
Colonization of Onions by Endophytic Fungi and Their
Impacts on the Biology of Thrips tabaci
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Abstract

Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important
mutualists that mediate plant–herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa
L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of
onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by
selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci
infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either
by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-
inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on
plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710,
Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with
Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T.
atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments.
Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707
inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on
Thrips tabaci.
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Introduction

In Kenya, onions Allium cepa L. (Asparagales: Amaryllidaceae),

are grown in all regions by both large- and small-scale farmers,

where they have a ready domestic and regional market [1]. Onion

thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), is

considered the most economically important pest of onion

worldwide [2], [3]. In Kenya, it is present in all onion growing

areas and can cause up to 59% loss in yield [4]. Currently, growers

manage thrips by applying insecticides which are ineffective due to

the cryptic feeding behavior of thrips, overlapping generations and

insecticide resistance [5], [6]. Therefore, an integrated approach

that includes the use of entomopathogens, cultural practices, host

plant resistance and judicious use of insecticides is needed [7], [8].

Entomopathogenic fungi (EPF) are considered as important

biocontrol agents (BCAs). They are traditionally applied in an

inundative approach [9], but recent studies have shown that EPF

play diverse roles in nature including as endophytes [10]. Indeed,

the endophytic niche in a plant is a rich source of microorganisms

that can directly and indirectly promote plant growth and

development through plant defence against herbivorous insects

[11] and plant pathogens [12], [13] due to their ability to produce

secondary metabolites with biocidal activity [14], [15]. On a wide

variety of crops, fungal endophytes have been reported to deter

feeding, oviposition and performance of stem boring, sap sucking,

chewing, and leaf mining insects [11], [16], [17], [18]. For

example, endophytic colonization of banana by Beauveria
bassiana significantly reduced larval survivorship of banana weevil,

Cosmopolites sordidus (Coleoptera: Curculionidae), resulting in 42–

87% reduction in plant damage [19]. Reduction in feeding and

reproduction by Aphis gossypii (Hemiptera: Aphididae) has also

been reported on cotton endophytically colonized by either B.
bassiana or Lecanicillium lecanii (Hypocreales: Clavicipitaceae)

[20].

Advantages of the application of endophytes over conventional

foliar application of fungal entomopathogens [7] [21] are the

ability to colonize plants systemically, thereby offering continuous

protection and enhanced persistence [22]. Moreover, considerably
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low inoculum is required when applied as seed treatment [23].

However, colonization of a host plant by an endophyte is

influenced by the inoculation method, species of fungal endo-

phytes and the host plant species itself. Based on the inoculation

technique, the endophytes differ in their ability to colonize

different plant parts and to persist over a crop growth cycle [24],

[25], [26]. Akello et al. [25] reported a higher colonization of

tissue-cultured banana by B. bassiana through dipping roots and

rhizome in a conidial suspension as compared to injecting a

conidial suspension into the plant rhizome and by growing the

plants in sterile soil mixed with B. bassiana-colonized rice

substrate. Bing and Lewis [24] reported improved colonization

of corn plants through foliar spray of conidia as compared to

injection of conidia suspension. They also demonstrated the ability

of B. bassiana to invade maize plants through the epidermis,

thereafter persisting in the plant through the entire growing

season, which conferred crop resistance against damage by

European corn borer. However, information on endophyte

colonization of onions and impact of endophytes on thrips

infesting onions is not available. Hence, this study aimed to

evaluate the efficacy of two procedures, seed and seedling

inoculation methods, on colonization of onion plants by fungal

endophytes and further assess their impact on infestation by onion

thrips, and on thrips feeding and oviposition. Post-inoculation

recovery of all the endophytes tested wase highest with seed

inoculation method compared to seedling inoculation method, and

this method was selected for the additional impact studies with

thrips.

Materials and Methods

Ethics statement
The study was not undertaken in a national park or any other

protected areas of land. The plants (onion), endophytes and the

insect pest (thrips) involved in the study are not endangered or

protected species. No specific permits were required to undertake

the field studies in the locations mentioned. However, we obtained

prior permission from the farmers in whose fields the sampling was

undertaken.

