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Abstract
Head and neck squamous cell carcinoma (HNSCC) is 
the sixth most common cancer worldwide, and is re-
sponsible for a quarter of a million deaths annually. The 
survival rate for HNSCC patients is poor, showing only 
minor improvement in the last three decades. Despite 
new surgical techniques and chemotherapy protocols, 
tumor resistance to chemotherapy remains a significant 
challenge for HNSCC patients. Numerous mechanisms 
underlie chemoresistance, including genetic and epi-
genetic alterations in cancer cells that may be acquired 
during treatment and activation of mitogenic signaling 
pathways, such as nuclear factor kappa-light-chain-en-
hancer-of activated B cell, that cause reduced apoptosis. 
In addition to dysfunctional molecular signaling, emerg-
ing evidence reveals involvement of cancer stem cells 
(CSCs) in tumor development and in tumor resistance 
to chemotherapy and radiotherapy. These observations 
have sparked interest in understanding the mecha-
nisms involved in the control of CSC function and fate. 
Post-translational modifications of histones dynamically 

influence gene expression independent of alterations 
to the DNA sequence. Recent findings from our group 
have shown that pharmacological induction of post-
translational modifications of tumor histones dynami-
cally modulates CSC plasticity. These findings suggest 
that a better understanding of the biology of CSCs in 
response to epigenetic switches and pharmacological in-
hibitors of histone function may directly translate to the 
development of a mechanism-based strategy to disrupt 
CSCs. In this review, we present and discuss current 
knowledge on epigenetic modifications of HNSCC and 
CSC response to DNA methylation and histone modifica-
tions. In addition, we discuss chromatin modifications 
and their role in tumor resistance to therapy.
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Core tip: Stem cells are long-lived, therefore their ge-
nome is subject to more stress from genetic mutations 
and epigenetic factors than their short-lived, differenti-
ated progeny. Recent evidence strongly indicates that a 
subpopulation of tumor initiating cells, termed “cancer 
stem cells”, play a fundamental role in tumor hetero-
geneity, growth, and preservation. Cancer stem cell 
behavior is influenced by epigenetic events comprised 
primarily of DNA methylation and histone modifications 
that dynamically regulate gene expression and silencing. 
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INTRODUCTION
There are approximately 560000 cases of  head and neck 
cancer diagnosed worldwide each year and approximately 
300000 deaths annually. This cancer type occurs in the 
head and neck region, involves the nasal and oral cavity, 
pharynx, and larynx and primarily occurs as squamous 
cell carcinoma (HNSCC)[1-4]. Although HNSCC has well 
recognized risk factors, including tobacco use, excess 
alcohol consumption, and infection by high risk papillo-
maviruses[5,6], we do not fully understand the mechanisms 
underlying its malignant progression[5]. Our understand-
ing of  the molecular biology of  HNSCC has significantly 
improved in the last few decades, contributing to the 
development of  novel therapies targeted against pro-
survival signaling circuitries, including the epidermal 
growth factor receptor (EGFR), vascular endothelial 
growth factor, receptor tyrosine kinases, interleukins, and 
phosphoinositide 3-kinase (PI3K) pathways, among oth-
ers. Unfortunately, the long-term survival rate for HN-
SCC patients, which is 50% at five years after diagnosis, 
has remained consistent over the past thirty years[3,7-9]. 
The incidence of  HNSCC is much higher in developing 
nations, where it is the third most common malignancy 
in Asian countries compared to the sixth most common 
malignancy in Western countries[10-12]. This discrepancy in 
incidence of  HNSCC is associated with varying risk fac-
tors, such as chewing Betel quid in the Asia-Pacific region 
compared to consumption of  tobacco and alcohol and/
or human papillomavirus infection outside Asia[1,13-17].

The poor long-term survival rates in HNSCC patients 
may be due to diagnosis of  disease at an advanced-stage 
and development of  chemoresistance[8,18]. Numerous 
mechanisms underlie chemoresistance, including genetic 
and epigenetic alterations in cancer cells that may be ac-
quired during treatment[19,20] and the activation of  mitogenic 
signaling pathways, such as nuclear factor kappa-light-chain-
enhancer-of  activated B cell NFκB, that result in reduced 
apoptosis[21]. Furthermore, the recurrence of  cancers de-
pend on a subpopulation of  cancer stem cells (CSCs) that 
possess the unique and exclusive ability to self-renew and 
differentiate into nontumorigenic heterogenous cell types 
that maintain the tumor[7,22-24]. Therefore, many factors play 
a critical role in the maintenance of  tumor heterogeneity 
and CSC behavior, including the tumor microenvironment, 
genomic instability and the effect of  genetic mutations and 
epigenetic changes on gene expression[22,25-27]. 

