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Recent advances in meta-omics and particularly metatranscriptomic approaches have enabled detailed studies of the structure
and function of microbial communities in many ecosystems. Molecular analyses of peat soils, ecosystems important to the global
carbon balance, are still challenging due to the presence of coextracted substances that inhibit enzymes used in downstream ap-
plications. We sampled layers at different depths from two high-Arctic peat soils in Svalbard for metatranscriptome preparation.
Here we show that enzyme inhibition in the preparation of metatranscriptomic libraries can be circumvented by linear amplifi-
cation of diluted template RNA. A comparative analysis of mRNA-enriched and nonenriched metatranscriptomes showed that
mRNA enrichment resulted in a 2-fold increase in the relative abundance of mRNA but biased the relative distribution of mRNA.
The relative abundance of transcripts for cellulose degradation decreased with depth, while the transcripts for hemicellulose
debranching increased, indicating that the polysaccharide composition of the peat was different in the deeper and older layers.
Taxonomic annotation revealed that Actinobacteria and Bacteroidetes were the dominating polysaccharide decomposers. The
relative abundances of 16S rRNA and mRNA transcripts of methanogenic Archaea increased substantially with depth. Acetoclas-
tic methanogenesis was the dominating pathway, followed by methanogenesis from formate. The relative abundances of 16S
rRNA and mRNA assigned to the methanotrophic Methylococcaceae, primarily Methylobacter, increased with depth. In conclu-
sion, linear amplification of total RNA and deep sequencing constituted the preferred method for metatranscriptomic prepara-
tion to enable high-resolution functional and taxonomic analyses of the active microbiota in Arctic peat soil.

Metatranscriptomics is the study of rRNA and mRNA of a
(microbial) community in an environment. It allows the

simultaneous investigation of the gene expression (mRNA) and
abundance (rRNA) of the active microorganisms. In contrast to
proteins, which have a longer lifetime in the cell and more stable
concentrations in response to external influences, mRNAs pro-
vide a more immediate picture of the cells responses to changing
environmental conditions. Also, metatranscriptomics avoids the
limitations inherent to PCR primer-based methods (1, 2). The
poly(A) tail of eukaryotic mRNAs enables the cDNA synthesis
from these mRNA templates in total RNA pools with selective
primers (3). The total microbial RNA is dominated by rRNA tran-
scripts, including prokaryotic 16S and 23S rRNAs and eukaryotic
18S and 28S rRNAs. Only a small fraction, usually 1 to 5%, is
mRNA (1, 2). Several strategies are currently applied to enrich for
prokaryotic mRNA molecules. Selective nuclease degradation of
rRNA (3–5), polyadenylation of mRNA (6), and rRNA depletion
by capture with commercial kits (3, 5, 7, 8) and sample-specific
probes (9) have been attempted to reduce the rRNA fraction of
metatranscriptomes.

A second challenge, and a general problem for DNA- and
RNA-based analyses of soil microbes, is the coextraction of en-
zyme-inhibiting compounds such as humic and fulvic acids and
phenolic compounds (1). In peat soils, the inhibition has been
shown to increase with soil depth (10). Inhibition is particularly
problematic in the preparation of metatranscriptomic libraries, in
which rather large quantities of RNA are needed for double-
stranded cDNA synthesis prior to sequencing. Several studies have
addressed this issue, providing strategies for the removal of humic
and fulvic acids during the extraction of nucleic acids (1). Sug-
gested methodology includes Sephadex spin columns and poly-
ethylene glycol (PEG) precipitation of nucleic acids (11). Contin-
ued inhibition after extract purification might be related to the

high concentrations of enzyme-inhibiting phenolic compounds,
particularly in anoxic soils such as peat (12, 13). Metatranscrip-
tomic studies have provided new and important knowledge about
soil ecosystems (2, 10, 14–16), but few studies have been carried
out compared to studies of marine ecosystems, in part because of
the inhibition problems mentioned above.

Arctic peat soils store large amounts of soil organic carbon
(SOC). Soil microorganisms are driving the SOC mineralization
to the greenhouse gases methane (CH4) and carbon dioxide
(CO2). In anoxic peat, plant polymers are degraded through sev-
eral hydrolysis and fermentation steps involving at least four func-
tionally distinct types of microorganisms: primary and secondary
fermenters and two groups of methanogens (17, 18). Formate,
H2/CO2, and acetate are the major substrates for methanogenesis,
but in certain situations, methylamines and methanol are also
substrates (19).

CH4 emissions can be mitigated by microbial CH4 oxidation.
In terrestrial and freshwater ecosystems, CH4 oxidation is primar-
ily aerobic and performed by Proteobacteria (20) and Verrucomi-
crobia (21). Proteobacterial methanotrophs closely related to the
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aerobic Methylobacter are characteristic for circumarctic soils (22,
23). Stable isotope signature studies indicate that a major sink for
CH4 in peat soils is anaerobic CH4 oxidation (24), but the oxi-
dants, enzymes, and organism(s) involved are unknown.

More knowledge is needed to understand how microbial com-
munities functionally interact in the degradation of SOC and how
they will respond to environmental changes such as the predicted
drastic increase of surface temperatures in Arctic regions.