Biological material
Fungal isolates. Five fungal isolates (Clonostachys rosea

ICIPE 707, Trichoderma atroviride ICIPE 710, Trichoderma
harzianum ICIPE 709, Fusarium sp. ICIPE 712, and Fusarium
sp. ICIPE 717 with GenBank Accession Nos: KJ619987,

KJ619990, KJ619989, KJ619992 and KJ619993, respectively)

were used in this study. The endophytes were isolated from onion

plants asymptomatic of any pathogenic infection, collected during

a field survey conducted in different altitudinal gradients of Kenya,

namely Nakuru (00.01 N 36.26 E, 2000 m.a.s.l.), Loitokitok (02.71

S 37.53 E, 1200 m.a.s.l.) and Kibwezi (02.25 S 38.08 E,

825 m.a.s.l.) as detailed in the GenBank Accessions mentioned

above. Two fungal isolates (Hypocrea lixii F3ST1 and Trichoder-
ma asperellum M2RT4) isolated from the aboveground parts of

maize and sorghum, and previously reported endophytic on maize

and bean seedlings [27], were also included. Conidia were

obtained from two-week-old cultures grown on potato dextrose

agar (PDA) plates. The conidia were harvested by scraping the

surface of sporulating cultures with a sterile scalpel. The harvested

conidia were then placed in universal bottles with 10 ml sterile

distilled water containing 0.05% Triton X-100 and vortexed for

5 min to produce homogenous conidial suspensions. The conidial

concentration was determined using Neubauer hemocytometer.

The conidial concentration was adjusted to 16108 conidia mL21

through dilution prior to inoculation of seeds and seedlings.

To assess the viability of the conidia, 100 mL of conidial

suspension was inoculated to the surface of two fresh plates of PDA

for each isolate. A sterile microscope cover slip (262 cm) was

placed on top of the agar in each plate before incubation. The

inoculated plates were incubated for 24 h at 20uC. The percentage

conidial germination was assessed by counting the number of

germinated conidia out of 100 in one randomly selected field.

Conidia were considered as germinated when germ tubes

exceeded half of the diameter of the conidium. The percent

germination of the different isolates exceeded 90%, which is

recommended by Parsa et al. [28].

Insects. Initial cultures of T. tabaci were field-collected from

onion plants at the International Centre of Insect Physiology and

Ecology (icipe) organic farm. Thrips were reared on snow peas,

Pisum sativum L. (Fabales: Fabaceae), for over 30 generations in

ventilated plastic jars at the icipe’s insectary at 2561uC, 50–60%

relative humidity (RH), 12 h L: 12 h D photoperiod.

Onion seeds. Onion can be established using either direct

seed sowing or seedling transplanting [29]. Seeds of onion (var.

Red Creole) were surface-sterilized in 70% ethanol and then

immersed in 2% NaOCl (bleach) for 2 and 3 min, respectively.

The seeds were finally rinsed three times using sterile distilled

water to ensure epiphytes were not carried on the seed surface. To

confirm the efficiency of the surface sterilization methods, 100 ml

of the last rinse water [28], [30] was spread onto potato dextrose

agar and plates were incubated at 20uC for 14 days. The absence

of fungal growth on the medium confirmed the reliability of the

sterilization procedure. The seeds were then placed on sterile filter

paper to dry for 20 min before being divided into two portions,

one for the seed and the other for the seedling inoculation.

Seed and seedling colonization of onion plants by fungal
endophytes

Seed inoculation of fungal endophytes. For seed inocula-

tion, 10 g of surface-sterilized seeds were subdivided into eight

equal portions whereby seven portions were individually soaked in

a conidial suspension of 16108 conidia ml21 of each isolate for 10

hours. In the control, the eighth portion was soaked in sterile

distilled water containing 0.05% Triton X-100. The inoculated

seeds were air dried on a sterile paper towel for 20 min and then

transferred in plastic pots (8 cm diameter67.5 cm height)

containing sterile planting substrate. The substrate was a mixture

of red soil and livestock manure in a 5:1 ratio and was sterilized in

an autoclave for 2 hr at 121uC and allowed to cool up to ambient

temperature before being used. Seeds were sown 1 cm below the

surface of the substrate and maintained at room temperature

(,25uC and 60% RH) in the screen house. After germination,

seedlings were thinned to one per pot for all the eight treatments

and the four replicates. The plants were watered once per day in

the evening. No additional fertilizer was added to the planting

substrate.

Seedling inoculation of fungal endophytes. For seedling

inoculation, surface-sterilized seeds, as described earlier, were

raised in a plastic bucket (30 cm diameter628 cm height) with

sterile planting substrate and maintained in a screenhouse at room

temperature (,25uC and 60% RH) for one month before

transplanting. Before transplanting, seedlings (height 7–8 cm)

were watered and uprooted carefully to minimize damage to

roots. After uprooting, the plants were shaken gently to dislodge

excess soil on the roots, which were further washed with running

tap water. Roots of four seedlings with well-developed shoots were

dipped in each of the seven endophyte conidial suspensions of

Endophytes Colonizing Onions and Their Impacts on Thrips
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16108 conidia ml21 for 10 hours. Control plants were dipped in

sterile distilled water containing 0.05% Triton X-100. The

inoculated seedlings were transplanted in pots containing sterile

soil as described earlier. The experimental design was a completely

randomized block design (CRBD) with four replicates. The plants

were maintained under similar conditions as those inoculated

through the seeds.

