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Shiga toxin-producing Escherichia coli (STEC) infections are a critical public health concern because they can cause severe clini-
cal outcomes, such as hemolytic uremic syndrome, in humans. Determining the presence or absence of virulence genes is essen-
tial in assessing the potential pathogenicity of STEC strains. Currently, there is limited information about the virulence genes
carried by swine STEC strains; therefore, this study was conducted to examine the presence and absence of 69 virulence genes in
STEC strains recovered previously from finishing swine in a longitudinal study. A subset of STEC strains was analyzed by
pulsed-field gel electrophoresis (PFGE) to examine their genetic relatedness. Swine STEC strains (n � 150) were analyzed by the
use of a high-throughput real-time PCR array system, which included 69 virulence gene targets. Three major pathotypes con-
sisted of 16 different combinations of virulence gene profiles, and serotypes were determined in the swine STEC strains. The ma-
jority of the swine STEC strains (n � 120) belonged to serotype O59:H21 and carried the same virulence gene profile, which con-
sisted of 9 virulence genes: stx2e, iha, ecs1763, lpfAO113, estIa (STa), ehaA, paa, terE, and ureD. The eae, nleF, and nleH1-2 genes
were detected in one swine STEC strain (O49:H21). Other genes encoding adhesins, including iha, were identified (n � 149). The
PFGE results demonstrated that swine STEC strains from pigs raised in the same finishing barn were closely related. Our results
revealed diverse virulence gene contents among the members of the swine STEC population and enhance understanding of the
dynamics of transmission of STEC strains among pigs housed in the same barn.

Shiga toxin-producing Escherichia coli (STEC) infections are a
critical public health concern, leading to 170,000 cases of hu-

man illness (1) and an economic burden of 280 million dollars (2)
annually in the United States. STEC strains represent a subset of E.
coli strains that produce one or more bacteriophage-encoded cy-
totoxins known as Shiga toxins (Stx1 and Stx2) (3, 4). Enterohe-
morrhagic E. coli (EHEC) strains represent a subgroup of STEC
strains defined by the presence of an Stx-encoding bacteriophage
and the presence of the locus of enterocyte effacement (LEE)
pathogenicity island, which is important for the development of
attaching and effacing lesions (5). The LEE island is not present in
all STEC strains. Prior studies have found that EHEC is more
commonly associated with severe clinical cases (6); however, LEE-
negative STEC strains have been linked to severe clinical cases as
well as to outbreaks (7). STEC is often acquired by consuming
contaminated food or water (8), and cattle are viewed as the most
important animal reservoirs (9). Food of bovine origin has been
implicated in many STEC infections and outbreaks, though a
number of other food products, including pork products, have
been confirmed as the source of STEC in a number of outbreaks
(10–16). For example, a recent STEC O157:H7 outbreak was as-
sociated with consuming large cuts of pork from a whole roasted
pig (16).

Although the way in which the pork products became contam-
inated in these outbreaks was uncertain (10–16), the likelihood
that on-farm pigs were the source of STEC contamination cannot
be overlooked. Unlike cattle, which do not usually present clinical
symptoms due to STEC infection, pigs, specifically postweaning
and young finishing pigs, can suffer from edema disease caused by
STEC strains carrying the stx2e variant (17). Epidemiological stud-
ies conducted in different regions of the world have reported a
wide range of STEC prevalences in swine populations (18–20).

However, the epidemiology and virulence characteristics of STEC
carried by on-farm pigs remain largely unknown, as does whether
swine-derived STEC strains are similar to human-derived STEC
strains and have the potential to contribute to human infections.

