After measuring the baseline fasting blood

glucose at time= 0 minutes, animals received one of the five

treatments via a single s.c. injection. A second glucose measure-

ment was taken at t = 30 minutes to assess the effect of drug

treatment on the fasting blood glucose level. Subsequently, a

saphenous blood draw using heparinized collecting tubes was

performed to obtain plasma samples for analysis of insulin levels;

extracted blood samples were centrifuged (10,000 RPM, 10 Min,

4uC) and samples stored at280uC. This was followed by a glucose

challenge (1 g/kg/ml, i.p.), marking the start of the IGTT. Blood

glucose readings were then repeatedly determined every 15 min-

utes for the next 2 hours. Animal handlers were blinded to the

treatment conditions.

Surgical Preparations for Hyperinsulinemic-Euglycemic
Clamp (HIEC)
Rats were anaesthetized with isoflurane and administered

ketoprofen pre-operatively (5 mg/kg, s.c.), while bupivacaine was

applied to the incision sites. The left common carotid artery and

both exterior jugular veins were catheterized using polyethylene

cannulae (PE50) filled with heparinized saline (25 IU/ml heparin).

The arterial cannula was used to sample blood for determination

of blood glucose, while the jugular veins were for constant infusion

of insulin and variable infusion of dextrose. All cannulas were

tunneled subcutaneously and exteriorized through an incision in

the back of the neck. Rats were recovered overnight.

HIEC Procedures (see Figure 1B for experimental
protocol)
Rats were fasted overnight (1662 hours) prior to the onset of

the HIEC. Insulin (3 mU/kg/min) and dextrose (50% w/v) were

infused through the venous cannulas using infusion-only pumps

(Harvard Apparatus, Holliston, MA). Insulin infusion was started

and continued at a constant rate throughout the experiment after

taking a baseline fasting blood glucose reading from the arterial

cannula using a hand-held glucometer (One Touch Ultra). After

10 minutes, dextrose was infused at an initial rate of 8 mg/kg/min

(0.96 ml/kg/hr) and the glucose infusion rate (GIR) was adjusted

accordingly to achieve euglycemia based on glucose readings taken

every 10 minutes. Three consecutive blood glucose readings in the

range of 6.060.4 mmol/L at a single GIR indicated euglycemia.

At this point, animals randomly received one of the following

treatments via a single s.c. injection: lurasidone (0.2, 0.8 and

2.0 mg/kg), olanzapine (1.5, 15 mg/kg) and vehicle (PEG

solution) [n= 6–10 per group]. The GIR was adjusted appropri-

ately to maintain euglycemia for the next two hours. Animal

handlers were blinded to drug treatments.

Plasma Insulin Measurement by ELISA
Insulin levels were measured using the ultra-sensitive rat insulin

ELISA kit (Crystal Chem Inc., IL, USA). Plasma samples (5 ml)

Metabolic Side-Effects of Lurasidone
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were added and analyzed, in duplicate, on 96 well plates. Samples

were incubated, followed by repeated washes. Substrate was added

and absorbance measured at 450 nm–630 nm, as previously

[40,41]. Calibrators were prepared and used to generate a

calibration curve. A reference (non-fasted) animal’s plasma added

to all plates served as reference standard; confirming a high intra-

plate reliability. One animal’s plasma sample was spoiled

(olanzapine treated) and not used for analysis.

Insulin resistance
Determination of insulin resistance in rats was accomplished

using the homeostatic model assessment of insulin resistance

(HOMA-IR) equation (1) [42]. The product of both the fasting

levels of glucose (expressed as mmol/L) and insulin (mU/ml)

30 minutes post-drug administration is divided by a constant of

22.5. Greater insulin resistance is represented via a larger

calculated HOMA-IR score.

I0|G0ð Þ=22:5 ð1Þ

where I0 and G0 are fasting insulinemia and glycaemia.

Statistical analysis
Metabolic indices during the IGTT were analyzed by one-way

analysis of variance (ANOVA), with drug dose as the between

group factor. For the IGTT, glucose data were summed as the

area-under-the-curve throughout the 120 minute procedure [37].