In a significant number of  HNSCC, tumor progres-
sion results from mutations in genes, such as TP53, 
CDKN2A, HRAS, PTEN, and PIK3CA. This causes 
alterations in cell signaling cascades (e.g., PI3K/mTOR, 
NFκB, ERK, p53), resulting in aberrant cell growth, mi-
gration, and survival[3,8,23,28,29]. Epigenetic changes also play 
a key role in regulating gene expression through histone 
modifications, DNA methylation, miRNA silencing and 
DNA repair mechanisms [HMT (Histone methyltransfer-
ases), HAT (Histone acetyltransferases), HDAC (Histone 
deacteylases) ncRNA (non-coding RNA), and lncRNA 

(long non-coding RNA)][30-33]. Consequently, by identify-
ing the molecular mechanisms that drive progression and 
recurrence of  HNSCC, novel cancer therapeutics can be 
developed to improve the effectiveness of  treatment and 
the rate of  long-term survival in patients. In this review, 
we highlight the current understanding on cancer stem 
cells and the effects of  epigenetic modifications on tumor 
behavior. We also discuss the latest findings on pharma-
cological manipulation of  epigenetic circuitries that may 
result in the development of  novel therapeutic strategies 
that target cancer stem cells.

CANCER STEM CELLS
Because normal stem cells are long-lived, their genome 
is subject to more stress from genetic mutations and 
epigenetic factors than their short-lived, differentiated 
progeny. The majority of  oncogenic mutations in stem 
cells perturb central cellular processes that regulate cellu-
lar division, DNA damage repair, and signal transduction 
pathways[24,25,34]. Certain HNSCC-related phenotypes that 
arise from mutations in oncogenes and tumor suppres-
sor genes, such as PIK3CA, TP63, PTEN, EGFR, and 
MET, result in limitless replication potential, insensitiv-
ity to apoptotic signals, angiogenesis, invasion and me-
tastasis[28,35-38]. Therefore, tumors arise when stem cells 
lose their ability to regulate and maintain tissue form 
and function and when they show reduced control over 
apoptosis, cellular senescence and cellular proliferation. 
Additionally, although tumors are a population of  mal-
functioning cells, they are commonly characterized by 
histological features that resemble normal tissue[39]. Simi-
larly, hematopoietic cancers are comprised of  identical 
neoplastic cells, but solid tumors from HNSCC consist 
of  non-identical cells, resulting in phenotypic heterogene-
ity[25,27,40-42]. Within the polyclonal tumor, there is a cellular 
hierarchy in which a small subpopulation of  neoplastic 
cells with the highest potential for tumorigenesis and self-
renewal are positioned at the top. The remaining bulk of  
the tumor primarily consists of  well-differentiated non-
tumorigenic cells that are susceptible to chemotherapy 
and radiation[43-45]. In addition to HNSCC, solid tumors 
of  the breast, brain, colon, lung and prostate also dem-
onstrate a diverse array of  cellular heterogeneity that in-
creases genomic instability and adaptability of  the tumor 
to its microenvironment[25,46,47]. Recent evidence strongly 
indicates that a subpopulation of  tumor initiating cells, 
termed “cancer stem cells” play a fundamental role in 
tumor heterogeneity, growth, and preservation[25,44,48,49]. 
The cancer stem cell hypothesis, first conceptualized by 
Bonnet et al[44] in 1997, established that a subpopulation 
of  human leukemic cells, positive for CD34 and negative 
for CD38 cell surface markers, initiates human acute my-
eloid leukemia in Non-obese diabetic/Severe combined 
immunodeficient (NOD/SCID) mice. The following 
observations support the cancer stem cell hypothesis: (1) 
only a subpopulation of  tumor cells within a tumor mass 
grow in immunodeficient mice; (2) the subpopulation of  
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tumor cells generate both CSCs and heterogeneous non-
tumorigenic cancer cells; and (3) cancer stem cells self-
renew, as revealed by serial transplantation assays[22,44,50]. 
The frequency of  CSCs is relatively low in HNSCC, lung 
squamous cell carcinoma, lung adenocarcinoma, and hu-
man pancreatic adenocarcinoma, but xenotransplantation 
assays greatly increase their frequency[51].

