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Abstract

Vasohibin-1 (VASH1) is a unique endogenous inhibitor of angiogenesis that is induced in endothelial cells by pro-angiogenic
factors. We previously reported renoprotective effect of adenoviral delivery of VASH1 in diabetic nephropathy model, and
herein investigated the potential protective role of endogenous VASH1 by using VASH1-deficient mice. Streptozotocin-
induced type 1 diabetic VASH1 heterozygous knockout mice (VASH1+/2) or wild-type diabetic mice were sacrificed 16
weeks after inducing diabetes. In the diabetic VASH1+/2 mice, albuminuria were significantly exacerbated compared with
the diabetic wild-type littermates, in association with the dysregulated distribution of glomerular slit diaphragm related
proteins, nephrin and ZO-1, glomerular basement membrane thickning and reduction of slit diaphragm density. Glomerular
monocyte/macrophage infiltration and glomerular nuclear translocation of phosphorylated NF-kB p65 were significantly
exacerbated in the diabetic VASH1+/2 mice compared with the diabetic wild-type littermates, accompanied by the
augmentation of VEGF-A, M1 macrophage-derived MCP-1 and phosphorylation of IkBa, and the decrease of angiopoietin-1/
2 ratio and M2 macrophage-derived Arginase-1. The glomerular CD31+ endothelial area was also increased in the diabetic
VASH1+/2 mice compared with the diabetic-wild type littermates. Furthermore, the renal and glomerular hypertrophy,
glomerular accumulation of mesangial matrix and type IV collagen and activation of renal TGF-b1/Smad3 signaling, a key
mediator of renal fibrosis, were exacerbated in the diabetic VASH1+/2 mice compared with the diabetic wild-type
littermates. In conditionally immortalized mouse podocytes cultured under high glucose condition, transfection of VASH1
small interfering RNA (siRNA) resulted in the reduction of nephrin, angiopoietin-1 and ZO-1, and the augmentation of VEGF-
A compared with control siRNA. These results suggest that endogenous VASH1 may regulate the development of diabetic
renal alterations, partly via direct effects on podocytes, and thus, a strategy to recover VASH1 might potentially lead to the
development of a novel therapeutic approach for diabetic nephropathy.
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Introduction

Diabetic nephropathy is the most common pathological

disorder predisposing patients to end-stage renal disease. In the

early stage of diabetic nephropathy, glomerular hyperfiltration,

glomerular and tubular hypertrophy, microalbuminuria and

thickening of the glomerular basement membrane (GBM) are

observed. Thereafter, the expansion of the mesangial extracellular

matrix and overt proteinuria emerge, thus eventually leading to

glomerulosclerosis and tubulointerstitial fibrosis [1]. The involve-

ment of the renin-angiotensin-aldosterone system, chemokines

such as monocyte chemoattractant protein-1 (MCP-1)/CCL-2,

transforming growth factor-b1 (TGF-b1) and advanced glycation

end products in diabetic nephropathy has been reported [2,3].

The infiltration of macrophages is associated with diabetic

nephropathy [4,5]. There are at least two types of macrophages,

with the M1 macrophages being involved in promoting renal

inflammation, and thus being a therapeutic target for renal

disease. The other type is M2 macrophages, which are involved in

the resolution of inflammation and repair of injury [6].
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Figure 1. The mRNA and protein levels of Vasohibin-1, renal hypertrophy, creatinine clearance and urinary albumin excretion. A, B:
The mRNA and protein levels of Vasohibin-1 (VASH1) detected by real-time PCR and immunoblot analysis. Total RNA and protein were extracted from
the renal cortex and subjected to examinations using quantitative real-time PCR and immunoblot analysis, as described in the MATERIALS AND
METHODS. Real-time PCR and immunoblot analysis showed a substantial decrease in the VASH1 mRNA and protein expression in the kidneys in the
VASH1+/2 mice compared with the wild-type mice. The amount of VASH1 mRNA relative to 18s rRNA is shown in A. The amount of VASH1 protein
relative to actin is shown in B. n=4 for each group. The results of real-time PCR and immunoblot analysis are expressed relative to non-diabetic wild-
type mice that were arbitrarily assigned a value of 100. C: The increase in the kidney weight-to-body weight ratio induced by high glucose was
exacerbated in the VASH1+/2 mice. The kidney weight relative to the body weight was determined before termination of the experiments. D: The
increase in the Ccr level induced by high glucose was partially reduced in the VASH1+/2 mice. E: At two, six and 16 weeks after STZ injection, the
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Angiogenesis is associated with a number of pathological

conditions, including tumor growth and diabetic retinopathy [7],

and vascular endothelial growth factor-A (VEGF-A) promotes

angiogenesis [8] and also induces vascular permeability [9].

Previous studies have demonstrated an increased glomerular

filtration surface area in association with the formation of new

glomerular capillaries and a slight elongation of the preexisting

capillaries in diabetic nephropathy [10,11], analogous to the

findings of pathological diabetic retinopathy [12]. In addition, an

increase in the levels of VEGF-A and its receptor (VEGFR-2) has

been reported in models of diabetic nephropathy [13,14]. The

therapeutic efficacy of anti-VEGF-A strategies [15,16] has further

demonstrated the potential involvement of VEGF-A in diabetic

nephropathy. The therapeutic effects of angiogenesis inhibitors in

diabetic nephropathy models have been reported by our group

and others [17,18].

Vasohibin-1 (VASH1) was identified from a microarray analysis

that assessed the genes upregulated by VEGF-A in endothelial

cells. The human VASH1 protein is composed of 365 amino acid

residues and regulates the proliferation and migration of

endothelial cells in an autocrine manner and thus is considered

to be a negative feedback regulator of angiogenesis [19]. The

critical role of VASH1 in the maintenance of endothelial cells

against cellular stressors have been reported [20]. However, the

cell surface receptor(s) for VASH1 have not yet been identified.