In this study, we present a method for the generation of high-
quality metatranscriptomes from peat soils to circumvent inhibi-
tion problems. Further, we assessed the usability of widely applied
mRNA enrichment protocols. We used the generated metatran-
scriptomes for analyzing the expression of genes encoding key
functions in SOC degradation, such as hydrolysis of polysaccha-
rides and methanogenesis, and methanotrophy in two high-Arctic
peat soils.

MATERIALS AND METHODS
Study sites and sampling. High organic Arctic peat soil samples were
collected from two sites in Svalbard, Norway, Solvatn (N78°55.550,
E11°56.611) and Knudsenheia (N78°56.544, E11°49.055), in August 2009
(10). Peat blocks were kept intact under transport from the field sites to
the laboratory where the first preparation was made. Processing of the
deeper layers was performed under nitrogen atmosphere to avoid oxygen
contamination. Immediately after disruption of the peat blocks for sub-
sampling and storage, subsamples were frozen in liquid nitrogen to avoid
effects of changing conditions in the mRNA pools. The samples were
transported in a dry shipper from Svalbard to the home laboratories
where the further preparation for RNA isolation was done.

Sample and RNA processing. Samples from oxic and anoxic layers of
the two sites Knudsenheia (from the top to deepest layers: Ka, Kb, and Kc)
and Solvatn (Sa and Sb) were ground in liquid nitrogen using a mortar
and pestle until a fine powder was obtained. The low temperature pre-
vented microbial and RNase activities. From each homogenized sample
six replicates of �0.2 g of peat soil were used for nucleic acid (NA) extrac-
tion using a modified version of Griffith’s protocol (2, 10). To prevent
RNase activity during cell lysis, bead beating was carried out in the pres-
ence of the denaturant phenol. DNA was removed using RQ1 DNase
treatment (Promega, Madison, WI), followed by RNA purification using the
MEGAclear kit (Ambion, Austin, TX). The two top samples, Ka and Sa, were
used for mRNA enrichment, applying the three commercially kits according
to the manufacturers’ instructions in the following order: (i) RiboMinus kit
for bacteria (specificity: Gram-positive and -negative bacteria, human,
mouse, yeast; Invitrogen, Carlsbad, CA), (ii) MICROBExpress (specificity:
Gram-positive and -negative bacteria; Ambion, Austin, TX), and (iii) Ribo-
Minus kit for eukaryotes (specificity: eukaryotes; Invitrogen). All three kits are
based on subtractive hybridization of rRNA with oligonucleotide probes and
capture with magnetic beads. Starting quantities for each kit are shown in
Table S2 in the supplemental material. The quality of RNA was assessed using
automated gel electrophoresis (Experion; Bio-Rad, Hercules, CA) with stan-
dard-sensitivity RNA chips.

Total RNA for all samples and the mRNA-enriched sample (Km) were
diluted and amplified using linear amplification with MessageAmp II-
Bacteria kit (Ambion). A test with RNA extracted from Kb was performed
with concentrations of 2.5, 10, and 20 ng/�l (equivalent to 12.5, 50, and
100 ng per reaction) to identify whether the concentration affected the
output of amplified RNA. It was found that concentrations of 10 and 20
ng/�l resulted in �25% of the final yield of amplified RNA. Based on this,
a total of 12.5 ng of RNA at a concentration of 2.5 ng/�l was used as the
template for all samples. This was in accordance with the recommenda-
tions of the supplier, which stated that 10 ng of RNA should be considered
the minimum input. Double-stranded cDNA was generated from the am-
plified RNA using the Superscript II double-stranded cDNA synthesis kit
(Invitrogen) by following the manufacturer’s protocol, with the exception

that both the first- and second-strand syntheses were carried out for 4 h
each. Library preparation, processing, and sequencing were performed at
the Norwegian High Throughput Sequencing Centre (NSC), using the
Illumina HighSeq2000 (Illumina, Inc., San Diego, CA) with paired-end
(PE) 101-bp sequencing of �170-bp-long templates.