For the HIEC data, a between-within subject analysis was

performed, with drug treatment as the between subjects factor

and change in GIR from baseline as the within factor. Alpha value

Figure 1. Experimental protocol. Describing (A) the intraperitoneal glucose tolerance test and (B) the hyperinsulinemic-euglycemic clamp with
acute antipsychotic drug treatment.
doi:10.1371/journal.pone.0107116.g001
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was set at p,0.05. LSD post-hoc tests were conducted when a

main effect or interaction between main effects was significant.

Data were analyzed with SPSS software, Chicago, IL, version 21.

Results

IGTT
Analysis of the IGTT with lurasidone and olanzapine revealed

no difference between fasting glucose levels either before or after

drug treatment compared to vehicle treated rats. There was,

however, a significant main effect of drug treatment on fasting

insulin levels [F(4,39) = 6.02, p= 0.001], whereby olanzapine

selectively increased insulin levels to more than twice those of

any other group (p,0.001) (Table 1). A similar effect was

measured with insulin resistance calculated by the HOMA-IR

equation, whereby there was a significant main effect of drug

treatment [F(4,39) = 5.43, p,0.005] as the olanzapine treated

group showed a significant increase in insulin resistance compared

to all other groups (p,0.001) and no effect of lurasidone treatment

(Table 1).

Following the glucose challenge, glucose levels rose rapidly in all

animals, peaking in the first measurement after glucose injection

(Figure 2). Peak glucose levels indicated a significant main effect of

drug treatment [F(4,40) = 5.60, p= 0.001], as glucose levels were

significantly higher in the olanzapine (p,0.01) and lurasidone

0.8 mg/kg (p,0.05) group than in vehicle treated rats; there was

no effect of the 0.2 mg/kg dose of lurasidone, and a slight (non-

significant) increase in glucose levels caused by the 2.0 mg/kg dose

of lurasidone. Similar results were obtained when the glucose area-

under-the-curve was analyzed. A significant main effect of drug

treatment [F(4,40) = 9.07, p,0.001] and post-hoc analysis revealed

a larger increase in glucose levels during the 120 minute test by

olanzapine treated rats than vehicle (p,0.001; 39% higher levels

than vehicle) and all other groups. The 0.8 mg/kg lurasidone

treated group also showed significantly higher glucose levels

compared to vehicle treated rats (p,0.01; 21% higher levels than

vehicle) although unlike olanzapine, glucose levels were not

significantly higher compared to the other two doses of lurasidone.

The lower 0.2 mg/kg dose of lurasidone showed a non-significant

trend towards higher glucose levels (p = 0.08; 14% higher levels

than vehicle) compared to vehicle treated rats.

HIEC
Average basal glucose levels were similar for all groups prior to

euglycemia and administration of antipsychotic drugs (Figure 3).

Insulin resistance during the HIEC is indicated by a reduction in

the GIR, and therefore the primary analysis compared the effects

of antipsychotics on change in the GIR over 120 mins. For the

overall ANOVA, antipsychotic drug treatment was represented by

between-subjects factors, while the change in GIR over time from

the baseline value at t = 0 (i.e. at administration of the

antipsychotic drug) was the within subjects factor. The ANOVA

indicated a significant main effect of change in GIR over time

[F(12,516) = 18.70, p,0.0001], as well as an interaction of time6
drug treatment [F(60,516) = 2.92, p,0.0001]. Post-hoc analysis

revealed that the interactive effect reflected a drug-selective effect

of antipsychotic treatment on GIR over time, as insulin resistance

increased selectively and gradually after the drug injection. By

70 minutes after antipsychotic drug injection, the olanzapine

15 mg/kg group displayed a significantly lower GIR than vehicle

treated animals, which remained significant until the end of the

test, and indicated the capacity of the drug to cause whole-body

insulin resistance. The lower dose of olanzapine 1.5 mg/kg also

caused a reduction in the GIR but this was never significant. By

comparison, there was no effect at any time of the three different

doses of lurasidone on the GIR.

Discussion

The results of the current study provide the first published

findings for the novel SGA drug lurasidone and its effects on the

key metabolic indices of glucose tolerance and insulin resistance.