The therapeutic efficacy of VASH1 against tumor growth and

atherosclerosis models has been reported [19,21,22,23,24]. We

previously reported the therapeutic effects of the adenoviral

transfer of human VASH1 in mouse type 1 and 2 diabetic

nephropathy models [25,26]. The renoprotective effects of

exogenous VASH1 were mediated via its direct effects on

mesangial cells and podocytes, as well as glomerular endothelial

cells, thus suggesting that VASH1 has activity beyond its role as an

‘‘antiangiogenic factor’’.

In the present study, we demonstrate the exacerbation of

diabetic nephropathy in VASH1 heterozygous knockout

(VASH1+/2) mice and reveal the functional role of endogenous

VASH1 in the streptozotocin (STZ)-induced type 1 diabetes

model. These effects were associated with the regulation of

angiogenesis-associated factors, inflammatory signals and podo-

cyte injury, thus potentially leading to the exacerbation of

albuminuria.

Materials and Methods

Induction of diabetes and experimental protocols
The experimental protocol was approved by the Animal Ethics

Review Committee of Okayama University. Male C57/BL6J mice

and C57/BL6J-VASH1+/2 mice [27], were fed a standard pellet

laboratory chow and were provided with water ad libitum. Type 1
diabetes was induced by low-dose STZ injection, as detailed by the

NIDDK Consortium for Animal Models of Diabetic Complica-

tions-(AMDCC) protocol (available from http://www.amdcc.org),

with some modification. Weight-matched eight-week-old male

mice received intraperitoneal injections of STZ or citrate buffer on

five consecutive days. Six days after the last injection of STZ, mice

with a random blood glucose concentration over the 15.5 mmol/L

were selected for experiments. 19 (11 wild-type, eight VASH1+/2)

mice received injections of STZ and 16 (nine wild-type, seven

VASH1+/2) mice, utilizing in the experiments as the diabetic

mice, exhibited hyperglycemia in the range described above. The

experimental subgroups of mice included: 1) non-diabetic wild-

type, 2) non-diabetic VASH1+/2, 3) diabetic wild-type and 4)

diabetic VASH1+/2 mice. In Table 1 and Figure 1C–E, we used

animals with the number as follows, n= 6 for non-diabetic Wild, 5

for non-diabetic VASH1+/2, 9 for diabetic Wild, and 7 for

diabetic VASH1+/2, respectively. However, we used 4 mice per

each experimental group in the rest of experiments.

Blood and urine examination
The blood glucose level, urine samples and the body weight

were evaluated every other week for 16 weeks, when a 24 hours

urine sample was collected in metabolism cages. The blood

glucose level was measured in tail vein blood. The serum and

urinary creatinine levels and urinary albumin concentration were

determined as previously described [26]. The results were

expressed as the urinary albumin/creatinine ratio. The creatinine

clearance (Ccr) was calculated and expressed as milliliters per

minute per 100 g of body weight. The survival rate until

completion of the study was 100%.

Measurement of the blood pressure
The arterial blood pressure was measured before sacrifice using

a programmable sphygmomanometer (BP-2000 Blood Pressure

Analysis System for Mice and Rats; Visitech Systems Inc., Apex,

NC) by the tail-cuff method as described previously [28].

Histological analysis
At 16 weeks after the injections of STZ or buffer, the kidneys

were removed, fixed in 10% buffered formalin and embedded in

paraffin. Sections (4 mm) were stained with periodic acid-Schiff

and Masson trichrome for light microscopic observation. Mean

glomerular tuft volume was determined from the mean glomerular

cross-sectional tuft area as described previously [29]. Mesangial

matrix index was also determined as described previously [25,26].

Immunohistochemistry
Immunohistochemistry was performed using frozen sections as

described previously [25,26]. The following antibodies were used

as primary antibodies: (1) polyclonal rabbit anti-type IV collagen

antibody (Chemicon International, Inc., Temecula, CA); (2)

polyclonal guinea pig anti-nephrin antibody (Fitzgerald, Concord,

MA); (3) polyclonal rabbit anti-ZO-1 antibody (ZYMED Labora-

tories, Carlsbad, CA) and (4) monoclonal rat anti-CD31 antibody

(Pharmingen, San Diego, CA). The glomerular accumulation of

monocytes/macrophages was determined by immunohistochem-

istry using monoclonal rat anti-Mac-2 (lectin, galactoside-binding,

soluble, 3) antibody (Cedarlane, Burlington, Ontario, Canada) as

previously described [30].

Double immunofluorescent staining was performed as previ-

ously described [10,11]. The following antibodies were used as

primary antibodies: (1) polyclonal rabbit anti-phosphorylated NF-

kB p65 (pNF-kB p65) antibody (Cell Signaling Technology,

albuminuria of the diabetic mice was significantly exacerbated compared with that in the non-diabetic mice. At six and 16 weeks after STZ injection,
the albuminuria of the diabetic VASH1+/2 mice was significantly exacerbated compared to that in the diabetic wild-type mice. n = 6 for non-diabetic
Wild, 5 for non-diabetic VASH1+/2, 9 for diabetic Wild, 7 for diabetic VASH1+/2, respectively in C, D and E. #P,0.01, 1P,0.05 vs. non-diabetic or
diabetic wild-type mice. *P,0.05 vs. non-diabetic wild-type or VASH1+/2 mice. {P,0.05 vs. diabetic wild-type mice. Each column shows the mean 6
SE. Abbreviations: Ccr, creatinine clearance; STZ, streptozotocin; UACR, the urinary albumin/creatinine ratio; VASH1+/2, Vasohibin-1+/2 mice; Wild,
wild-type mice; 24-hr, 24 hours.
doi:10.1371/journal.pone.0107934.g001
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Danvers, MA); (2) monoclonal rat anti-CD34 antibody (Santa

Cruz Biotechnology, CA).