Cancer stem cell surface markers
CSCs were first discovered in solid tumors in 2003[52], and 
the isolation of  CSCs in HNSCC, based on the CD44+ 
cell surface marker, occurred in 2007[18]. In that study, ap-
proximately 70% of  NOD/SCID mice receiving CD44+ 
tumor cell xenografts showed tumor formation compared 
to 1% of  mice receiving CD44- xenografts. In addition to 
their association with CSCs in HNSCC[53-56], CD44+ cells 
also play a role in chemoresistance. Genes associated with 
chemoresistance, including ABCB1, ABCG2, CYP2C8 
and TERT, are upregulated in CD44+ cells compared 
to CD44- cells[57]. Furthermore, CD44+ HNSCC cells 
express high levels of  B lymphoma Mo-MLV insertion 
region 1 homolog (Bmi-1), a self-renewal and oncogenic 
protein associated with poor survival and tumor aggres-
siveness[18,58-62]. Different isoforms of  CD44 differentially 
modify the behavior of  HNSCC. For instance, the v3, 
v6, and v10 isoforms of  CD44 promote HNSCC tumor 
migration, invasion, and metastasis[63,64] and confer chemo-
resistance in other solid tumors, attributes commonly as-
sociated with the chemo- and radio-resistant fractions of  
cancer stem cells[65]. Therefore, CD44 is used to identify 
CSCs, and it promotes many of  the biological character-
istics associated with cancer “stemness”. These charac-
teristics include tumorsphere formation in suspension, 
unrestricted cellular proliferation, enhanced migration, 
tumor invasion, and resistance to chemotherapy and ion-
izing radiation therapy. CD24 and CD133 (also known as 
Prominin 1) are also CSC cell surface markers[66-68].

The increased enzymatic activity of  aldehyde dehydroge-
nase 1 (ALDH1) is commonly used to identify normal plu-
ripotent cells and tumor cells harboring “stemness” potential 
in various solid tumors, including HNSCC[51,69-75]. ALDH is a 
detoxifying enzyme involved in the oxidation of  intracellular 
aldehydes and was initially described for its role in hemato-
poietic stem cell self-renewal via reduction of  retinoic acid 
activity[76,77]. The presence of  ALDH1-positive tumor cells 
correlates with poor clinical outcome in breast cancer[69], 
ovarian cancer[78], papillary thyroid carcinoma[79], and pancre-
atic adenocarcinoma[80], among other solid tumors[70,81-83]. 

It is believed that HNSCC progression and invasion, 
in addition to resistance to non-surgical therapies, may be 
regulated by the rare population of  CSCs[18,43,84,85]. There-
fore, to effectively treat this type of  cancer, we must de-
velop a therapy that can target and eliminate CSCs.

EPIGENETICS OF HEAD AND NECK 
CANCER AND ITS STEM CELLS
Basic concepts of epigenetic regulation
DNA methylation: When exploring the molecular mech-

anisms underlying cancer, DNA methylation is the most 
commonly studied epigenetic alteration[86-88]. DNA meth-
ylation patterns occur in early and precancerous stages 
and most frequently discovered in tumors compared to 
normal tissues[89,90]. Methylation occurs sporadically and 
is globally distributed in mammals throughout the ge-
nome at cytosine-phospho-guanine (CpG) dinucleotide 
sequences, as revealed by immunofluorescent labeled 
5-methylcytosine. Without considering CpG-rich islands 
(approximately 1 kilobase in length), there is a low, but 
global level of  methylation in specific CpG sequences 
throughout the entire mammalian genome[26,91]. There-
fore, aberrant DNA methylation of  these CpG islands 
or specific sequences can lead to oncogenic activation via 
silencing of  tumor suppressor gene expression[92,93]. Hy-
pomethylation is associated with activation of  oncogenes, 
while hypermethylation is associated with the silencing 
of  tumor suppressor genes. Both mechanisms induce 
genomic instability and play a dominant role in tumor 
initiation and progression[90,94]. The most common types 
of  DNA methylation in tumors are hypermethylation of  
CpG islands and global hypomethylation[89]. Hypermeth-
ylated CpG islands are often associated with gene pro-
moters; thus, methylation results in a transcriptionally in-
active gene. In contrast, methylation of  DNA sequences 
further from promoter sequences has less of  an effect on 
transcription[26].