Using the two separate techniques of the GTT and the HIEC in

adult female rats, we were able to find converging evidence for a

relatively benign metabolic profile for lurasidone. Across a tenfold

range of doses, lurasidone caused modest but significant glucose

intolerance with the single dose of 0.8 mg/kg. In the same GTT,

there was no effect of any dose of lurasidone on insulin resistance

measured by the HOMA-IR equation. These results were

corroborated in the HIEC, when there was no effect of any of

the three doses of lurasidone on the glucose infusion rate,

indicating no evidence of insulin resistance. By contrast,

olanzapine displayed a robust dose-dependent effect on glucose

intolerance, as well as insulin resistance measured both HOMA-

IR and in the HIEC.

Table 1. Mean concentration of fasting glucose, insulin and HOMA-IR scores in antipsychotic drug treated rats.

Antipsychotic Drug Measure Treatment Dose (mg/kg)

0 0.2 0.8 2

Lurasidone G0 5.660.1 5.460.3 5.360.2 5.260.2

I0 10.060.7 10.460.8 9.560.7 10.460.9

HOMA-IR 2.560.2 2.560.2 2.260.8 2.560.3

10

Olanzapine G0 5.560.2

I0 22.965.4*

HOMA-IR 5.861.5*

I0 = fasting insulin levels (mU/ml); G0 = fasting glucose levels (mmol/L); HOMA-IR = homeostasis model assessment of insulin resistance (mU?mmol)/(ml?L).
Rats were treated with three separate doses of lurasidone (0.2, 0.8 or 2.0 mg/kg), olanzapine (10 mg/kg) or vehicle. Values represented as means 6 SEM at t = 30 min
during the IGTT.
*indicates different from vehicle-treated animals, p,0.001.
doi:10.1371/journal.pone.0107116.t001
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The two procedures used in the current study provide

complementary measures of metabolic physiology, and arguably

represent the most reliable and accurate methods of determining

glucose tolerance and insulin resistance. The GTT measures the

ability of a fasted subject to return glucose levels to normal

following a glucose challenge, and the procedure is commonly

Figure 2. Acute effects of the SGA drugs lurasidone and olanzapine on glucose levels in adult female rats in the glucose tolerance
test. Animals (n = 8 per group) received a single injection of vehicle, lurasidone (0.2, 0.8 or 2.0 mg/kg, s.c) or olanzapine (10 mg/kg, s.c.) in a volume
1 ml/kg. Glucose levels were recorded prior to drug treatment in overnight-fasted rats at Time 0, and then 30 minutes following drug administration
(x-axis). Immediately following this glucose measurement, all rats were subjected to a glucose tolerance test by receiving an intraperitoneal challenge
injection of 1 g/ml/kg of glucose, and blood glucose levels were measured every 15 minutes for the next two hours. Total cumulative glucose levels
for each treatment group are summed as the ‘‘area under the curve’’ during the glucose tolerance test by graph inset (top right). Values represent
group means 6 SEM; *indicates different from vehicle-treated animals, p,0.01; **indicates different from vehicle-treated animals, p,0.001.
doi:10.1371/journal.pone.0107116.g002

Figure 3. Acute effects of the SGA drugs lurasidone and olanzapine in adult female rats in the hyperinsulinemic-euglycemic clamp.
Animals (n = 6–10 per group) were fasted overnight and subjected to the hyperinsulinemic-euglycemic clamp. After animals reached euglycemia
(three consecutive blood glucose readings of 6.060.4 mmol/L), rats were treated with vehicle, lurasidone (0.2, 0.8 or 2.0 mg/kg, s.c) or olanzapine (1.5
or 15 mg/kg, s.c.) in a volume 1 ml/kg. Glucose levels were recorded every 10 minutes and the glucose infusion rate was adjusted as needed. Glucose
infusion rates for each treatment group are presented as change in glucose infusion rate from euglycemia. Values represent group means 6 SEM.
*indicates different from vehicle-treated animals, p,0.05; **indicates different from vehicle-treated animals, p,0.01.
doi:10.1371/journal.pone.0107116.g003