Sequence analyses. Paired-end sequence reads were first assembled
using Pandaseq (25), with a minimum overlap of 10 bp and otherwise
default settings. Preprocessing of the assembled sequences was carried out
using Prinseq (26); poly(A/T) tails longer than 15 bp (Table 1) were
trimmed away, sequences with more than 5 ambiguous bases were re-
moved, and all but one sequence in pools of exactly identical sequences
were removed (Table 1). rRNA and putative mRNAs were separated as
previously described (2, 27). Sequences with bit scores of �50 were as-
signed as putative mRNA tags. Small subunit (SSU) rRNAs (subsets of
500,000 sequences) were taxonomically assigned by MEGAN analysis of
BLASTN files against the CREST SilvaMod rRNA reference database (pa-
rameters: minimum bit score, 150; minimum support, 1; top percent, 2;
50 best blast hits) (28). Putative mRNAs were taxonomically and func-
tionally annotated by MEGAN analysis (parameters: minimum bit score,
50; minimum support, 1; top percent; best blast hit only) of BLASTX files
against the RefSeq protein database. Analysis of methanogenic pathways
was performed by functional annotation of mRNAs assigned to Archaea
using the KEGG and SEED classification systems available in MEGAN
(29). Analysis of pathways of anaerobic respiration and fermentation was
done the same way, using all taxonomically assigned reads. For assign-
ment of transcripts to protein families (Pfams), the putative mRNAs were
translated into all six frames, each frame into separate open reading
frames (ORFs), avoiding any “*” characters marking stop codons in a
resulting ORF. All ORFs corresponding to 40 amino acids or larger were
screened for assignable conserved protein domains. All ORFs were in-
spected by reference hidden Markov models (HMMs) using HMMER
tools (http://hmmer.janelia.org/) with the Pfam database HMMs (Pfam
release 25; http://pfam.xfam.org/). All database hits with E values below a
threshold of 10�4 were counted. Counts were used to generate Pfam pro-
files for all sample metatranscriptomes. These were combined in a sample
Pfam profile matrix for further analysis. The matrix contains the counts of
transcripts assigned to each Pfam for each sample. The computations were
performed on the Stallo cluster at the High Performance Computing
Group at the University of Tromsø (https://www.notur.no/). Putative
Pfam sequence-containing ORFs were taxonomically annotated by
MEGAN analysis (parameters: minimum bit score, 50; minimum sup-
port, 1; top percent, 2) of BLASTP files against the RefSeq protein data-
base.

Statistical data analyses. The R package (30) was used for subsam-
pling from sample Pfam profile matrices (function: sample; replace-
ment � TRUE), linear regression (function: lm), multivariate analyses,
chi-squared contingency table test (function: chisq.test), and plotting.
Correspondence analysis (CA) and contribution biplots were done ac-
cording to Greenacre (31, 32). CA was applied because it grants a larger
impact of low-abundance variables (Pfams) in the analysis than alterna-
tive methods. Also, it weights the samples based on the number of reads to
ensure that the ordination is not biased by the low variance that is char-
acteristic for small samples.

Significant differences between the frequencies of conserved protein
domains (Pfam) in ORFs and transcripts homologous to genes encoding
key enzymes for methanogenesis and methanotrophy of different peat soil
depths were evaluated statistically by using the R package (30), using the
chi-squared contingency table test. The contingency table contains the
frequency counts of hits and nonhits for a certain Pfam domain category
or methanogenesis enzyme of two different soils. The total frequency
count is given by all hits found for any domain in the Pfam database. In
cases where the frequencies were too low to meet the rules of the test, the
P values were calculated by Monte Carlo simulations with 2,000 replicates.

Accession numbers. The sequence data generated in this study were
deposited in the Sequence Read Archive of NCBI and are accessible

Tveit et al.

5762 aem.asm.org Applied and Environmental Microbiology

http://hmmer.janelia.org/
http://pfam.xfam.org/
https://www.notur.no/
http://aem.asm.org


through accession numbers SRR1509497, SRR1509498, SRR1509518,
SRR1509520, SRR1509521, and SRR1509522.

RESULTS
Generation of peat soil metatranscriptomes. The nucleic acid
(NA) extraction efficiency of the sample lysis procedure was sub-
stantially increased by a prior grinding of the peat matrix in liquid
nitrogen, from 5 to 10 �g of NA/g (dry weight) (gDW) of soil to
�20 �g of NA/gDW of soil (see Materials and Methods for de-
tails). The quantity and quality of extracted NAs varied between
the sites and the depths (see Table S1 in the supplemental mate-
rial). Higher NA yields, �500 to 600 �g g of soil�1, were obtained
from the top layers (Ka and Sa) and the lower layer of Solvatn (Sb),
while the deeper layers of Knudsenheia (Kb and Kc) yielded low
quantities (�100 �g of NA g of soil�1). The ratios of A260 to A230

obtained from spectrophotometric measurements decreased with
depth (Kb and Kc), indicating higher concentrations of coex-
tracted humic substances. In line with this, cDNA synthesis effi-
ciencies were high with samples from the top layers, whereas the
reactions with deeper-layer samples were severely inhibited. Total
RNA was dominated by peaks corresponding to 16S/23S and 18S/
28S rRNAs of pro- and eukaryotes, respectively (Fig. 1; see also
Fig. S1 in the supplemental material). rRNA removal with probe-
based kits resulted in RNA profiles exhibiting a clear reduction in
the sizes of peaks corresponding to rRNA molecules (Fig. 1; see
also Fig. S1). The RiboMinus kit for bacteria (Invitrogen) used in
the first step contains probes compatible with a broad range of
bacterial taxa and correspondingly decreased the size of the 16S
and 23S rRNAs of the RNA pools. The MICROBExpress (Am-
bion) kit used in the second step has a profile similar to that of the
Ribominus kitfor bacteria, thus removing additional 16S and 23S
rRNAs from the RNA pools. The RiboMinus kit for eukaryotes
(Invitrogen) used in the third step has rRNA probe compatibility
to eukaryotic rRNA and correspondingly removed 18S and 28S
rRNAs from the remaining RNA pool. RNA removal after each
subtractive hybridization step with three subsequent kits removed
�70% and �77% of the rRNAs from the total RNA pools of for
samples Sa and Ka, respectively (see Table S2 in the supplemental
material). However, cDNA synthesis attempts with mRNA-en-
riched RNA from Sa and Ka as the template failed.