Assessment of colonization. To determine colonization by

inoculated fungal isolates, onion plants were carefully uprooted

from the pots after 50 and 70 days for inoculated seeds and

seedlings, respectively. Plants were then washed gently with water.

Leaves, stems and roots were separated from each plant. Sections

of leaves were sampled from the middle and outer leaves of the

plant while the whole lengths of stems and roots were used for

sampling. The sampled plant parts were then surface-sterilized by

dipping them in 70% ethanol and then immersing in 2% NaOCl

for 2 and 3 min, respectively, and rinsed three times using sterile

distilled water. The final rinse water was plated on PDA to confirm

elimination of epiphytic microorganisms as described earlier. The

surface-sterilized plant parts were then aseptically cut into 1 cm

lengths under a laminar flow hood. Five randomly selected pieces

were placed in uniform distribution on PDA plates amended with

antibiotics (tetracycline and streptomycin sulfate salt at 0.05%)

[31] and incubated in the dark at 25uC for 10 days, after which the

presence of fungal growth was observed. Positive colonization was

scored by counting the number of pieces of the different plant

parts with growth of inoculated endophyte. To confirm whether

the growing endophytes were the ones initially inoculated; slides

prepared from the mother plates were used for comparison and

morphological identification.

Effect of endophytically colonized onion plants on
proportion of thrips observed on plants, feeding
punctures and oviposition

Seed inoculation technique was found to be effective for

colonization and was therefore adopted for this study. Seeds

inoculated with all fungal isolates and a control were transplanted

in smaller pots (diameter 8 cm) with one plant per pot until 3- to 5-

leaf stage before being used in the experiment. Plants with four

fully grown leaves were exposed to one-day-old (presumably

mated) adult female thrips (10 individuals) for 72 h in Plexiglas

cages (30630625 cm) and were maintained at 2661uC, 50–70%

RH and 12L: 12D photoperiod. A total of four cages were used for

each treatment. After 72 h, all adult thrips observed on the plants

were recorded. The individual plants were cut and placed in

labeled polythene paper bags for later quantification of thrips

feeding and oviposition activities. Two leaves from each plant were

cut into three sections of 4 cm each, from the base, middle and tip

of the leaf. The number of feeding punctures was counted under a

stereomicroscope and recorded. The sections were stained in

boiling lactophenol-acid fuchsin solution [32] for 30–40 mins.

After staining, the leaves were placed in 90 mm Petri dishes for

1 h before being destained. Destaining was done by immersing the

leaves in warm water for three minutes after which the eggs were

counted under a stereomicroscope. Treatments were randomized

in complete block design and the experiment replicated four times.

Verification of colonization of onions by the endophytes was

performed at the end of the experiment.

Data analysis
Binary data on colonization (presence or absence) were fitted in

a generalized linear mixed model assuming binomial distribution

error and logit using package lme4 [33] in R 2.15.2 statistical

software [34]. Treatments were considered as fixed effects and the

plant pieces nested within the plant as random effects. The extent

of fungal colonization (%) of host plant parts was calculated as

detailed below.

Colonization(%)~ PF=TP

� �
|100

where – PF – Number of pieces exhibiting fungal growth, TP –

Total number of pieces plated out.

The numbers of thrips observed on the onion plants were

recorded for all treatments and replicates. Analysis was performed

using logistic regression model which was fitted to the data on

proportion of thrips recovered 72 h post-exposure using package

HSAUR [35] in R 2.15.2. The number of feeding punctures on

each leaf section were determined and summed up per plant

before staining the leaves for eggs count. All count data on feeding

and oviposition of T. tabaci were checked for normality and

homogeneity of variance using Shapiro-Wilk and Levene tests,

respectively, before analysis by negative binomial regression using

R 2.15.2 [34] with package MASS [36]. The negative binomial

distribution was chosen, based on its biological appropriateness in

handling overdispersion in count data. P-values of ,0.05 were

considered as significant.