Histone modifications: In addition to DNA methyla-
tion, the chromatin architecture can be remodeled by a 
network of  protein mediators called histones that play an 
important role in gene regulation by compacting DNA. 
Histones can be post-translationally modified at the 
amino-terminal ends by acetylation, methylation, phos-
phorylation, sumoylation, ubiquitination, and ADP-ribo-
sylation[95]. These modifications result in gene transcrip-
tion through the uncoiling of  chromatin or gene silencing 
through compacting DNA[96]. HAT, HMT, and HDAC 
are key co-factors that modify histones and produce the 
epigenetic changes observed in cancer. Histone acetyla-
tion, deacetylation and methylation are the major marks 
associated with transcriptional activity. Histone acetyla-
tion results in chromatin decondensation, promotion of  
transcription, and inhibition of  DNA methylation, and 
is often correlated with the formation of  euchromatin. 
In contrast, histone deacetylation is the predominant epi-
genetic influence in transcriptional gene silencing[95,97,98]. 
In general, histone modifications modulate a diverse array 
of  biological processes, including gene regulation, DNA 
repair, mitosis and meiosis via chromosome remodel-
ing[99]. 

Histone acetylation and deacetylation: Dysregula-
tion of  the exquisite interplay between acetylation and 
deacetylation controlled by HAT and HDAC is coupled 
to the initiation and progression of  cancer, cellular 
plasticity, inflammation, and dynamic transformation in 
metabolic cascades[100,101]. In addition to the histone sub-
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In summary, epigenetic modifications constitute the 
next frontier in tumor biology research. Post-translational 
modification of  histones dynamically influences gene 
expression independent of  alterations to the DNA se-
quence. These mechanisms are often mediated by his-
tone linkers, proteins associated with the recruitment of  
DNA-binding proteins, HDAC Ⅰ and ⅠⅡ interacting 
proteins and transcriptional activators, coactivators or co-
repressors. Therefore, histones are molecular markers of  
epigenetic changes[136].

Epigenetic regulation of HNSCC 
In HNSCC and other carcinomas, the combination of  
genetic and epigenetic factors affect gene expression, re-
sulting in altered downstream cellular signaling pathways 
that regulate tumor growth, anti-apoptosis, DNA repair, 
resistance to extrinsic factors, angiogenesis, and epithelial-
mesenchymal transition (EMT)[31,137-140]. Although both 
genetics and epigenetics may affect the initiation and 
progression of  HNSCC, epigenetic factors regulate gene 
expression in the absence of  genomic mutations[19,141,142]. 
Therefore, epigenetics is defined as a stable heritable 
phenotype passed on through either mitosis or meiosis, 
resulting in changes in chromosome characteristics with-
out inducing genome alterations, as proposed by Conrad 
Waddington in the early 1940s[143-145]. 

Tumor development is a multi-stage process that 
requires the accumulation of  numerous genetic muta-
tions and often results in gain-of-function in oncogenes 
and loss-of-function in tumor suppressor genes[146-150]. 
In addition to genetic mutations, tumor development 
and progression is extensively influenced by changes in 
gene expression independent of  alterations in the DNA 
sequence, a mechanism known as epigenetic modifica-
tion. Epigenetic events are comprised primarily of  DNA 
methylation and histone modifications that dynamically 
regulate gene expression and silencing[19,31,141,142,151]. These 
dynamic processes occur within the chromatin that is 
packed into the nucleus through interactions with core 
histone proteins. 

The effect of  chromatin on cellular behavior depends 
on how tightly DNA is spooled around H2A, H2B, H3 
and H4 core histones[152]. Together, histones and DNA 
form nucleosomes, the fundamental units of  chromatin. 
Gene expression is driven by the ability of  chromatin to 
fold and unfold in a process that requires rapid acetyla-
tion/deacetylation of  the histone core, resulting in altera-
tions in the cellular response to environmental cues[153].