Transmission electron microscopy
Slit diaphragm density and the GBM thickness were studied

using electron microscopy techniques as described previously [31].

RNA extraction and quantitative real-time polymerase
chain reaction (real-time PCR)
RNA extraction and real-time PCR were performed as

described previously, with modifications [25,26]. The following

oligonucleotide primers specific for mouse VASH1, MCP-1,

tumor-necrosis factor alpha (TNF-a), CD206, interleukin-10 (IL-

10), Arginase-1 (Arg-1), nephrin and 18s rRNA were used:

VASH1, 59-ATGTGGAAGCATGTGGCCAAGATC-39 (for-

ward) and 59-GTCAGTCACCAATAGCCTCATAGT-39 (re-

verse); MCP-1, 59-AAGCTGTAGTTTTTGTCACC-39 (for-

ward) and 59-GGGCAGATGCAGTTTTAA-39 (reverse); TNF-

a, 59-GTTCTATGGCCCAGACCCTCAC-39 (forward) and 59-

GGCACCACTAGTTGGTTGTCTTTG-39 (reverse); CD206,

59-TCGAGACTGCTGCTGAGTCCA-39 (forward) and 59-

AGACAGGATTGTCGTTCAACCAAAG-39 (reverse); IL-10,

59-GACCAGCTGGACAACATACTGCTAA-39 (forward) and

59-GATAAGGCTTGGCAACCCAAGTAA-39 (reverse); Arg-1,

59-GGGAATCTGCATGGGCAAC-39 (forward) and 59-

GCAAGCCAATGTACACGATGTC-39 (reverse); nephrin, 59-

TCTTCAAATGCACAGCCACCA-39 (forward) and 59-AAGC-

CAGGTTTCCACTCCAGTC-39 (reverse); 18s rRNA, 59-ACT-

CAACACGGGAAACCTCA-39 (forward) and 59-AACCAGA-

CAAATCGCTCCAC-39 (reverse).

Immunoblot
Immunoblot assay were performed as described previously

[25,26]. The following antibodies were used as primary antibodies:

polyclonal rabbit anti-VASH1 antibody [32]; polyclonal rabbit

anti-TGF-b1/2/3 antibody (Santa Cruz Biotechnology); mono-

clonal rabbit anti-phosphorylated Smad3 (pSmad3) antibody and

monoclonal rabbit anti-Smad3 antibody (Cell Signaling Technol-

ogy); polyclonal rabbit anti-VEGF-A antibody (Santa Cruz

Biotechnology); polyclonal rabbit anti-Angiopoietin-1 (Ang-1)

antibody and polyclonal rabbit anti-Angiopoietin-2 (Ang-2)

antibody (Alpha Diagnostic, San Antonio, TX); polyclonal rabbit

anti-IkBa antibody (Santa Cruz Biotechnology); monoclonal

rabbit anti-phosphorylated IkBa (pIkBa) antibody (Cell Signaling

Technology); polyclonal rabbit anti-ZO-1 antibody (Invitrogen)

and polyclonal rabbit anti-beta actin antibody (Abcam).

Cell culture
Conditionally immortalized mouse podocytes, a generous gift

from Prof. Peter Mundel, were utilized to determine the direct

influence of endogenous VASH1 on the high glucose-induced

alterations of the mRNA level of nephrin and the protein levels of

VEGF-A, Ang-1 and ZO-1, which the primary antibodies are

same as above, as described previously [20,26]. VASH1 siRNA or

control siRNA were utilized to knock down endogenous VASH1.

The nucleotide sequences of VASH1 or control siRNAs used in

this study are as follow: for mouse VASH1 and its control, 59-

UGG UAU GGG AAU CUU GGG CAG GUC G-39 and 59-

CGA CCU GCC CAA GAU UCC CAU ACC A-39, respectively.

Statistical analyses
All values are expressed as the means +/2 standard error (SE).

A Kruskal-Wallis test with post-hoc comparisons using Scheffe’s

test was employed for inter-group comparisons of multiple

variables. The statistical analysis was performed using the JMP

version 9 software program (SAS Institute Inc, Cary, NC, USA). A

level of P,0.05 was considered to be statistically significant.

Results

Exacerbated renal hypertrophy and urinary albumin
excretion in the diabetic VASH1+/2 mice
Real-time PCR and immunoblot analysis showed a substantial

decrease in the VASH1 mRNA/protein levels in the renal cortex

of the VASH1+/2 mice compared to their wild-type littermates

(Figure 1, panel A and B). The body weight (BW) was

significantly lower and the HbA1c was significantly higher in all

of the diabetic groups compared with the non-diabetic groups, and

the diabetic VASH1+/2 mice did not show any significant

differences in the BW, HbA1c, systolic blood pressure or serum

creatinine compared with the diabetic wild-type mice (Table 1).
The diabetic wild-type mice exhibited marked renal hypertrophy,

and this was significantly enhanced in the diabetic VASH1+/2

mice (Figure 1, panel C). The diabetic wild-type mice, but not

the diabetic VASH1+/2 mice, exhibited a significantly increased

Ccr/BW compared to the non-diabetic mice (Figure 1, panel
D). At six and 16 weeks after STZ injection, the albuminuria of the

diabetic VASH1+/2 mice was significantly exacerbated compared

with that in the diabetic wild-type mice (Figure 1, panel E).

Exacerbated glomerular alteration in the diabetic
VASH1+/2 mice
Glomerular hypertrophy and an increase in the mesangial

matrix index were significantly exacerbated in the diabetic

VASH1+/2 mice compared with the diabetic wild-type mice

(Figure 2, panels A–D, I and J). Focal interstitial fibrosis

accompanied by tubular atrophy and thickened vessel walls was

observed in the diabetic groups (Masson trichrome). No significant

differences were observed between the diabetic wild-type and the

diabetic VASH1+/2 mice (data not shown). The glomerular

Table 1. The body weight, HbA1c, blood pressure and serum creatinine level.