To circumvent inhibition of the cDNA synthesis of RNA from
the deep peat layers (Kb, Kc, and Sb) and the mRNA-enriched top
layer (Km), the RNA was diluted to 2.5 ng/�l. Five microliters
(12.5 ng) was used as the template in linear RNA amplification
procedures using the MessageAmp II-Bacteria kit (Ambion). A
test performed prior to this experiment showed that concentra-
tions of 10 and 20 ng/�l of RNA (50 and 100 ng RNA per reaction,
respectively) from anoxic peat samples (Kb) resulted in approxi-
mately one-fourth of the amplified RNA output compared to that
obtained in the reaction with 12.5 ng of the template. Linear am-
plification with 12.5 ng of template RNA yielded large amounts of
amplified RNA for all samples (see Table S3 in the supplemental
material). The amplification efficiency was highest for the previ-
ously uninhibited top-layer samples (Ka and Sa), while all the
samples from deep peat layers yielded smaller amounts of ampli-
fied RNA, despite equal amounts of template RNA. This, together
with the above-described experiment, suggests a persistent inhi-
bition of enzymatic steps in the RNA amplification protocol with
RNA from the lower peat layers, which is concentration depen-
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dent. Nevertheless, the synthesis of double-stranded cDNA was
possible with the amplified RNA from all samples.

Comparison of mRNA-enriched with original samples. Se-
quencing with the Illumina HighSeq2000 platform yielded 7 to 16
million overlapping sequences (Table 1). The fraction of putative
mRNAs was 15 to 28% in the total RNA samples, while it was 39%
in the mRNA-enriched sample (Km). Between 8% and 16% of
putative mRNAs had homology to known protein-coding genes
(RefSeq BLASTx bit score, 50).

To assess potential biases introduced during mRNA enrich-
ment, the relative abundance of transcripts annotated to Pfams
was compared between the mRNA-enriched (Km) and nonen-
riched (Ka) metatranscriptomes. Linear regressions on the dou-
ble-log scatter plots of the relative abundances of Pfams in two
random subsamples from the Pfam profile of the same metatran-
scriptomic library (Ka1 and Ka2 or Km1 and Km2) gave R2 values
of �0.96 (Fig. 2). However, the R2 was �0.75 in the comparison of
mRNA-enriched (Km) and nonenriched samples (Ka) (Fig. 2),
indicating that the relative abundances of transcripts were affected
by the mRNA enrichment procedures. The Pfam profiles of non-
enriched top layer samples from the two different sites (Sa and Ka)
were more similar than the profiles of the mRNA-enriched and
nonenriched samples from the same site (Ka and Km) (Fig. 2).
This is clearly illustrated in a CA plot in which Km separated from
Ka to a similar extent as the two samples from the other site,
Solvatn (Sa and Sb) (Fig. 3). However, no Pfams were particularly
affected by the mRNA enrichment, as indicated by the compari-
son of differences in relative abundances of transcripts for all
Pfams between Ka and Km (data not shown). Also, the taxonomic
distribution of mRNA transcripts homologous to protein-coding
genes in reference sequence genomes (RefSeq protein) showed
that no microbial taxa were specifically affected by the mRNA
enrichment (data not shown).

Transcripts of polysaccharide hydrolysis, fermentation,
methanogenesis, and methanotrophy. The development of a
protocol for peat soil metatranscriptomes has enabled deeper in-
sights into the microbiology of Arctic peat soil. We have focused
on the following key steps of SOC degradation and CH4 cycling in
peat soils: hydrolysis of polysaccharides, the initial steps of SOC
degradation, methanogenesis, and CH4 oxidation. The bacterial
communities in the top peat layers in Solvatn and Knudsenheia
were dominated by Alpha- and Deltaproteobacteria, Acidobacteria,
Planctomycetes, and Actinobacteria (see Fig. S2 in the supplemen-
tal material). In Knudsenheia, the relative abundance of Actino-
bacteria increased substantially with depth, while the Planctomy-
cetes and Acidobacteria populations decreased. In Solvatn, there
were only minor depth-related differences between the bacterial
populations. The Eukarya profiles were dominated by 18S rRNA
fragments assigned to plants (Viridiplantae), primarily mosses.
The relative abundance of plant rRNA decreased with depth in
both Knudsenheia and Solvatn. Other large taxa were the Meta-
zoa, Alveolata, and Rhizaria, all of which decreased with depth,
particularly in Knudsenheia.