DNA methylation in HNSCC: In Demokan et al[89] 
extensive review[89] of  DNA methylation in head and 
neck cancers, they provide a list of  the most frequently 
methylated genes. In this list, the hypermethylated genes 
include the following: (1) Adenomatous polyposis coli 
(APC), which is the most common gene methylated in 
HNSCC[154,155]; (2) p16, a cell cycle controller encoded by 
the CDKN2A gene, which plays a critical role in inducing 
cellular senescence in tumor cells and is downregulated 

strate peptides described in[102], HAT is associated with 
non-histone proteins, transcription co-factors, such as 
p53, p65, c-MYC, NFκB, STAT3 (signal transducer and 
activator of  transcription 3) and BRCA1 (breast cancer 
1), among others[30,103]. In particular, acetylation of  the 
p53 tumor suppressor and pro-apoptotic protein by the 
CBP (CREB-binding protein)/p300 family of  HATs has 
been extensively reviewed in[104,105]. Modification of  p53 
is associated with increased DNA binding affinity, tran-
scriptional activity[106,107] and protein stability[108]. Similar 
to p53, CBP/p300 is associated with the pro-proliferative 
and oncoproteins previously listed, and its expression im-
pacts a variety of  human diseases, such as leukemia[109,110], 
lung cancer[111], colon cancer[112], bladder cancer[113] and 
prostate cancer[114-116]. CBP/p300 is also associated with 
transcription factors involved in heart disease[117,118], dia-
betes[119,120] and neurological disorders[121,122]. 

Histone methylation: Histone methylation is the third 
major epigenetic process that affects transcriptional acti-
vation via chromatin remodeling. Similar to previously de-
scribed post-translational histone modifications, methyla-
tion and demethylation of  amino acids at different sites 
on histones either promotes or prevents transcriptional 
activity[123]. For example, methylation of  lysine residues is 
associated with transcription and DNA repair, but meth-
ylation of  arginine residues is only associated with tran-
scription[95,124,125]. Histone H3 is methylated at different 
lysine sites, including K4, K9, K27, K36, and K79, that 
experience various methylated states, including mono-
methylated, dimethylated, and trimethylated. Therefore, 
the epigenetic modification of  the chromatin depends on 
the location and state of  methylation[126,127]. K9 and K27 
methylation is associated with heterochromatin forma-
tion and inactive transcription. In contrast, K4 methyla-
tion is associated with euchromatin formation and active 
transcription[128,129].

HAT and HDAC inhibitors: The development of  
HAT inhibitors (HATi) are in the early stages of  preclini-
cal studies. Although drugs that regulate HDAC activity 
are being used for cancer treatment, there is great interest 
in developing HAT inhibitors as a potential treatment 
for cancer and other human diseases[130]. Several natural 
compounds effectively inhibit HAT activity. For example, 
Marcu et al[131] demonstrated that curcumin inhibits HAT 
activity by promoting proteasome-dependent degrada-
tion of  CBP/p300 in both prostate cancer cells and in 
HDAC inhibitor-induced peripheral blood lymphocytes. 
In addition, epigallocatechin-3-gallate and plumbagin are 
selective inhibitors of  CBP/p300[132-134]. The potential 
for HDAC inhibitors (HDACi) to serve as cancer che-
motherapeutics has been examined in clinical trials due 
to the role of  HDAC in genome stability, proliferation, 
differentiation, apoptosis, and metabolism. A current list 
of  HDACi under clinical investigation can be found in a 
review by Li et al[135] that focuses on HDAC and its clini-
cal implications in cancer therapy.
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via promoter hypermethylation[156-167]; and (3) p14, also 
known as ARF, that in combination with p16 is involved 
in regulating the cell cycle and in activating the p53 tumor 
suppressor gene by inhibiting MDM2[168]. Surprisingly, 
in 96 human samples of  oral squamous cell carcinoma, 
methylation of  p14ARF is associated with a good prog-
nosis, methylation of  MINT1 and MINT31 is associated 
with poor prognosis, and DCC methylation is associated 
with increased bone invasion by squamous cell carcinoma 
from the gingiva[169]. Notably, Carvalhoet al[159] and Ogi et 
al[169] also identified methylated MINT31 as an indepen-
dent predictor of  outcome and showed its association 
with the T4 disease group, according to the Union for 
International Cancer Control classification. RASSF1A 
is a tumor suppressor gene that is frequently silenced in 
tumors, including HNSCC. RASSF1A is involved in the 
maintenance of  genomic stability and is highly mutated 
in poorly differentiated HNSCC compared to moder-
ate and well-differentiated HNSCC[154, 159,160,163,165,167,170,171]. 
RASSF2 is a novel Ras-associated protein that negatively 
regulates Ras signaling[172]. RASSF2 binds directly to 
K-Ras in a GTP-dependent manner promoting apoptosis 
and cell cycle arrest; however, RASSF2 weakly interacts 
with H-Ras. In solid tumors, including human colorectal 
cancer and HNSCC, RASSF2 is frequently silenced by 
DNA methylation at 5′ CpG islands[167,173].