Group N Body weight (g) HbA1c (NGSP) (%) SBP (mmHg) S-Cr (mg/dL)

Wild/non-diabetic 6 29.260.6 3.560.4 103.963.7 0.2560.03

VASH1+/2/non-diabetic 5 28.760.8 4.460.4 96.964.0 0.2560.04

Wild/diabetic 9 23.961.0* 8.360.3* 109.463.0 0.2360.03

VASH1+/2/diabetic 7 24.260.5* 8.260.4* 108.663.4 0.3160.03

*P,0.05 vs. non-diabetic mice. The values are shown as the means 6 SE. Abbreviations: NGSP, national glycohemoglobin standardization program; SBP, systolic blood
pressure; S-Cr, serum creatinine; VASH1+/2, Vasohibin-1+/2 mice; Wild, wild-type mice.
doi:10.1371/journal.pone.0107934.t001
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accumulation of type IV collagen (Figure 2, panels E–H) was

significantly exacerbated in the diabetic VASH1+/2 mice (Fig-
ure 2, panel H and K) compared with the diabetic wild-type

mice (Figure 2, panel G). Immunoreactivity of type IV collagen

in the diabetic mice was observed mainly in the glomerular

basement membrane and mesangial area. The diabetic mice

exhibited increased renal levels of TGF-b and pSmad3 compared

with the non-diabetic mice (as determined by immunoblots). The

increase of renal TGF-b and pSmad3 was significantly exacer-

bated in the diabetic VASH1+/2 mice compared with the diabetic

wild-type mice (Figure 2, panels L and M).

Podocyte injuries were exacerbated in the VASH1+/2

mice
In the non-diabetic mice, the localization of nephrin (Figure 3,

panels A and B) and ZO-1 (Figure 3, panels E and F), slit
diaphragm related proteins, were observed along the glomerular

capillary wall in a continuous pattern. In the diabetic mice, the

intensity of nephrin and ZO-1 immunostaining was diminished,

exhibiting a discontinuous pattern, and thus suggesting podocyte

injury (Figure 3, panels C, D, G and H). In the diabetic

VASH1+/2 mice (Figure 3, panels D and H), the intensity of

nephrin and ZO-1 was diminished, and exhibited a more

discontinuous pattern compared with the diabetic wild-type mice

(Figure 3, panels C and G) as confirmed by a quantitative

morphometric analysis (Figure 3, panels M and N).

In addition, a significant increase in the GBM thickness and a

decrease in the slit diaphragm density in the diabetic mice

(Figure 3, panels I–L) were observed by electron microscopy.

These alterations were exacerbated in the diabetic VASH1+/2

mice (Figure 3, panel L) compared with the diabetic wild-type

mice (Figure 3, panel K), as confirmed by a quantitative

morphometric analysis (Figure 3, panels O and P).

Accelerated glomerular endothelial alterations in the
diabetic VASH1+/2 mice
In the non-diabetic mice, CD31, a marker for endothelial cells,

was detected along the glomerular capillaries (Figure 4, panels
A and B), and was increased in the glomeruli of the diabetic mice

(Figure 4, panels C and D). The glomerular CD31+ area was

significantly increased in the diabetic VASH1+/2 mice (Figure 4,
panels D and E) compared with the diabetic wild-type mice

(Figure 4, panel C). Although the peritubular capillary (PTC)

density was increased in the diabetic mice compared with the non-

diabetic mice, no significant difference was observed between the

diabetic wild-type and VASH1+/2 mice (Figure 4, panel F).

VEGF-A not only promotes vessel growth, but also promotes

inflammation. Ang-1 maintains the vascular integrity through

promoting pericyte attachment, but Ang-2 promotes endothelial

cell activation [33]. The renal level of VEGF-A was significantly

increased in the non-diabetic VASH1+/2 mice and the diabetic

wild-type mice compared with the non-diabetic wild-type mice,

and was further elevated in the diabetic VASH1+/2 mice as

detected by immunoblot assays (Figure 4, panel G). The renal

level of Ang-1 was significantly decreased in the diabetic wild-type

mice compared with the non-diabetic mice, and was further

diminished in the diabetic VASH1+/2 mice (Figure 4, panel H).

The level of Ang-2 was significantly elevated in the diabetic

VASH1+/2 mice compared with the other experimental groups

(Figure 4, panel I).

Renal inflammation was exacerbated in the diabetic
VASH1+/2 mice
We next examined the glomerular infiltration of monocytes/

macrophages utilizing immunohistochemistry of Mac-2. The

number of glomerular Mac-2+ cells was significantly increased in

the diabetic wild-type mice (Figure 5, panels C and D),

compared with the non-diabetic mice (Figure 5, panels A and
B), and was further increased in the diabetic VASH1+/2 mice

(Figure 5, panels D and E). Next, the influence of VASH1

deficiency on the renal levels of M1 or M2 macrophage-associated

factors was examined by real-time PCR. In the diabetic mice, the

mRNA levels of MCP-1 and TNF-a, M1 cytokines, were

significantly increased compared with those in the non-diabetic

mice (Figure 5, panels F and G). In the diabetic VASH1+/2

mice, the mRNA level of MCP-1 was significantly elevated

compared with that in the diabetic wild-type mice (Figure 5,
panel F). The mRNA levels of CD206 and IL-10, an M2 marker

and cytokine, respectively, did not significantly differ among the

experimental groups (Figure 5, panels H and I). The mRNA

level of arginase-1, an M2 cytokine, was significantly increased in

the diabetic wild-type mice, compared with the non-diabetic mice,

and was suppressed in the diabetic VASH1+/2 mice (Figure 5,
panel J). Members of the nuclear factor kB (NF-kB) family of

transcription factors are involved in inflammation and apoptosis.