Transcripts related to the degradation of plant polysaccha-
rides (cellulose, hemicellulose, and hemicellulose branches)
and aromatic compounds (e.g., phenolic compounds) were in-
vestigated in detail (Fig. 4). The relative abundances of tran-
scripts for cellulose and aromatic degradation decreased with
depth, while transcripts for hemicellulose debranching en-
zymes showed the opposite trend. Transcripts for hemicellu-
lose degradation did not have a distinct depth-related pattern.
The major glycoside hydrolase families involved in hemicellu-
lose degradation were GH53 (galactosidase), GH26 (man-
nanase), and GH10 (xylanase), involved in the cleavage of
galactose and mannan from, e.g., galactomannans and glu-
cogalactomannans and in xylan degradation, respectively. Par-
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ticularly abundant in the lower layers were the transcripts for
alpha-L-fucosidases, rhamnosidases, and alpha-L-arabinofura-
nosidases, which are involved in the degradation of highly
branched hemicelluloses of plant cell walls such as fucoside
xyloglucans, rhamnogalacturonans (structural domains in
complex pectins), and arabinoxylan. The transcripts for all

four enzyme categories were taxonomically binned to a broad
range of bacterial taxa (see Fig. S3 in the supplemental mate-
rial). A large fraction of the transcripts encoding oxidases were
assigned to Proteobacteria, while cellulases were predominantly
assigned to Actinobacteria. Transcripts for hemicellulases and
debranching enzymes were primarily assigned to Bacteroidetes
and Actinobacteria.

Analyses of transcripts for pathways of anaerobic respiration
indicated that both denitrification and sulfate reduction occurred
in these soils (data not shown). However, the relative abundance
of transcripts for denitrification decreased with depth in both sites
(chi-square contingency table test P value: Ka-Kb, 0.02; Ka-Kc,
2e�8; Kb-Kc, 3e�13; and Sa-Sb, 4e�8), while transcripts for sul-
fate reduction decreased only in Knudsenheia (chi-square contin-
gency table test P value: Ka-Kb, 0.01; Ka-Kc, 7e�11; Kb-Kc, 0.003;
and Sa-Sb, 0.2). The relative abundance of transcripts for fermen-
tative pathways of glycolysis (KEGG pathway: glycolysis/gluco-
neogenesis) (P value: Ka-Kc, 5e�7, and Kb-Kc, 3e�6), propi-
onate fermentation (KEGG pathway: propanoate metabolism) (P
value: Ka-Kc, 4e�12, and Kb-Kc, 2e�10), and ethanol fermenta-
tion (EC 1.1.1.1, EC 1.2.1.10, and EC 1.2.1.3) (P value: Ka-Kc,
4e�13; Kb-Kc, 5e�7; and Sa-Sb, 0.02) was consistently lower in
Kc than in Ka and Kb, while there were no significant differences
between Ka and Kb and between Sa and Sb (with the exception of
ethanol fermentation).

There was a significant increase in the relative abundance of
archaeal 16S rRNA transcripts with depth (Fig. 5B), from �0.2%
of the microbiota in the top layer to �7% in the lower layers in
Knudsenheia and from �0.1% to �3% in Solvatn peat. The ma-
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FIG 2 Double-log plots showing the abundance distribution between protein
families (Pfam) in subsamples of Ka (A), Km (B), Ka and Km (C), and Ka and
Sa (D). The Pfam profiles for all samples were randomly subsampled two times
for 30,000 transcripts, within the number of the sample with fewest transcripts
assigned to a Pfam. Replicate number indicates the specific random subsam-
pling used in the comparison. Each comparison displays the transcript abun-
dances of Pfams for two subsamples plotted on a logarithmic scale in XY plots.
The logarithmic scale is used to reduce the effect of outliers in the comparison.
Linear regression on each XY plot gives R2 values.
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FIG 3 Biplot of correspondence analysis of sample Pfam profiles, illustrating
the difference in gene expression. Pfam profiles corresponding to the different
depths of Knudsenheia (Ka, Kb, and Kc) and Solvatn (Sa and Sb) are shown in
blue. Individual Pfams responsible for the majority of the differences between
samples are shown in red. The x axis represents the first dimension, which
explained 46.3% of the inertia (a measure of the total difference between sam-
ple profiles); the y axis represents the second dimension, which explained
22.6% of the inertia. The distance between the sample Pfam profiles indicates
the difference in gene expression between samples. The length of the line
connecting Pfams to the center of the plot is equivalent to the weight of par-
ticular Pfams in the final solution, given the inertia of the dimensions it crosses
(i.e., the longer the line, the larger part of the inertia it explains). The direction
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toward deeper-layer samples, the relative abundance of transcripts for that
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jority of the archaeal 16S rRNAs were assigned to known metha-
nogenic taxa, with the family Methanosaetaceae being the overall
most abundant (�10% of Archaea in the top layer and �40% in
lower layers), followed by Methanosarcinaceae and the orders
Methanomicrobiales and Methanobacteriales (50% in the top layer
of Knudsenheia) (Fig. 5B). Similarly, at Knudsenheia, the relative
abundance of mRNAs assigned to Archaea was low in the top
layers and increased with depth, from �0.5% (�1,500 reads) to
�8% (�25,000 reads) of all taxonomically assigned mRNAs (Fig.
5A). For the Solvatn site, archaeal mRNA transcripts increased
from �0.5% (�1,500 reads) to �1.5% (�3,000 reads). Most
mRNAs stemmed from the Methanosaetacaea, followed by
Methanosarcinaceae and Methanomicrobiales. A detailed analysis
of the transcripts encoding enzymes of methanogenesis pathways
showed that all major pathways were present (Fig. 6). In general,
the relative abundance of transcripts for all pathways increased
with depth. Among these, the transcripts encoding subunits of
methyl coenzyme M reductase (methyl-CoM reductase [MCR];
EC 2.8.4.1) were most abundant. Corresponding to the high
abundance of Methanosaetaceae identified by 16S rRNA and
mRNA annotation, the transcripts for AMP-forming acetate-co-