Results

Seed and seedling colonization of onion plants by fungal
endophytes

The viability tests yielded .90% germination of conidia, for all

the isolates. Since the final rinse water did not show any sign of

fungal growth on the media, it was concluded that the surface

sterilization technique used was effective. All the tested fungal

isolates were able to colonize onion plants following seed or

seedling inoculation (Figures 1, 2). However, the extent of

colonization of the different plant parts depended on the

inoculation method and the fungal isolate. Seed inoculation

resulted in 1.47 times higher mean percentage post-inoculation

recovery of all the endophytes tested as compared to seedling

inoculation (F = 11.13; df = 1, 3; p = 0.002). For example, mean

colonization of roots by C. rosea ICIPE 707 isolate was

75.0069.7% through seed inoculation and 29.8563.7% through

seedling inoculation. Seed inoculation method resulted in higher

mean post-inoculation recovery of all the endophytes tested for

roots, stems and leaves (76.0664.1%, 44.2463.6% and

44.7365.4%), respectively (Figure 1). On the other hand, seedling

inoculation recorded 55.6264.5%, 31.7565.8% and 24.6566.8%

for roots, stems and leaves, respectively (Figure 2).

Effect of endophytically colonized onion plants on
proportion of thrips observed on plants, feeding
punctures and oviposition

The treatments had a significant effect on the proportion of

thrips observed on the onion plants 72 h post-exposure

(x2 = 87.79, df = 7, p,0.001) (Figure 3). Overall Hypocrea lixii
outperformed all the other treatments in affecting the proportion

of thrips on the plants. Fewer thrips were observed on plants

inoculated with C. rosea ICIPE 707, T. asperellum M2RT4, T.
atroviride ICIPE 710, T. harzianum ICIPE 709, H. lixii F3ST1

and Fusarium sp. ICIPE 712 isolates as compared to those

inoculated with Fusarium sp. ICIPE 717 and the control

treatments (Figure 3). The number of feeding punctures by T.
tabaci was significantly lower in all the endophyte-inoculated

plants as compared to the control treatment (F = 22.71; df = 7, 21;

Endophytes Colonizing Onions and Their Impacts on Thrips
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p,0.001; n = 4) (Figure 4). Plants colonized by isolates C. rosea
ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710, and

H. lixii F3ST1 had significantly lower number of feeding

punctures as compared to the other treatments (Figure 4).

Highest number of eggs (18.662.2) was oviposited by T. tabaci
in the control plants than in all other endophytically colonized

plants (F = 16.75; df = 7, 21; p,0.001) (Figure 5). Among the

isolates tested, the lowest numbers of eggs were laid by T. tabaci on

H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. Plants

inoculated with T. asperellum M2RT4 and T. atroviride ICIPE

710 isolates were equally effective in their capacity to reduce egg

laying by T. tabaci. Fusarium sp. ICIPE 717 colonized plants

showed about 6 times higher number of eggs as compared to H.
lixii F3ST1 (Figure 5).

Discussion

Plant colonization depended on inoculation methods. For

instance, seed inoculation method resulted in superior colonization

of onion plants as compared to the seedling inoculation. The

difference in colonization between the two may be explained in

part by a reduced capacity of uninoculated seedlings to enhance

endophyte proliferation due to transplantation shock [37].

Moreover, endophyte inoculation at seed stage could have the

advantage of colonizing both seed radical and the plumule, which

are close to one another in the seed. Tefera and Vidal [38]

reported that seed inoculation of sorghum plants with B. bassiana
resulted to good endophyte colonization in vermiculate and sterile

soil substrates. Seed inoculation could be advantageous in terms of

low inoculums requirement as compared to augmentative sprays

[23]. Further seed treatment could provide opportunities for

endophytic fungi colonization at the young seedling stage for early

protection and enhanced seedling health. Backman and Sikora

[39] outlined that, integrated pest management on seeds reduces

costs and environmental impact, while allowing the biological

agent to build up momentum for biological control. Posada et al.

[40] found that direct injection of B. bassiana conidial suspensions

had the highest post-inoculation recovery in coffee seedlings than

foliar sprays, stem injections, or soil drenches. Our results show

that there were differences in the level of colonization of different

Figure 1. Endophytic colonization of onion seeds. Percentage colonization of onion plant parts (root, stem and leaves) by different fungal
endophytes through seed inoculation. Data are percentage mean 6 SE. (P#0.05).
doi:10.1371/journal.pone.0108242.g001

Figure 2. Endophytic colonization of onion seedlings. Percentage colonization of onion plant parts (root, stem and leaves) by different fungal
endophytes through seedling inoculation. Data are mean 6 SE. (P#0.05).
doi:10.1371/journal.pone.0108242.g002
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plant parts by fungal isolates. For instance, roots sections had

higher colonization as compared to stems and leaves. These

differences could be due to tissue specificity exhibited by

endophytic fungi and their adaptation to particular physiological

conditions of the plants [41]. Similar results were reported on

French beans and Faba beans [18] and coffee [40].