Human STEC infections are associated with a range of clinical
symptoms: diarrhea, hemorrhagic colitis (HC), and the life-
threatening hemolytic uremic syndrome (HUS) (6, 21). The
pathogenesis of STEC in human patients has been reviewed else-
where (9, 22–26). Although Shiga toxins are critical in STEC
pathogenesis because they inhibit host cell protein synthesis (27)
and induce apoptosis (reviewed in reference 28), virulence factors
other than Stx are also important (29). For example, following
initial attachment to host intestinal cells, EHEC strains that ex-
press intimin, which is encoded by eae on the LEE pathogenicity
island, can intimately attach to host cells (23, 30). The N-terminal
region of intimin is highly conserved, whereas the C-terminal re-
gion is variable and accounts for the definition of eae subtypes. For
STEC strains that lack eae (LEE-negative STEC) and cause diseases
in humans, other adherence structures have been suggested to be
important. For example, the STEC autoagglutinating adhesin en-
coded by saa increases adherence of the pathogen to human epi-
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thelial cells (31). Other structures contributing to STEC coloniza-
tion, such as the long polar fimbriae encoded by lpf, which has
many variants, have also been found in both EHEC strains and
LEE-negative STEC strains (23, 32, 33). A number of other viru-
lence factors have been proposed to contribute to STEC pathogen-
esis, for instance, catalase peroxidase encoded by katP, which pro-
tects STEC from peroxide-mediated oxidative damage (34). Some
non-LEE-carried effector (nle) genes, which encode proteins hav-
ing various functions, such as inhibiting phagocytosis, have been
detected in EHEC strains isolated from human patients with se-
vere clinical disease, namely, HC or HUS (29, 35, 36).

Knowing that various combinations of virulence factors con-
tribute to STEC pathogenesis, it is essential to determine the pres-
ence or absence of specific virulence genes to better assess the
potential pathogenicity of STEC strains (29, 32, 37). A few studies
have examined the virulence gene profiles of swine STEC strains
(38–42). However, every study selected different panels of viru-
lence genes, which makes comparison of results across different
studies highly challenging. The presence of many virulence genes,
for example, nle genes and allelic variants, has seldom been exam-
ined in swine STEC strains. In general, little is known about the
virulence characteristics of STEC originating from swine that may
contribute to disease in humans and swine. To fill in the current
knowledge gap and better evaluate the potential pathogenicity of
swine-derived STEC strains, we utilized a PCR microarray
method to examine the presence of 69 virulence genes in STEC
strains recovered previously from finishing pigs in a longitudinal
study (43). Moreover, the genetic relatedness of these strains was
also examined to better understand STEC transmission dynamics
in swine throughout the finishing period.

MATERIALS AND METHODS
Swine STEC strains. A total of 150 STEC strains recovered from 95 fin-
ishing pigs in a longitudinal study were included in this study (43). Indi-
vidual fecal samples were collected from three cohorts of finishing pigs
(n � 50/cohort, n � 150 in total). Each cohort was raised in a separate
finishing barn at two finishing sites (cohort 1 at site A, cohorts 2 and 3 at
site B) within one all-in, all-out multisite production system in the mid-
western United States. The samples in each cohort were collected every 2
weeks during the finishing period (8 farm visits/cohort). A sample was
considered to be positive for STEC when an STEC isolate was recovered.
The presence of virulence genes (stx1, stx2, stx2e, and eae) and the O:H
serotypes were determined in these STEC isolates (43). At least one STEC
strain was selected from each positive sample for virulence gene charac-
terization by PCR microarray (see below). STEC strains belonging to dif-
ferent serotypes recovered from the same sample were also included in the
study to better understand the diversity of STEC strains within the
animals.