Other interesting genes methylated in head and neck 
cancer include EDNRB, a member of  the G protein-
coupled receptor family that encodes endothelin receptor 
type B protein; EDNRB is methylated in 97% of  primary 
HNSCC tissues[174]. EDNRB is involved in the devel-
opment and function of  blood vessels, cellular growth 
and mitosis[174]. Another gene methylated in HNSCC is 
RARB, which encodes retinoic acid receptor beta and 
restricts cell growth by altering gene expression. Hyper-
methylation of  RARB results in loss of  function and re-
duced control of  transcription[154,162,163,167,175,176]. Currently, 
only a few methylated genes can predict the clinical out-
come of  HNSCC patients. It is unknown how methyl-
ated genes correlate with cancer therapy, patient response 
and tumor progression and behavior. Methylation analy-
sis techniques have revealed that methylation patterns are 
not affected by external factors and are increased during 
cancer progression. Therefore, as with stem cell surface 
markers, increased sensitivity and specificity of  quantita-
tive methodologies for DNA methylation analyses will 
allow scientists to develop prognostic tools for clinical 
evaluation of  head and neck cancer.

Histone methylation in HNSCC: Mancuso et al[177] 
showed that the level of  H3K4 methylation is significantly 
different in normal mucosa compared to oral squamous cell 
carcinoma (OSCC) tissues, with dimethylated K4 increased 
and trimethylated K4 decreased. A similar trend was ob-
served in oral leukoplakias compared to the pathological 
sample[177]. H3K9 and H3K27 are targets for methylation 
by enhancer of  zeste homolog 2 (EZH2), a member of  
the Polycomb-group family, resulting in gene silencing via 

chromatin condensation[178-181]. Interestingly, overexpression 
of  EZH2 is associated with malignancy and prognosis of  
a variety of  cancers, including breast[182,183], prostate[184-186], 
gastric[187], hepatic[188], bladder[189,190] and oral squamous cell 
carcinoma[129,191]. Wei et al showed that increased expres-
sion of  EZH2 is associated with dysplasia and malignant 
transformation. Similarly, Kidani et al[191] revealed that over-
expression of  EZH2 is associated with tumor progression, 
malignancy and poor prognosis in OSCC. Collectively, these 
data reveal that different histone methylation patterns can 
greatly influence gene expression in cancer, thereby affect-
ing malignant behavior.