In resting cells, NF-kB, a heterodimer consisting of p50 and p65

subunits, is inactive in the cytosol because it is associated with

nuclear factor of kappa light polypeptide gene enhancer in B cells

alpha (IkBa), an inhibitor of NF-kB. At the time of cellular

activation, the beta subunit of the IkB kinase complex (IKKb)
phosphorylates the inhibitor IkBa, which thereby becomes

degraded and liberates NF-kB for translocation into the nucleus,

where it can activate the transcription of inflammatory genes [34].

In the diabetic wild-type mice (Figure 6, panel C), the number

of glomerular cells positive for pNF-kB p65 (green) in the nuclei

was significantly increased compared with the non-diabetic mice

(Figure 6, panels A and B), and was further increased in the

diabetic VASH1+/2 mice, mainly in glomerular endothelial cells

(CD34: red) and presumably in the mesangial cells as well

(Figure 6, panels D and E). The level of IkBa was significantly

decreased in the diabetic mice compared with the non-diabetic

mice, and was further decreased in the diabetic VASH1+/2 mice,

as detected by an immunoblot analysis (Figure 6, panels F and
G). The level of pIkBa was significantly elevated in the non-

diabetic VASH1+/2 mice and the diabetic wild-type mice

compared with the non-diabetic wild-type mice, and further

increased in the diabetic VASH1+/2 mice (Figure 6, panels F
and H).

The influence of VASH1 knockdown in cultured mouse
podocytes
We next performed a cell culture analysis using mouse

podocytes to examine the influence of VASH1 knockdown on

the podocyte integrity. After 24 hours under normal glucose (NG)

or high glucose (HG) condition, transfection with the VASH1

small interfering RNA (siRNA) decreased the levels of endogenous

VASH1 mRNA and protein by 50% compared with the

nonspecific negative control siRNA (control siRNA) under NG

condition (Figure 7, panel A and C). Since the expression of

nephrin is hardly detectable in cultured mouse podocytes, we

induced the expression of nephrin by culturing cells with 1,

25(OH)2D3 and all-trans-retinoic acid, as described previously

[35]. When the cells were incubated with either the VASH1

siRNA under NG condition or the control siRNA under HG
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condition, the nephrin mRNA levels were significantly reduced

compared with the cells treated with the control siRNA under NG

condition. Under HG condition, treatment with the VASH1

siRNA resulted in a significant reduction of the nephrin mRNA

Figure 2. Enhanced accumulation of mesangial matrix and renal TGF-b/pSmad3 in the diabetic VASH1+/2 mice. A–D: Representative
light microscopic images of glomeruli (periodic acid-Schiff staining, original magnification x400) from non-diabetic wild-type (A), non-diabetic
VASH1+/2 (B), diabetic wild-type (C) and diabetic VASH1+/2 (D) mice. E–H: The glomerular accumulation of type IV collagen was assessed by the
indirect immunofluorescence method for non-diabetic wild-type (E), non-diabetic VASH1+/2 (F), diabetic wild-type (G) and diabetic VASH1+/2 (H)
mice. E–H: Original magnification x400. I–K: The increases in the glomerular volume, mesangial matrix index and type IV collagen induced by high
glucose were exacerbated in the VASH1+/2 mice. The mesangial matrix index was defined as the proportion of the glomerular tuft occupied by the
mesangial matrix area (excluding nuclei). The amount of immunoreactive type IV collagen in the glomeruli relative to the non-diabetic wild-type mice
is shown (K). L and M: Immunoblots for TGF-b, phosphorylated Smad3 (pSmad3), Smad3 and actin are shown. L (lower panel): The intensity of the TGF-
b protein relative to actin is shown. M (lower panel): The intensity of pSmad3 relative to Smad3 is shown. Each lane was loaded with 50 mg of protein
obtained from the renal cortex. Each band was scanned and subjected to a densitometric analysis. *P,0.05 vs. non-diabetic wild-type or VASH1+/2

mice. {P,0.05 vs. diabetic wild-type mice. The results of glomerular volume, type IV collagen score and immunoblots are expressed relative to non-
diabetic wild-type mice that were arbitrarily assigned a value of 100. Each column shows the mean 6 SE. n= 4 for each group. Abbreviations: DV,
diabetic Vasohibin-1+/2 mice; DW, diabetic wild-type mice; NV, non-diabetic Vasohibin-1+/2 mice; NW, non-diabetic wild-type mice.
doi:10.1371/journal.pone.0107934.g002
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Figure 3. Accelerated podocyte injuries in the diabetic VASH1+/2 mice. A–D: Immunofluorescent staining of nephrin. The distribution of
nephrin was determined by an indirect immunofluorescence technique in non-diabetic wild-type (A), non-diabetic VASH1+/2 (B), diabetic wild-type
(C) and diabetic VASH1+/2 (D) mice. Original magnification x400. E–H: Immunofluorescent staining of ZO-1. The distribution of ZO-1 was determined
by an indirect immunofluorescence technique in non-diabetic wild-type (E), non-diabetic VASH1+/2 (F), diabetic wild-type (G) and diabetic VASH1+/2

(H) mice. Original magnification x400. I–L: TEM showed the ultrastructural features, including GBM thickening, foot process effacement and fusion in
non-diabetic wild-type (I), non-diabetic VASH1+/2 (J), diabetic wild-type (K) and diabetic VASH1+/2 (L) mice. Asterisks, capillary lumen; arrows, foot
process fusion. Scale bars, 1 mm. M and N: The staining scores for nephrin and ZO-1 are shown as ‘‘redistribution scores’’. The staining patterns of
nephrin and ZO-1 were evaluated using the method described in the MATERIALS AND METHODS. O and P: The TEM morphometry of the GBM
thickness and slit-diaphragm density. *P,0.05 vs. non-diabetic wild-type or non-diabetic VASH1+/2 mice. {P,0.05 vs. diabetic wild-type mice. Each
column shows the mean 6 SE. n=4 for each group. Abbreviations: GBM, glomerular basement membrane; TEM, transmission electron microscopy;
VASH1+/2, Vasohbin-1+/2 mice; Wild, wild-type mice.
doi:10.1371/journal.pone.0107934.g003