Selection of virulence gene targets. The general rationale for the se-
lection of virulence gene targets was based on their function, role in
pathogenesis, and association with human illness and/or disease severity
in human patients. According to the previous characterization results,
only 1 among the 150 swine STEC strains carried the eae gene (43). Addi-
tionally, all swine STEC strains recovered in the longitudinal study were in
non-O157 serogroups (43). Therefore, the 69 virulence genes targeted in
the microarray were selected based on genes found in different STEC
serogroups and included putative genes encoding adhesins (iha, paa, orfA,
orfB, toxB, eibG, saa, eae, and allelic variants), toxins {stx [all variants,
including stx2e], ent (espL2), cdtI, cdtIII, astA, estIa (STa), elt (LT), and
subAB}, fimbriae (lpfAO157, lpfAO113, lpfAO26, and sfp), and others found
in pathogenic STEC strains [terE, ureD, espV, espK, espN, espX7, espO1-1,
nleG5, nleG6-2, Z2096, Z2098, Z2099, nleA, nleF, nleH1-2, espM1, espM2,
nleB, nleE, efa1 (lifA), pagC, ecs1822, ecs1763, irp2, fyuA, ehaA, hlyA, bfp,

cnf2, ecf1, ecf2, ecf3, efc4, katP, ehxA, etpD, stcE, espP, epeA, and sab]. Some
of the virulence genes were also those associated with swine diseases:
postweaning diarrhea [estIa (STa), elt (LT), orfA, orfB, and hlyA] and
edema disease (stx2e, orfA, orfB, and hlyA). We also included fimbrial
genes that are associated with swine neonatal diarrhea [fasA (F6) and
fimF41a (F41)], postweaning diarrhea [fedA (F18)], and swine edema
disease [fedA (F18)].

High-throughput real-time PCR microarray. The BioMark real-time
PCR system (Fluidigm) was used for high-throughput microfluidic real-
time PCR amplification using 96.96 dynamic arrays (Fluidigm). Amplifi-
cations were performed using EvaGreen DNA binding dye (Biotium Inc.,
Hayward, CA) with TaqMan Gene Expression master mix in accordance
with the recommendations of the manufacturer (Applied Biosystems,
Courtaboeuf, France). The thermal profile comprised 10 min at 95°C,
followed by 35 cycles of 95°C for 15 s and 60°C for 1 min, followed by a
melting-curve analysis.

Besides the 69 selected virulence genes, O-group-associated genes spe-
cific for serogroups O26, O157, O145, O103, O111, O121, O45, O118,
O128, O146, O91, O104, O113, and O55 were included in the PCR mi-
croarray. Moreover, the microarray chip also targeted flagellar genes for
H-groups H11, H7, H21, H2, H28, H8, H19, H16, H25, H4, and H32 (44).
Most of the primers used in the PCR microarray were described previ-
ously (29, 38, 44, 45), and some were designed for this study. The se-
quences of all primers are reported in Table S1 in the supplemental ma-
terial.

Strain selection strategy for PFGE. A subset of swine STEC strains
(n � 49) was selected for pulsed-field gel electrophoresis (PFGE) analysis
to determine their genetic relatedness. The selection criteria were based on
serotype, virulence gene profiles, and epidemiological information related
to the pigs. Within the predominant serotype, O59:H21, strains recovered
in the early, middle, and late stages of the finishing period were selected.
We included STEC strains of the same serotype and recovered from the
same pig at different farm visits over the finishing period to examine
changes over time. STEC strains of the same serotype but with different
virulence gene profiles were also selected for PFGE analysis. In total, 29
O59:H21 STEC strains were selected, as well as 2 O59:H19 STEC strains.
Thirteen additional STEC strains belonging to serotype O untypeable:
H19, four O98:H12 STEC strains, and one O98:H19 strain were also an-
alyzed.

PFGE. PFGE was conducted according to the standardized Centers of
Disease Control and Prevention (CDC) PulseNet protocol (46). In sum-
mary, STEC DNA was embedded in agarose and digested with 50 U of
XbaI for 2 h at 37°C. A CHEF DR-III system (Bio-Rad, Munich, Germany)
was used to separate the restriction fragments by electrophoresis at pulse
times of 2.16 to 54.17 s in 0.5� Tris-borate-EDTA buffer with 50 �M
thiourea at 14°C for 16.2 h. The H9812 Salmonella enterica serovar Braen-
derup strain (CDC, Atlanta, GA) was utilized as a molecular size marker.
BioNumerics software package 6.6 (Applied Maths, Ghent, Belgium) was
used to analyze the PFGE restriction-digested band patterns. The dendro-
gram was built by analyzing Dice coefficients and by using the un-
weighted-pair group method using average linkages (UPGMA) with 0.5%
band position tolerance. The genetic relatedness of the strains was as-
sessed by the percentages of similarity of the PFGE patterns.