Metabolic Side-Effects of Lurasidone

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e107116



used in both preclinical and clinical studies of metabolic syndrome,

prediabetes and Type 2 DM [43]. The GTT has been used in the

diagnosis of Type 2 DM for decades, and provides a substantially

more accurate determination of loss of glycemic control than

measurement of fasting glucose levels only, which may misdiag-

nose Type 2 DM in at least one third of patients [44,45]. The

GTT is practical and shows strong cross-species homology,

allowing precise evaluation of postprandial glucose regulation

[46]. A limitation of the technique is its capacity to measure insulin

resistance following a prandial/glucose challenge, as both glucose

and insulin levels are free to vary. Insulin resistance is therefore

best measured using ‘‘clamp’’ techniques, such as the HIEC,

which provides an accurate index of cell-mediated glucose uptake

via the action of insulin, and is therefore considered the ‘‘gold

standard’’ test of insulin resistance [47]. We have previously noted

a high (but not perfect) degree of correlation between results

obtained with the GTT and the HIEC in rats treated with SGA

drugs [48]. Our previous study indicated that the GTT may be

slightly more sensitive at detecting metabolic dysregulation than

the HIEC. This may explain why we observed glucose intolerance

with a single dose of lurasidone, but no effect of the drug on insulin

resistance measured by HOMA-IR or with the glucose infusion

rate in the HIEC. The mechanisms underlying this possible

differential sensitivity to the effects of antipsychotic drugs in the

two procedures remains unknown. In the HIEC, insulin levels

remain fixed at a high level for an extended period, whereas in the

GTT levels of insulin are free to vary. Of relevance, a number of

studies have determined that olanzapine can directly inhibit beta

cell function, thereby attenuating insulin release in response to a

glucose challenge [15,49,50]. It is feasible that olanzapine causes

impairments in insulin release following the glucose challenge in

the GTT that contribute to the elevated glucose levels in the test,

and that these effects are more pronounced than the effects of

insulin itself on glucose uptake in the HIEC; further study will be

required to determine this possibility. The explanation of why

glucose intolerance was observed with the intermediate, rather

than highest, dose of lurasidone remains unknown. It is possible to

speculate that the physiological mechanisms that underlie glucose

intolerance may exert their effects in a non-linear manner,

reflecting lurasidone’s complex pharmacological profile [51], but

this will clearly require further study.

In the present study, we have chosen doses of drugs based on

previous preclinical studies, while also considering known meta-

bolic effects in humans when possible. The choice of dose requires

some justification, as the metabolic effects of SGAs in humans can

be dose-dependent [52]. The two doses of olanzapine represent a

typical range used in metabolic studies in rats [25,38]. The effects

of the higher dose of olanzapine produced a 39% increase in the

area-under-the-curve in the GTT. This is highly consistent with

comparable human studies; for example, when Albaugh and

colleagues treated non-patient subjects with a clinical dose of

olanzapine, they observed a 42% increase in the area-under-the-

curve of glucose levels in the GTT [18]. Interestingly, therefore,

the dose of olanzapine in rats needed to reproduce equivalent

metabolic effects in humans in the GTT is higher than would be

expected, based on the known dopamine D2 receptor occupancy

of the drug in the rat brain. A dose of 3 mg/kg of olanzapine is

sufficient to occupy 65–70% of rat striatal D2 receptors [53,54],

which would represent the equivalent of receptor occupancy levels

in patients at a therapeutic dose; however, the robust metabolic

effects of the antipsychotic would not be evident at this dose in

rats. While the interpretation of this finding requires further study,

it may be possible that the metabolic effects of antipsychotic drugs

are largely independent of central effects on D2 receptors, and that

the physiological substrates that mediate glucose intolerance and

insulin resistance are separate and proportionally less sensitive in

the rat, requiring higher relative doses than central D2-mediated

effects such as behavioral tasks [55] that model therapeutic human

dosing. Comparing dosing, therefore, between two antipsychotic

drugs where the metabolic effects of one in humans are unknown

requires estimation and it is possible that the effects with

lurasidone may be an underestimation.

As there are no previous reports of metabolic indices being

measured with lurasidone, we chose doses of this drug based on

behavioral and physiological studies and the effects of lurasidone

in preclinical screens and models of schizophrenia. For example,

Horiguchi and colleagues observed that while doses of 0.01 and

0.03 mg/kg (i.p.) of lurasidone were ineffective in reversing

phencyclidine-induced cognitive impairment, doses of 0.1 and

0.5 mg/kg caused significant improvement in the task [56]. Doses

of 0.25 and 0.5 mg/kg (i.p.), but not 0.1 mg/kg, of lurasidone

increased dopamine efflux in the frontal cortex and hippocampus

[57], which represents a physiological property common to SGA

drugs. Our observation that there were no metabolic side-effects

with the highest 2.0 mg/kg dose of lurasidone suggests that these

effects were not present at a dose substantially higher than the

average dose effective in behavioral studies.