Vasohibin-1 and Diabetic Nephropathy

PLOS ONE | www.plosone.org 7 September 2014 | Volume 9 | Issue 9 | e107934



Figure 4. The alterations of endothelial cells and angiogenic factors in the diabetic VASH1+/2 mice. A–D: The distribution of CD31, a
marker for endothelial cells, was determined by an indirect immunofluorescence technique in non-diabetic wild-type (A), non-diabetic VASH1+/2 (B),
diabetic wild-type (C) and diabetic VASH1+/2 (D) mice. Original magnification x400. E: The glomerular CD31+ endothelial area was quantitated. F: The
CD31+ peritubular capillary density was quantitated. G–I: Immunoblots for VEGF-A, angiopoietin (Ang)-1, Ang-2 and actin are shown. Each lane was
loaded with 50 mg of protein obtained from the renal cortex. Each band was scanned and subjected to a densitometric analysis. G (lower panels): The
intensity of the VEGF-A protein relative to actin is shown. H (lower panels): The intensity of Ang-1 relative to actin is shown. I (lower panels): The
intensity of Ang-2 relative to actin is shown. *P,0.05 vs. non-diabetic wild-type or VASH1+/2 mice. {P,0.05 vs. diabetic wild-type mice. #P,0.05 vs.
non-diabetic wild-type mice. 1P,0.05 vs. non-diabetic VASH1+/2 or diabetic wild-type mice. `P,0.05 vs. non-diabetic wild-type, non-diabetic
VASH1+/2 or diabetic wild-type mice. The results are expressed relative to non-diabetic wild-type mice that were arbitrarily assigned a value of 100.
Each column shows the mean 6 SE. n= 4 for each group. Abbreviations: VASH1+/2, Vasohibin-1+/2 mice; Wild, wild-type mice.
doi:10.1371/journal.pone.0107934.g004
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levels compared with those observed in cells cultured with the

control siRNA (Figure 7, panel B). Similar results were

observed for the protein levels of ZO-1, as detected by an

immunoblot analysis (Figure 7, panel D).

Figure 5. Enhanced glomerular monocyte/macrophage infiltration in the diabetic VASH1+/2 mice. A–D: The results of the
immunohistochemical analysis of Mac-2+ monocytes/macrophages. The representative light microscopic appearance of the glomeruli in non-
diabetic wild-type (A), non-diabetic VASH1+/2 (B), diabetic wild-type (C) and diabetic VASH1+/2 (D) mice are shown. Original magnification x400. E:
The number of glomerular Mac-2+ monocytes/macrophages is shown. F–J: The mRNA levels of MCP-1 (F), TNF-a (G), CD206 (H), IL-10 (I) and arginase-1
(J) were detected by real-time PCR (renal cortex). The amount of each mRNA relative to 18s rRNA is shown. *P,0.05 vs. non-diabetic wild-type or
VASH1+/2 mice. {P,0.05 vs. diabetic wild-type mice. 1P,0.05 vs. non-diabetic wild-type, non-diabetic VASH1+/2 or diabetic VASH1+/2 mice. The
results of real-time PCR are expressed relative to the non-diabetic wild-type mice arbitrarily assigned a value of 100. Each column shows the mean 6
SE. n= 4 for each group. Abbreviations: No., number; VASH1+/2, Vasohibin-1+/2 mice; Wild, wild-type mice.
doi:10.1371/journal.pone.0107934.g005
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The HG condition significantly increased the VEGF-A levels

compared with the NG condition, and treatment with the VASH1

siRNA resulted in a further increase in the VEGF-A levels

compared with the control siRNA (Figure 7, panel E).
Treatment with either the VASH1 siRNA under NG condition

or the control siRNA under HG condition led to a significant

reduction of the levels of Ang-1 compared with the group receiving

the control siRNA under NG condition. Under HG condition,

treatment with the VASH1 siRNA resulted in a further reduction

of Ang-1 compared with cells transfected with the control siRNA

(Figure 7, panel F). The addition of mannitol to NG condition

did not affect the levels of VASH1, nephrin, ZO-1, VEGF-A or

Ang-1, thus excluding the potential that the effects were occurring

due to an elevated osmotic pressure (Figure 7, panels A–F).