RESULTS
Virulence gene profiles of swine STEC strains. There were 11
distinct virulence gene profiles among the swine STEC strains
tested in this study, with 16 different combinations based on se-
rotype and virulence gene profiles (Table 1). The strains had be-
tween 6 and 20 genes among the 69 virulence genes examined, and
most strains (82% [123/150]) carried the same virulence gene pro-
file (virulence gene profile 1), which consisted of the following 9
genes: stx2e, iha, ecs1763, lpfAO113, estIa (STa), ehaA, paa, terE, and
ureD. The second-most-prevalent virulence gene profile was pro-
file 3, found in 10% (15/150) of the strains, and contained stx2e,
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iha, estIa (STa), paa, terE, and ureD. One strain, serotype O49:
H21, carried virulence gene profile 11, which included eae and two
nle variants (nleF and nleH1-2) as well as stx2e, katP, iha, ecs1763,
lpfAO113, astA, estIa (STa), ecf1, ecf2, ecf3, ecf4, irp2, fyuA, ehaA,
paa, terE, and ureD. Furthermore, the data showed that the strains
can be grouped into three major pathotypes according to the vir-
ulence genes they carried (Table 1). Pathotype I was defined as the
strains (12.7% [19/150]) possessing 5 core genes, including stx2e,
iha, paa, terE, and ureD, along with other virulence genes. In ad-
dition to the 5 core genes, pathotype II strains (82.7% [124/150])
possessed the 4 genes ecs1763, estIa (STa), lpfAO113, and ehaA
along with other virulence genes. Finally, pathotype III strains
carried stx1 (2.7% [4/150]) and eae (0.7% [1/150]), as well as other
virulence genes (1.3% [2/150]).

Although only 1 of the 150 strains had eae, other genes encod-
ing proteins associated with attachment were present in the swine
STEC strains. For example, iha, which encodes the iron-regulated
gene A homolog adhesin (47), was detected in 99.3% (149/150) of
the STEC strains. The lpfAO113 gene, which encodes long polar
fimbriae (48), was detected in 85.3% (128/150) of the strains, and
the fedA gene, which encodes fimbrial adhesin F18 and is associ-
ated with swine edema disease and postweaning diarrhea (49), was
present in 0.7% (1/150) of the strains. The orfA and orfB genes,
which encode adhesins involved in diffuse adherence (AIDA) (50,
51), were present in 1.3% (2/150) of the strains. Moreover, the paa
gene, which encodes the porcine attaching and effacing-associated
adhesin (52), was detected in 99.3% (149/150) of the strains.
Among the fimbrial genes (fimF41a and fasA), which contribute to
colonization in swine and are associated with swine neonatal di-
arrhea (17), fimF41a was detected in 0.6% (1/150) of the strains,
while fasA was not detected in any of the strains.

A number of genes that encode toxins and hemolysins were
present in the panel of swine STEC strains. For instance, 146 of the
150 swine STEC strains carried the stx2e gene, and the other four
strains carried stx1. The astA gene, which encodes the enteroaggre-
gative E. coli (EAEC) heat-stable toxin (53), was detected in 3.3%

(5/150) of the strains. The estIa (STa) gene, which encodes heat-
stable toxin (54), was detected in 94.7% (142/150) of the strains.
Moreover, the hlyA gene, which encodes the alpha hemolysin (55),
was present in 0.6% (1/150) of the strains. Interestingly, the
ecs1763 gene, which encodes hypothetical proteins and was previ-
ously detected in EHEC strains (56), was present in 84.7% (127/
150) of the strains. The following virulence genes, which were also
targeted in the PCR microarray, were not detected in any of the
150 swine STEC strains: eae subtypes alpha, beta, gamma, epsilon,
and theta, nleA, nleG5, ent (espL2), nleB, nleE, efa1 (lifA), Z2096,
Z2098, Z2099, espM1, espM2, nleG6-2, espK, espN, espX7, espO1-1,
espV, ecs1822, sfp, bfp, lpfAO26, lpfAO157, cdt subtypes I and III, elt
(LT), cnf2, ehxA, toxB, stcE, eibG, epeA, espP, saa, subAB,
and sab.