The present observation that acute olanzapine treatment causes

potent metabolic dysregulation is well established in the animal

literature, and consistent with numerous previous rodent studies

[25,26,38,49,58–65]. Also, as noted above, several recent studies

in non-patient subjects have confirmed that acute olanzapine

treatment in humans causes both glucose intolerance and insulin

resistance in the absence of weight gain [18,19]. This indicates that

the SGA drug itself is directly causing metabolic dysregulation,

rather than reflecting the influence of other potentially confound-

ing variables that may be associated with schizophrenia, such as

smoking [66], poor diet and lack of exercise [67]. We have

previously reported that the magnitude of the metabolic effects of

chronic treatment with olanzapine on a daily basis does not

change over a period of months [37,68], indicating that acute

effects are an accurate predictor of chronic metabolic effects.

In contrast to the established effects of the SGA drug olanzapine

on metabolic function, relatively little is known about the

metabolic effects of lurasidone. To our knowledge, there are no

preclinical studies of the metabolic effects of lurasidone. In the

clinical literature, a number of studies have determined the effects

of treatment with lurasidone on metabolic indices in clinical trials

of the drug for treatment of schizophrenia and bipolar disorder.

However, these measures have been limited to fasting glucose

only, which - as noted above - provides a less accurate test of

glucose or insulin dysregulation than the techniques used presently

[44]. A recent systematic analysis of previous clinical trials with

lurasidone reported that when effects were pooled from seven

short term trials (#12 weeks), there was a small but significant

increase in fasting glucose levels versus placebo, which was

described as ‘‘not…clinically meaningful’’ [69]. In clinical trials

reported since this review, there is no evidence of lurasidone

significantly increasing glucose levels versus placebo [70]. In

clinical trials where patients are switched from other antipsychotic

medications to lurasidone, small increases or decreases in fasting

glucose levels have been reported, depending on the specific SGA

at baseline [71]; for example, patients switched from aripiprazole

to lurasidone showed an increase in fasting glucose levels of 5 mg/

dL after 6 months of treatment, whereas those switched from

olanzapine to lurasidone showed a decrease of 2 mg/dL. These

minor changes in fasting glucose levels are consistent with the

numerous reports of low metabolic liability for lurasidone with
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regards to its relatively low propensity for weight gain in patients

[69]. Nevertheless, given the small but significant increase in

fasting glucose reported in the analysis by De Hert and colleagues

[69], as well as evidence from the current study that mild glucose

tolerance can occur at certain doses following a glucose challenge,

it may be worthwhile as a cautionary measure to follow up in

lurasidone treated patients with additional study, using metabolic

tests with greater reliability than fasting glucose levels, such as the

GTT.

In summary, we have used separate tests of glucose tolerance

and insulin resistance to determine the metabolic effects of the

novel SGA lurasidone in adult female rats, using techniques that

accurately model the metabolic side-effects of antipsychotic drugs

in humans [20]. A limitation of the study is that our index of

glucose infusion rates in the HIEC provided only a whole-body

measure of insulin resistance. Pervious rat studies have used

radioactive tracers to distinguish between the effects of antipsy-

chotics on hepatic versus peripheral insulin sensitivity [49,72], and

while no effect of lurasidone was evident in the HIEC, it is possible

that regional differences in insulin sensitivity may occur that were

not detected with the current protocol. We observed dose-

dependent, mild glucose intolerance, but no evidence of insulin

resistance, indicating that the metabolic liability of lurasidone in

humans is likely to be quite low, and certainly not of a comparable

magnitude to a higher metabolic risk SGA drug such as

olanzapine. However, given the large number of patients who

may be potentially treated with lurasidone - particularly if the drug

is tailored to the individual patient because of its weight sparing

profile - and the harmful effects of uncontrolled glucose, a more

thorough metabolic evaluation of the drug in humans would be

justified.
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