Discussion

In the present study, we utilized a VASH1+/2 mouse model of

streptozotocin-induced type 1 diabetes. Although renal failure is

not easily reproducible in this model, some of the characteristic

early alterations and histopathological changes could be observed

similar to human diabetic nephropathy [36]. Although diabetic

mice exhibited significant weight loss, the extent of body weight

reduction was comparable to previous reports utilizing this model

[25]. In the diabetic wild-type mice, albuminuria, glomerular

hypertrophy, glomerular hyperfiltration (as evidenced by an

Figure 6. Enhanced activation of NF-kB pathway in the diabetic VASH1+/2 mice. A–D: Double immunofluorescent staining of
phosphorylated NF-kB p65+ (pNF-kB p65+) (green) and CD34 (red), a marker for endothelial cells, and merged images of the glomeruli from non-
diabetic wild-type (A), non-diabetic VASH1+/2 (B), diabetic wild-type (C) and diabetic VASH1+/2 (D) mice. Original magnification x400. Although pNF-
kB p65+ was faintly observed in non-diabetic glomeruli, increased immunoreactivity for pNF-kB p65+ was observed, and it was co-localized with the
DAPI+ (blue) nucleus in the diabetic wild-type mice, and this was further increased in the diabetic VASH1+/2 mice. E: The number of glomerular pNF-
kB p65+ nuclei is shown. F: Immunoblots for phosphorylated IkBa (pIkBa), IkBa and actin are shown. Each lane was loaded with 50 mg of protein
obtained from the renal cortex. Each band was scanned and subjected to a densitometric analysis. G: The intensity of the IkBa protein relative to actin
is shown. H: The intensity of the pIkBa protein relative to actin is shown. *P,0.05 vs. non-diabetic wild-type or VASH1+/2 mice. {P,0.05 vs. diabetic
wild-type mice. #P,0.05 vs. non-diabetic wild-type mice. 1P,0.05 vs. non-diabetic VASH1+/2 or diabetic wild-type mice. The results of immunoblots
are expressed relative to the non-diabetic wild-type mice arbitrarily assigned a value of 100. Each column shows the mean6 SE. n= 4 for each group.
Abbreviations: No., number; VASH1+/2, Vasohibin-1+/2 mice; Wild, wild-type mice.
doi:10.1371/journal.pone.0107934.g006
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Figure 7. The influence of Vasohibin-1 knockdown on slit proteins and angiogenesis-related factors in cultured podocyte. Cells were
cultured under normal glucose (NG; 5.5 mM), NG+Mannitol (normal D-glucose plus D-mannitol; 19.5 mM) or high glucose (HG; 25 mM) condition for
24 hours in the presence of control siRNA (siCon; 10 nM) or VASH1 siRNA (siV1; 10 nM). A and B: The amounts of Vasohibin-1 (VASH1) (A) and nephrin
(B) mRNA relative to 18S rRNA are shown. C–F: Immunoblots for VASH1, ZO-1, VEGF-A, angiopoietin-1 (Ang-1) and actin are shown. In each lane,
20 mg of protein obtained from cultured mouse podocytes was loaded. The intensities of VASH1 (C), ZO-1 (D), VEGF-A (E) and Ang-1 (F) protein
relative to actin are shown. 1P,0.05 vs. control siRNA (NG, NG+Mannitol (Manni) or HG). *P,0.05 vs. control siRNA (NG or NG+Manni). `P,0.05 vs.
control siRNA (HG). {P,0.05 vs. VASH1 siRNA (NG) or control siRNA (HG). #P,0.05 vs. control siRNA (NG or NG+Manni) or VASH1 siRNA (NG). The
results were expressed relative to the cells cultured with NG and control siRNA that were arbitrarily assigned a value of 100. Each column shows the
mean 6 SE. n= 4 for each group.
doi:10.1371/journal.pone.0107934.g007
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increased Ccr) and renal hypertrophy were observed, consistent

with previous study [37]. These abnormalities were significantly

exacerbated in the diabetic VASH1+/2 mice compared with the

diabetic wild-type mice, except for the change in the Ccr.

Podocyte injury in association with altered expression of

podocyte slit proteins is involved in the development of proteinuria

in diabetic nephropathy. The reduction as well as the altered

localization of nephrin and ZO-1, components of the slit

diaphragm cell adhesion complexes [38], in the diabetic wild-type

mice were significantly exacerbated in the diabetic VASH1+/2

mice, partly attributable to the increased albuminuria in these

mice. In addition, the augmentation of the GBM thickness and

reduction of slit diaphragm density in the diabetic wild-type mice

were significantly exacerbated in the diabetic VASH1+/2 mice.

The knockdown of VASH1 by siRNA further decreased the levels

of nephrin and ZO-1 under HG condition in cultured mouse

podocytes. The present findings are consistent with our previous

reports demonstrating the protective effects of VASH1 overex-

pression on the albuminuria in the diabetic db/db mice and the

protective effects of recombinant human VASH1 on cultured

murine podocytes under HG condition [26].

In the present study, the level of VEGF-A was increased in the

renal cortex of diabetic mice and in the podocytes under HG

condition, consistent with previous studies [13,14,17,39,40].

Furthermore, the renal levels of VEGF-A were significantly

increased in the diabetic VASH1+/2 mice compared with the

diabetic wild-type mice, and the VASH1 knockdown resulted in

increased VEGF-A levels in cultured mouse podocytes under HG

condition. The increased levels of VEGF-A in the diabetic

VASH1+/2 mice as well as VASH1 siRNA-transfected mouse

podocytes may be associated with the deterioration of diabetic

nephropathy, consistent with previous reports [13,14]. On the

contrary, a recent report suggested that the upregulation of

VEGF-A in diabetic kidneys might protect the microvasculature

from injury [41]. Therefore, it is also possible that renal VEGF-A

might be elevated to compensate for the renal injury in the

diabetic VASH1+/2 mice.

In the normal adult glomerulus, Ang-1 is constitutively

expressed in podocytes, whereas the Ang-2 level remains to be

low [42]. Dysregulation of Ang-1 and Ang-2 in the glomeruli was

observed in diabetic nephropathy and other glomerular diseases

[43], potentially associated with endothelial injuries, hyperperme-

ability and albuminuria. The level of Ang-1 was significantly

decreased in the diabetic wild-type mice compared with the non-

diabetic mice, and was further decreased in the diabetic VASH1+/

2 mice. The level of Ang-2 was significantly elevated in the

diabetic VASH1+/2 mice in comparison to the other mice.

Therefore, the Ang-1/Ang-2 ratio was significantly decreased in

the diabetic VASH1+/2 mice compared with the diabetic wild-

type mice, potentially associated with the inflammatory alterations

[25]. VASH1 knockdown in cultured mouse podocytes under HG

condition led to upregulation of VEGF-A and downregulation of

Ang-1, similar to the results observed in vivo.
Experimental rodent diabetic models exhibit an increased

glomerular filtration surface area in the early stage [10,11]. In

the diabetic VASH1+/2 mice, the CD31+ glomerular endothelial

area was further increased compared with the diabetic wild-type

mice, suggesting an enhanced pro-angiogenic status due to

VASH1-deficiency.