PFGE. Within the O59:H21 STEC strains, three major clusters
(clusters A to C) were defined at a cutoff value of 80% similarity
(Fig. 1). These three major clusters were related at 71.1% similar-
ity. The strains isolated from pigs within the same cohort were
clustered. For example, cluster A contained strains from pigs in
cohort 3, and cluster B contained strains from pigs in cohort 1.
The only exception was that strain 297 from pig 119 in cohort 3
clustered with strains from cohort 2 (cluster C). Strains from pigs
in cohort 3 (cluster A) were related to the strains from pigs in
cohort 1 (cluster B) at 75.1% similarity. Within each cluster, in-
distinguishable PFGE patterns were observed among STEC strains
recovered from samples in the same pig over time during the fin-
ishing period. For example, strains 170 and 228 with indistin-
guishable PFGE patterns were recovered from pig 145 at the sec-
ond and third farm visits in cohort 3. In cluster A, strains carrying
two different virulence gene profiles (profiles 1 and 2) clustered.
The two O59:H19 strains, which carried virulence gene profile 3,
were not clustered with the O59:H21 strains (24.8% similarity;
data not shown).

Within the O untypeable:H19 strains, 11 of the 13 strains were
clustered at 83.6% similarity. One of the O untypeable:H19 strains
had a PFGE pattern different from those of the other 11 strains

TABLE 1 Distribution of swine STEC strains by serotype and virulence gene profiles

Serotype
No. of swine
STEC strains

No. of strains
analyzed by
PFGE Virulence gene profile

Virulence
gene profile
code Pathotype

O59:H21 118 27 stx2e, iha, ecs1763, lpfAO113, estIa (STa), ehaA, paa, terE, ureD 1 II
2 2 stx2e, iha, ecs1763, lpfAO113, ehaA, paa, terE, ureD 2 I

O untypeable:H19 13 12 stx2e, iha, estIa (STa), paa, terE, ureD 3 I
1 1 stx2e, iha, astA, estIa (STa), terE, ureD 4 III

O59:H19 2 2 stx2e, iha, estIa (STa), paa, terE, ureD 3 I
O98:H12 2 2 stx1, pag C, katP, iha, astA, ecf1, ecf2, ecf3, ecf4, paa, terE, ureD 9 III

2 2 stx1, pag C, katP, iha, ecf1, ecf2, ecf3, ecf4, paa, terE, ureD 10 III
O untypeable:H21 2 0 stx2e, iha, ecs1763, lpfAO113, estIa (STa), ehaA, paa, terE, ureD 1 II
O20:H21 1 0 stx2e, iha, ecs1763, lpfAO113, estIa (STa), ehaA, paa, terE, ureD 1 II
O49:H21 1 0 stx2e, eae, nleF, nleH1-2, katP, iha, ecs1763, lpfAO113, astA, estIa (STa), ecf1,

ecf2, ecf3, ecf4, irp2, fyuA, ehaA, paa, terE, ureD
11 III

O89:H19 1 0 stx2e, iha, lpfAO113, estIa (STa), ehaA, paa, terE, ureD 7 I
O98:H19 1 1 stx2e, pagC, katP, iha, ecf1, ecf2, ecf3, ecf4, paa, terE, ureD 5 I
O115:H19 1 0 stx2e, iha, ecs1763, lpfAO113, astA, estIa (STa), orfA, orfB, ehaA, paa, terE, ureD 6 II
O119:H21 1 0 stx2e, iha, ecs1763, lpfAO113, estIa (STa), ehaA, paa, terE, ureD 1 II
O167:H21 1 0 stx2e, iha, ecs1763, lpf AO113, estIa (STa), ehaA, paa, terE, ureD 1 II
O untypeable:H4 1 0 stx2e, fedA (F18), hlyA, orfA, orfB, paa, terE 8 III