enzyme A ligase (EC 6.2.1.1), a key enzyme for acetoclastic metha-
nogenesis by Methanosaetaceae, was the most abundant. In line
with this, there was also a high relative abundance of transcripts
for the carbon monoxide dehydrogenase, catalyzing the reduction
of acetyl-coenzyme A to 5-methyl tetrahydromethanopterin in
acetoclastic methanogens. The transcripts encoding enzymes for
acetoclastic methanogenesis typical for the Methanosarcinaceae
were of low relative abundance (acetate kinase, EC 2.7.2.1, and
phosphate acetyltransferase, EC 2.3.1.8). Among the hydrog-
enotrophic branches of methanogenic pathways, the transcripts
for the pathway for methanogenesis from formate were present at
the highest relative abundance (key enzyme, formate dehydroge-
nase, EC 1.2.1.2), while those specific for the reduction of CO2

with reducing power from H2 (ferredoxin hydrogenase, EC
1.12.7.2) were present at a low relative abundance. The transcripts
for the remaining steps of hydrogenotrophic methanogenesis,
which are common to both H2 and formate metabolism, were
present at relative abundances similar to that of formate dehydro-
genase. Transcripts related to methylotrophic methanogenesis
were at lower relative abundances, with methanol-related tran-
scripts (EC 2.1.1.246) being highest, followed by trimethylamine-
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related transcripts (EC 2.1.1.250), with transcripts for dimethyl-
amine (EC 2.1.1.249) and monomethylamine (EC 2.1.1.248) at
the lowest abundances.

The relative abundance of SSU rRNA assigned to the methane-
oxidizing bacteria (MOB) within Methylococcaceae increased with
depth (Fig. 7). The majority of these sequences were assigned to
Methylobacter, being most similar to the 16S rRNA of Methylobac-
ter tundripaludum (33). Correspondingly, there was also an in-
crease in the relative abundance of mRNA assigned to Methylococ-
caceae (Fig. 7). The majority of the mRNA transcripts were most
similar to homologues encoded in the genome of M. tundripalu-
dum SV96 (34) (see Table S4 in the supplemental material). The
transcripts encoding the subunits of the particulate methane
monooxygenase (pMMO) were the most abundant, being �5-
fold higher than transcripts encoding enzymes for the down-
stream steps of methane oxidation: methanol, formaldehyde, and
formate oxidation (see Table S4). Other methanotrophic taxa,
such as the candidate division NC10 (relative abundance � 2e�3)
and the Methylocystaceae (�1.5e�4), were observed at lower rel-
ative abundances.

DISCUSSION

A major limitation for the utilization of metatranscriptomics in
the study of active microorganisms in the environment is the short
half-lives of mRNA molecules (35) and the variations in half-lives
between species and different genes (1). Thus, changes in the soil
conditions upon sample retrieval might cause a change in the
transcript patterns. RNA isolation from soils is particularly chal-
lenging due to the inaccessibility of cells located on and within soil
particles, inefficient cell lysis, the adsorption of RNA to soil parti-
cles, and the presence of RNases (1). In our study, changes in
transcript patterns were counteracted by rapid flash-freezing of
samples in liquid nitrogen immediately after sampling, while
high-efficiency extraction was achieved by grinding the peat soil in
liquid nitrogen before NA extraction.

Due to the absence of poly(A) tails in prokaryotic mRNAs,
common enrichment strategies mostly rely on the removal of
rRNAs (3, 4). Soil contains organisms from all the three domains,
Bacteria, Archaea, and Eukarya, making it difficult to synthesize a
compatible combination of probes for subtractive hybridization.
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Eukaryotes have been shown to comprise 10% or more of the
rRNA in soil metatranscriptomes (2, 10), stemming from fungi,
protists, and metazoa. Therefore, a removal of the eukaryotes is
essential to achieve a high fraction of mRNA. Subtractive hybrid-
ization using custom-generated probes, constructed only from the
bacterial rRNA, was shown to reduce the rRNA fraction to 50 to
60%, leaving 40 to 50% of putative mRNA in marine metatran-
scriptomes (for an example, see reference 9). This is similar to the
kit-based rRNA removal from the high-Arctic peat soils per-
formed in this study, where the rRNA fraction was reduced to
60%, leaving 40% putative mRNA (Km) (Table 1). Thus, the com-
mercial kit-based method was as efficient as the custom probe-
based method. This might in part be due to the efficient utilization
of two kits with different probe compatibilities with bacterial
rRNA and one kit compatible with eukaryotic rRNA, removing
the 16S and 23S and the 18S and 28S fractions of the rRNA, re-

spectively (Fig. 1; see also Fig. S1 in the supplemental material). In
a polycyclic aromatic carbon-contaminated soil microcosm,
mRNA enrichment with MICROBExpress (Ambion) gave a final
fraction of putative mRNA at �18% (16), less than half that ob-
tained in our mRNA enrichment. MICROBExpress was one of the
three kits used with the peat microbiota, and the higher fraction of
putative mRNA obtained might be explained by the utilization of
two additional kits.