Histone acetylation in HNSCC: Early evidence sug-
gested that histones and their modifiers are involved in 
sophisticated processes that modulate tumor behavior 
and cellular phenotype. We recently reported that chro-
matin folding in HNSCC during tumor response to en-
vironmental cues dynamically modulates tumor behavior 
and cellular phenotype[151]. We found that HNSCC cell 
lines are hypoacetylated compared to normal mucosa 
controls (Figure 1A). Furthermore, we found that endo-
thelial cell-secreted factors, but not fibroblast cell-secret-
ed factors, are able to trigger the acetylation of  histones 
in tumor cells (also referred to as tumor histones) (Figure 
1B). In fact, paracrine-induced histone modifications re-
sulted in enhanced expression of  Bmi-1, a transcriptional 
repressor upregulated in a variety of  cancers and associ-
ated with tumor aggressiveness, and poor survival along 
with the expression of  vimentin, a canonical marker of  
EMT (Figure 1B)[192-199]. Similar to our in vitro findings, 
human HNSCC samples presented coexpression of  acet-
ylated histone 3 and vimentin in the proximity of  normal 
endothelial cells (Figure 1C-white dashed line) next to the 
tumor invasion front in human HNSSC samples (Figure 
1C-yellow dashed line). Therefore, acetylation of  tumor 
histones are associated to changes in cellular behavior, 
phenotype and associated to increased invasion. In fact, 
malignant tumors derived from epithelial cells (carcino-
mas) are known to undergo EMT that precedes local in-
vasion and metastasis of  cancer cells[200-204]. EMT is char-
acterized by the loss of  cell adhesion, increased motility, 
aggressive behavior, acquisition of  an elongated fibro-
blastoid morphology and expression of  vimentin[200,205,206], 
similar to what we observe with pharmacological inhibi-
tion of  HDAC in HNSCC cell lines (Figure 2-HN6 and 
HN13 cells). Interestingly, cellular morphology is not 
altered and vimentin is not induced in normal epithelial 
cells (NOK-SI) treated with HDAC inhibitors, suggesting 
that hyperacetylation of  chromatin differentially modu-
lates normal and neoplastic cells (Figure 2). However, 
changes in the acetylation of  HNSCC chromatin also 
triggered an unexpected phenotype, which was the loss 
of  CSCs. HNSCC treated with Trichostatin A, a histone 
deacetylase inhibitor, lose the ability to generate and 
maintain tumor spheres and experience rapid reduction 
in the enzymatic activity of  ALDH1 (Figure 3)[151]. It has 
been suggested that epigenetic signals play a major role 
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in stem cell control through deacetylation of  histones, 
which promotes chromatin condensation and reactivation 
of  stem cell-like transcription programs[34]. These strik-
ing findings suggest that chromatin acetylation selectively 
disrupts the physiological requirements for maintenance 
of  CSC. Indeed, chromatin acetylation has long been 
known to induce cellular differentiation and restrict cel-
lular transformation of  normal cells[34,207,208].

In summary, histone modifications via methylation, 

acetylation and deacetylation play a critical role in tran-
scriptional activation and gene expression. Aside from the 
physiological maintenance of  cellular homeostasis, aber-
rant alterations in histone methylation proteins and/or an 
imbalance in the HAT/HDAC network results in dysfunc-
tions in cellular processes, such as proliferation, differ-
entiation, DNA repair and apoptosis. Importantly, post-
translational histone modification and DNA methylation 
can have similar patterns in the same cancer type. For ex-
ample, a study by Piyathilake et al[209] revealed that patterns 
of  global DNA and histone methylation are similar in dif-
ferent human mucosal tissues (e.g., normal, dysplastic and 
squamous cell carcinoma). Using immunohistochemical 
analysis, they also found that global DNA methylation and 
H3 methylation at lysine 4 and lysine 9 are significantly 
higher in dysplastic lesions and carcinoma cells compared 
to normal oral epithelium[209]. Therefore, when developing 
methods and techniques for identifying epigenetic mark-
ers in premalignant cells, we must consider analyzing both 
global DNA and histone methylation levels concurrently 
in the progression of  cancer. In conclusion, the previously 
described epigenetic alterations are closely associated with 
tumorigenesis and malignancy in many types of  cancers. 
As a result, genomic instability affects numerous intracel-
lular signaling cascades. We will discuss the NFκB signal-
ing pathway in the next section. 

TUMOR HISTONE MODIFICATIONS: 
EVIDENCE FOR AN EPIGENETIC 
MECHANISM RESPONSIBLE FOR 
ACQUIRED TUMOR RESISTANCE TO 
THERAPY
NFκB is an epigenetic modifier that plays a major role in 
malignant transformation[210], and this pathway serves as 
a target for epigenetic drugs[211-213]. We, along with others, 
have previously reported that constitutive activation of  
NFκB signaling is often observed in HNSCC, suggest-
ing a common epigenetic mechanism in HNSCC biol-
ogy[214,215]. Indeed, activation of  NFκB signaling in HN-
SCC induced chromatin compaction and acquisition of  
resistance to chemotherapy[216]. NFκB is active following 
its translocation to the nucleus, a process that is regulated 
by the IκB kinase (IKK) complex. IκB proteins are tar-
geted for degradation by phosphorylation, which permits 
nuclear translocation. Nuclear NFκB binds to target 
DNA sequences and modulates the expression of  target 
genes involved in immune response, cell growth, and cell 
survival[217]. Targeted inhibition of  NFκB through IKKα 
and IKKβ silencing resulted in disrupted accumulation 
of  nuclear phospho-p65, increased acetylation of  histone 
3 and accumulation of  BRCA1. Collectively, we showed 
that NFκB epigenetically modulates chromatin organiza-
tion and recruits BRCA1 to the nucleus. Indeed, histone 
3 is acetylated following loss of  NFκB, resulting in de-
condensation of  tumor chromatin and sensitization of  
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head and neck tumors to chemotherapy. This indicates 
that the effect of  NFκB on chromatin organization di-
rectly influences tumor response to therapy. As proof  of  
concept, administration of  HDAC inhibitors recapitulate 
the effects of  NFκB targeted inhibition by promoting 
chromatin decondensation and sensitizing tumor cells to 
chemotherapy, resulting in increased sensitivity of  tumor 
cells to chemotherapy (Figure 4).