The potential role of VEGF-A in mediating glomerular

monocyte/macrophage infiltration has been demonstrated in

diabetic animal models [44]. The exacerbation of the inflamma-

tory alterations, namely enhanced infiltration of glomerular Mac-

2+ cells, in the kidneys of the diabetic VASH1+/2 mice might be

associated with the activation of VEGF-A signaling, as well as the

augmentation of the renal MCP-1 levels. Consistent with this

study, we previously observed the anti-inflammatory effects of

exogenous VASH1 in association with the suppression of excessive

VEGF-A signaling and the inhibition of the renal MCP-1 levels in

experimental diabetic nephropathy [26]. Similarly, the therapeutic

effects of VASH1 on the formation of the arterial neo-intima have

also been reported in association with inhibitory effects on

adventitial macrophage infiltration [21].

Macrophages exhibit a range of phenotypes, a phenomenon

that has been described as macrophage polarization or heteroge-

neity [6,45,46]. The ‘‘classically’’ activated M1 macrophages,

which are induced by interferon-c, lipopolysaccharide, TNF-a or

granulocyte-macrophage colony stimulating factor, express proin-

flammatory cytokines such as interleukin (IL)-1b, TNF-a, MCP-1

and IL-6 and play a pathogenic role in renal inflammation. In

contrast, exposure of macrophages to IL-4 or IL-13 inhibits the

expression of these proinflammatory cytokines, and instead

activates the expression of arginase-1, mannose receptor and IL-

10. These ‘‘alternatively’’ activated M2 macrophages modulate the

inflammatory response and promote tissue repair [47,48]. In the

present study, the pro-inflammatory cytokines, such as TNF-a and

MCP-1, M1 macrophage-derived, were upregulated in the

diabetic wild-type mice, and the MCP-1 levels were further

elevated in the diabetic VASH1+/2 mice. The anti-inflammatory

cytokines, such as arginase-1, M2 macrophage-derived, were

significantly upregulated in the diabetic wild-type mice, but not in

the diabetic VASH1+/2 mice. Therefore, the dysregulation of the

M1/M2 macrophage subpopulation may also contribute to the

exacerbated renal inflammation in the diabetic VASH1+/2 mice.

In line with these results, the phosphorylation of IkBa, which
becomes degraded and liberates NF-kB for translocation into the

nucleus, and the nuclear translocation of pNF-kB p65 were

augmented in the kidneys of the diabetic VASH1+/2 mice

compared with the diabetic wild-type mice, potentially associated

with the exacerbated renal inflammatory alterations.

TGF-b1 is a key mediator of renal fibrosis [49,50] including

diabetic nephropathy [4,5]. Smad2 and Smad3 are the critical

downstream mediators responsible for the biological effects of

TGF-b1. Furthermore, the downstream targets of TGF-b/Smad3

signaling are the collagens and tissue inhibitor of matrix

metalloproteinase-1 (TIMP-1) [51]. In the diabetic VASH1+/2

mice, the renal levels of TGF-b and pSmad3 were significantly

increased in association with the accumulation of mesangial matrix

and glomerular type IV collagen. We previously reported the

inhibitory effects of recombinant VASH1 on the HG-induced

increase of TGF-b levels in cultured mesangial cells [25], thus

suggesting the direct regulatory effects of endogenous VASH1 on

mesangial cells. Podocyte-derived VEGF-A, induced by TGF-b1,
stimulates the production of a3(IV) collagen, one of the

components of the GBM [52]. Therefore, the regulatory effects

of endogenous VASH1 on mesangial matrix expansion may also

be mediated through the regulation of VEGF-A.

In the present study, renal levels of mouse VASH1 (mVASH1)

mRNA in the diabetic wild-type mice were slightly elevated

without statistical significance compared with the non-diabetic

wild-type animals. These results are consistent with our previous

study employing the identical type 1 diabetes model, with slight

increase of renal mVASH1 levels in the control diabetic mice [25].

In our previous studies employing adenoviral vectors encoding

human VASH1 (hVASH1) in the murine type 1 and type 2

diabetes models, we observed therapeutic effects on diabetic renal

alterations [25,26]. Interestingly, mVASH1 levels were not altered

by adenoviral delivery of hVASH1, in contrast to hVASH1
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exhibiting elevated levels in those studies. Therefore, we specu-

lated that therapeutic effects observed in those previous studies

were attributable to the exogenously administered hVASH1,

rather than endogenous mVASH1.

Recently, we demonstrated that the increased plasma and

urinary levels of VASH1 were significantly correlated with worse

renal outcomes [53]. Similar to our findings, several previous

reports had demonstrated that an elevated expression of VASH1

predicted a worse clinical outcome in patients with cancer

[54,55,56,57,58,59]. In various experimental disease models

including those of cancer and diabetic nephropathy, the admin-

istration of adenoviral vectors encoding VASH1 resulted in

therapeutic effects [19,21,22,23,24,25,26,60]. More recent find-

ings have demonstrated the role of VASH1 in enhancing the stress

resistance of endothelial cells [20]. Therefore, we suppose that

endogenous mVASH1 was upregulated in a compensatory

manner in response to increased disease activities and endothelial

cell stress in the present diabetic mice model. However slight

elevation of endogenous mVASH1 might be insufficient to

improve the diabetic renal alterations.

There are several limitations associated with the present study.

First, we evaluated the regulatory role of endogenous VASH1 in a

type 1 diabetic nephropathy model, and the use of distinct diabetic

animal models, i.e. type 2 diabetes, should be considered in the

future to verify our findings. Secondly, since we observed the

functional role of endogenous VASH1 in maintaining the

podocyte integrity in diabetic nephropathy, further studies

utilizing podocyte-specific VASH1 knockout mice would be

warranted.

In conclusion, the present results suggest that endogenous

VASH1 may possess renoprotective effects against type 1 diabetic

nephropathy, via regulating inflammation and fibrosis and

protecting podocytes from injuries, thus indicating the potential

therapeutic efficacies of VASH1 in diabetic nephropathy.
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