Organic molecules such as humic and tannic acids have been
shown to inhibit PCR by affecting the polymerase activity or bind-
ing the template, rendering it inaccessible to the enzyme (11, 36).
The activities of hydrolytic extracellular enzymes as well as general
bacterial activity are inhibited by accumulated phenolic com-
pounds in the anoxic layers of peat soils (13). The cDNA synthesis
from the deeper layers in Arctic peat soils was severely inhibited
despite the extraction of high-quality RNA and purification of the
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extracts. To circumvent the inhibition problem, the RNA samples
were diluted and linearly amplified after poly(A) tailing. This
proved to be an efficient method for generating high RNA yields.
Linear amplification is not prone to skewing the relative abun-
dances of different mRNAs, since the templates for the RNA syn-
thesis are cDNA fragments that after initial reverse transcription
are present at the same concentration throughout the amplifica-
tion step. However, the amplification of RNA has been shown to
increase the mRNA fraction of the metatranscriptomes (6, 9). It
has been suggested that this is due to a preferential polyadenyla-
tion of mRNA and an inefficient amplification of molecules with a
high degree of secondary structure (6). This was also observed in
our study, with the fraction of putative mRNA ranging from 15 to
28%, 2- to 4-fold higher than that observed in previously obtained
metatranscriptomes processed from the same soil samples with-
out amplification (putative mRNA, �5 to 7%) (10). Compared to
the moderate mRNA enrichment during the rRNA removal pro-
cedures, the RNA amplification step was particularly powerful
and in parallel circumvented the inhibition problems.

Comparison between the gene expression profiles of the
mRNA-enriched library and the mRNA fraction of the total RNA
in human stool samples has shown that there was little effect on
the relative abundance of mRNAs (double-log scatterplot R2 val-
ues, 0.91 and 0.94) (8). Also, subtractive hybridization with sam-
ple-specific probes had a low impact on the relative abundances of
mRNAs (9). In contrast to this, our study showed that the mRNA
enrichment had substantial effects on the relative abundances of
transcripts within many different protein families. Ideally, the
transcripts in an mRNA-enriched library should be a larger sub-
sample of the nonenriched library; however, the differences ob-
served were larger than that obtained between two random sam-
plings from the same set of annotated mRNA sequence tags (e.g.,
Ka replicate 1 and Ka replicate 2) (Fig. 2A). The difference was also
shown to be larger than that observed between the nonenriched
libraries from two different peat microbiotas (Ka and Sa). It was
not possible to determine the exact cause for the observed skew in
relative abundances of transcripts for different Pfams. It was
shown that the relative abundances of transcripts for some Pfams

were particularly high in Ka relative to Km, while other Pfams
were higher in Km. Also, the taxonomic annotation of mRNA
indicated that no specific taxonomic lineages were affected by the
mRNA enrichment. Rather, the effect was broad as shown by the
low R2 value in the double-log scatter plots (Fig. 2A). Thus, it can
be speculated that the skew was due to unspecific mRNA degra-
dation during the prolonged sample processing. Considering
these limitations and the high-throughput sequencing technolo-
gies available, we recommend performing deep sequencing on
linearly amplified or nonamplified peat soil metatranscriptomes,
leaving out the time-consuming subtractive hybridization steps.