In addition to chemoresistance, activation of  NFκB 
signaling increases the number of  tumor spheres, indi-
cating a broader role of  NFκB as an epigenetic switch 
in CSCs. Notably, NFκB signaling is required for the 
development of  tumor spheres in breast, cervical and 
head and neck cancers[218] (Almeida and Castilho, submit-
ted). We established that by controlling tumor histones, 
we can dynamically regulate the behavior and number of  
HNSCC and its CSCs[151]. Epigenetic signals may play a 
major role in stem cell control through deacetylation of  
histones, which promotes chromatin condensation and 
reactivation of  stem cell-like transcription programs[34]. 
Aligned with previous reports[219-221], we showed that HN-
SCC tumor cell lines have a subpopulation of  CSC, as de-
tected by elevated ALDH activity, and clonogenic poten-
tial[151]. This subpopulation of  CSCs is highly tumorigenic 
and can self-renew, as observed by serial transplantation 
assays[37]. By inhibiting HDAC and inducing acetylation 
of  tumor histones, we found that CSCs lose their “stem-
ness”, as evidenced by a reduction in ALDH+ cells and 
progressive disruption of  tumor spheres. These findings 
indicate that HDAC inhibition disrupts the physiological 
requirements for CSC maintenance. Indeed, chromatin 
acetylation induces cellular differentiation and restricts 
cellular transformation[207,208].

Altogether, HNSCC behavior appears dependent on 
dynamic changes in chromatin organization and subse-
quent gene transcription. Unlike stable DNA modifica-
tions mediated by methylation, acetylation of  histones 

dynamically alters gene expression, thereby influencing 
tumor behavior following changes in the microenviron-
ment as observed during administration of  secreted fac-
tor from endothelial cells[151] and expression of  tumor 
aggressiveness markers[222-225]. 

CONCLUSION
The role of  epigenetic modifications in HNSCC warrants 
further investigation. Compared to histone modifications, 
the role of  DNA methylation in regulating gene expres-
sion is better characterized. Nonetheless, recent studies 
have correlated the effects of  histone acetylation in the 
dynamic process of  tumor adaptation to its microenvi-
ronment and the acquisition of  a resistant phenotype[151]. 
The identification of  the NFκB signaling pathway as an 
epigenetic modulator of  tumor behavior and resistance 
to chemotherapy further improved our knowledge in the 
intricate molecular mechanism of  HNSCC and further 
clarified our understanding of  the NFκB signaling path-
way[216]. Novel therapeutic strategies can now be devel-
oped that target epigenetic alterations driven by histone 
modifications, and the NFκB signaling may serve as an 
ideal coadjuvant target for therapy. The development of  
personalized therapies specific for tumor subtypes, in this 
case tumors with active NFκB signaling, holds the prom-
ise of  preventing tumor resistance and sensitizing tumors 
to chemotherapy. Recent advances in genome sequenc-
ing, including next-generation sequencing (NGS), have 
also improved our understanding of  altered molecular 
signaling in HNSCC. NGS was used to identify single-
base changes and larger structural variants characterized 
by insertions, deletions, translocations and viral inser-
tions in HNSCC[3,226]. Interestingly, NGS also revealed 
that HNSCC have a significant number of  mutations in 
histones, histone modifiers, transcriptional activators and 
coactivators, and transcription regulators, further empha-
sizing the complexity of  tumor signaling[30]. Collectively, 
emerging knowledge about tumor behavior and how it 
correlates with dynamic changes in gene expression me-
diated by epigenetic events have substantially clarified the 
concept that successful therapeutic strategies will require 
targeting of  both genetic and epigenetic pathways.
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