Among the endophytes that colonized onion plants, C. rosea
ICIPE 707, H. lixii F3ST1, T. harzianum ICIPE 709, T.
atroviride ICIPE 710, and T. asperellum M2RT4 had significantly

low proportion of thrips, number of feeding punctures and eggs.

However, isolate H. lixii F3ST1 had the highest overall negative

impact on T. tabaci. Lately, the impacts of fungal endophytes on

suppression of different insect groups in different host plants are

receiving increased attention [16], [18], [42]. The negative effect

on the proportion of thrips on the endophyte-colonized plants as

compared to the control could have been responsible for reduced

feeding and oviposition. For instance, Akutse et al. [18] reported

that Faba beans colonized endophytically by fungal endophytes of

the genera Hypocrea and Beauveria had significant negative effects

on leafminer, Liriomyza huidobrensis (Blanchard) fitness, impact-

ing on mortality, oviposition, emergence and longevity of the pest.

Cherry et al. [16] found a reduced number of Sesamia calamistis
(Hampson) in B. bassiana-inoculated plants compared to non-

inoculated plants. Thrips are able to distinguish among plants as

suitable for feeding and/or oviposition sites to ensure fitness of

their progeny [43]. Thrips tabaci is a key vector of Iris yellow spot
virus (IYSV) in Kenya [44], [45] and the thrips densities are

positively associated with IYSV incidence [46], [47], [48]. Hence,

the reduced feeding by the thrips on endophyte-colonized plants

could potentially reduce the transmission of IYSV in onions.

Figure 3. Effect of endophytically colonized onion plants on proportion of adult Thrips tabaci. An evaluation of fungal endophytes for
their effect on proportion of thrips settling on inoculated onion plants after 72 h. Bars indicate means 6 SE at 95% CI. Means followed by the same
letter indicate no significant differences between treatments.
doi:10.1371/journal.pone.0108242.g003

Figure 4. Effect of endophytically colonized onion plants on feeding punctures by adult Thrips tabaci. The figure quantifies mean
feeding activity by Thrips tabaci exposed for 72 h on onion plants inoculated with different fungal endophytes. Bars indicate means 6 SE at 95% CI.
Means followed by the same letter indicate no significant differences between treatments.
doi:10.1371/journal.pone.0108242.g004

Endophytes Colonizing Onions and Their Impacts on Thrips

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e108242



Moreover, fungal endophytes can decrease plant virus infections in

plants as reported in meadow ryegrass with the Barley yellow
dwarf virus (BYDV) [49]. The broad array of endophyte induced

defence mechanisms in plants against insect pests such as

production of toxic or distasteful chemicals [50] and pathogenic

interaction to insects [51] could decrease insect fitness [52], a

phenomenon that needs to be further investigated.

In the present study, dead insects did not present any signs of

mycosis. Previous studies have also revealed that dead insects

recovered from endophytically-colonized plants exhibit no signs of

fungal infection [16], [18]. The influence of endophytes colonizing

onions on thrips biology in terms of observable proportion, feeding

and oviposition in the present study are in accordance with the

findings by Cherry et al. [16] and Bittleston et al. [53] on reduced

feeding and by Akutse et al. [18] on oviposition with other

endophytes and pests. The reduced feeding and oviposition could

have been a result of either reduced survival of thrips or

antixenotic repellence of thrips, phenomena that warrant further

studies to unravel the underlying mechanisms such as possible

release of metabolites and/or volatiles which could have effects on

thrips.

Isolates C. rosea ICIPE 707, H. lixii F3ST1, T. harzianum
ICIPE 709, T. atroviride ICIPE 710, and T. asperellum M2RT4

effectively colonized the various plant parts of onion as compared

to the Fusarium isolates. Consequently, isolate H. lixii F3ST1 had

the most antagonistic impact on onion thrips and it could be used

to develop alternative and ecologically safe management strategy

for onion thrips. We conclude that, onions can be successfully

inoculated especially through seeds, with different fungal endo-

phytes. However, further studies are warranted to determine the

persistence of tested endophytes in the colonized plants under

natural conditions and investigate potential for vertical transmis-

sion of endophytes. Additionally, being the first report of

antagonistic activity of endophytes colonizing onion against T.
tabaci, it would be crucial to determine the underlying mecha-

nisms of such multi-trophic interactions.
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