Metatranscriptomics allows for a holistic study of microbial
processes in response to environmental changes. Particularly, it
enables the study of microbial transcription of genes that are tax-
onomically diverse and those that encode enzymes involved in
complex pathways, including many enzymes with different roles
in different organisms. In anoxic peat soils, extracellular degrada-
tion of plant polymers and methanogenesis are the initial and last
steps in the mineralization of SOC, and both are difficult to study
using targeted primer PCR-based methods due to the diversity of
organisms and metabolic pathways involved. The partly degraded
peat soil matrix contains a mixture of polysaccharides, proteins,
and aromatic (e.g., lignin and other phenolic compounds) and
aliphatic compounds which differs depending on the vegetation
input to the soil (37). The Arctic peat soils studied in this work are
characterized by a cover of moss species interspersed by grasses
(10). Mosses and grasses contain many similar cell wall polysac-
charides, but some are unique to each of them and many are
present at different proportions (38). Also, while grasses are rich
in lignin, mosses are not, but they contain other types of phenolic
compounds (38). The degradation of these compounds is initially
catalyzed by extracellular hydrolytic and oxidative enzymes. The
vegetation input in these soils is reflected in the relative abundance
of transcripts for polymer-degrading enzymes. In particular, the
high relative abundance of transcripts for cellulases in the top
layers of both Knudsenheia and Solvatn correspond to the high
cellulose content in both moss and grass cell walls (38). Also, con-
sidering hemicelluloses, the high relative abundance of galactosi-
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depths of Knudsenheia (Ka, Kb, and Kc) and Solvatn (Sa and Sb). Due to the low number of genomes, particularly from Arctic regions, within the Methylococ-
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dases (GH53) and mannanases (GH26) reflects the high fraction
of mosses, which are known to contain larger proportions of
galactomannans and glucogalactomannans than grasses (38). In-
terestingly, the decreased relative abundance of cellulase tran-
scripts and increase in transcripts for the degradation of highly
branched hemicelluloses indicate that the SOC in deeper peat lay-
ers contained less cellulose. Thus, it appears that the microbiota
metabolism had shifted toward degradation of highly branched
hemicelluloses containing fucose, arabinose, and rhamnose.
These are known as fucoside xyloglucans, heteroxylans, and rh-
amnogalacturonans and are more common in grasses than mosses
(38), indicating that these parts of the grass cell walls are particu-
larly recalcitrant to decomposition and/or that the contribution of
grasses to peat accumulation has been higher in the past. Extracel-
lular hydrolytic degradation of polysaccharides has been consid-
ered a potential rate-limiting step in SOC mineralization (13, 39).
Therefore, the characterization of changes in microbial transcrip-
tion patterns might help to identify the specific compounds that
make up the substrates for limiting steps in decomposition in
different peat deposits and the dynamics of their decomposition.
Genes encoding plant polymer-degrading enzymes are found in
the genomes of members of a broad range of bacterial phyla (40,
41). Thus, it has been difficult to investigate which members of a
given bacterial community are involved in the decomposition of
plant polymers and the dynamics of these particular communities.
Taxonomic annotation of transcripts encoding extracellular en-
zymes has allowed us to investigate these microbial taxa, showing
that many different phyla are involved in polymer decomposition.
However, Bacteroidetes seemed to be particularly important in the
decomposition of branched hemicelluloses, Actinobacteria in cel-
lulose and hemicellulose degradation, and Proteobacteria in the
degradation of phenolic compounds.

Most major groups of methanogens in the Svalbard peat soils
have been observed earlier, including Methanomicrobiales, Metha-
nobacteriales, Methanosaetaceae, and Methanosarcinales (10, 42).
Correspondingly, all these groups were identified in this study
(Fig. 5). Several studies have shown that methanogenic commu-
nities switch from hydrogenotrophic to acetoclastic methanogen-
esis with peat depth (43–45), while others have shown that the
proportion of hydrogenotrophic methanogenesis increased with
depth (46). Our results indicate that acetoclastic methanogens
were both more abundant and more active in the deeper layers,
while hydrogenotrophs were more abundant in the top layers.
However, mRNA analysis showed that genes for a broad range of
methanogenic pathways were transcribed, including methano-
genesis from formate, methanol, and methylamines in addition to
acetate. Particularly, transcripts for methanogenesis from acetate
and formate were abundant in the deeper layers. It has been shown
that at low temperature, acetoclastic methanogenesis predomi-
nates, possibly due to the activity of homoacetogenic bacteria (39,
47–49). This might also be the case for these peats, as the relative
abundance of transcripts for methanogenesis from H2/CO2 were
low compared to those for methanogenesis from acetate and for-
mate. However, whether this is due to homoacetogenic competi-
tion for H2 or to formate and acetate being major fermentation
products while H2 is not was not clear from our results. While
pathways of methanogenesis from methanol and methylamines
have received little attention in earlier studies, our results indi-
cated that these pathways might be important for methanogenesis
in the Arctic peat soils.

Bacteria closely related to M. tundripaludum were the most
abundant MOB at both Knudsenheia and Solvatn at all peat
depths, similar to previous studies (10). The increase in relative
abundances of 16S rRNA and mRNA of M. tundripaludum with
depth indicated that this species has means of coping with anoxic
conditions, enabling the cells to sustain a high number of ribo-
somes and mRNA. However, whether this is due to an anaerobic
energy metabolism involving methane oxidation utilizing pMMO
and intracellularly produced O2 (50), alternative energy metabo-
lism (51–53), or an ability to survive longer periods of starvation is
not evident from the current data set.

Conclusion. The utilization of metatranscriptomics has been
limited in part due to the difficulties associated with generating
high-quality cDNA from the total RNA extracted from the peat
soils. In this paper, we have described the generation of metatran-
scriptomes from soil samples with inhibitory components. We
have tested the application of kit-based mRNA enrichment on
complex peat soil ecosystems, finding that the introduced bias
outweighs the advantages of this approach. Particularly in poorly
studied ecosystems, it can be of advantage to simultaneously ob-
tain broad information about present and active organisms (de-
rived from rRNA) in addition to the transcript profile (derived
from mRNA). We have demonstrated the analysis of such data sets
and how these holistic community system analyses can provide
new knowledge about microbial activities in peat soils, ecosystems
important to the global carbon cycle. In particular, the transcript
patterns reveal the gradual shift from aerobic to anaerobic micro-
biotas and metabolisms in the deeper peat layers, corresponding
to a transition from CO2- to CH4-dominated greenhouse gas
emissions with depth.
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