Total 150 49
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(27.4% similarity). Moreover, strain 281, which carried a different
virulence gene profile, was not clustered with the other 12 strains
(see Fig. S1 in the supplemental material). Within the five strains
belonging to serogroup O98, the four O98:H12 strains had indis-
tinguishable PFGE patterns and were clustered at a similarity level
of over 90%. The O98:H19 strain (n � 1) did not cluster with the
four O98:H12 strains (see Fig. S2 in the supplemental material).

DISCUSSION

The objective of this study was to use molecular methods to char-
acterize swine STEC strains recovered in a previous study (43) to
determine their virulence gene profiles and genetic relatedness.
This study utilized a high-throughput real-time PCR platform to
examine the presence of members of a large panel of virulence
gene targets in swine STEC strains. Although these swine STEC
strains were recovered from samples of 95 healthy finishing pigs
from three cohorts within 18 months in the same geographic area,
they were composed of three major pathotypes with 16 different
combinations of virulence gene profiles and serotypes. The panel

of virulence genes in this study included 69 targets, and our results
were in agreement with those of another study suggesting that
increasing the number of virulence genes in the panel would in-
crease the resolution of the virulence gene profiling (57). Various
virulence gene profiles in swine STEC strains have also been re-
ported elsewhere (38–42, 58–60). However, it was challenging to
compare the results of this study with the results of those previous
reports because all of the studies employed different panels of
virulence genes. Taken together, our results and the results of
previous studies of swine STEC strains have indicated that the
swine STEC group consists of strains carrying diverse sets of vir-
ulence genes.

Because the swine STEC strains examined in this study repre-
sent non-O157 serotypes and because only 1 of the 150 strains
carried eae, we chose to screen for the presence of many novel
virulence gene targets previously reported in non-O157 and LEE-
negative STEC strains. Some adhesin-encoding genes which have
been detected in human-pathogenic STEC strains were present in
the swine STEC strains. For example, iha and lpfAO113 were pres-

FIG 1 PFGE analysis of swine O59:H21 STEC strains. The “Key” column lists strain numbers. The “Source” column lists the cohort number of the pig from
which each strain was collected, the number corresponding to the visit (of the eight farm visits) during which the strain was collected, and the individual pig
number.
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ent in over 80% of the swine STEC strains. The iha gene has been
detected in over 70% of the LEE-negative STEC strains associated
with human clinical cases examined in studies in Germany (61)
and Australia (7). Both iha and lpfAO113 have been detected in over
80% of LEE-negative STEC strains associated with human clinical
cases examined in a study in Argentina (33). In addition to their
potential ability to allow STEC to attach to human cells, the high
prevalence of these genes in swine STEC may also suggest a role in
STEC colonization of swine or enhanced transmissibility and per-
sistence within a farm. These results warrant future research to
better define the role that these attachment proteins may play in
adherence to both swine and human epithelial cells.

The majority of swine STEC strains in this study carried stx2e,
which is associated with edema disease in swine (9). Although stx2e

was prevalent in the STEC strains in this study, none of the pigs in
this study presented clinical symptoms (43). One of the potential
explanations for the absence of clinical symptoms in these pigs was
that only one of the strains carried the important fimbrial adhesin
gene that is associated with swine edema disease (fedA) (17).
Moreover, the fimbrial adhesin gene associated with swine neona-
tal diarrhea (fimF41a) (17) was present in only one swine STEC
strain examined in this study, and fasA was not detected in any of
the strains. Similarly, a previous study reported a high prevalence
of stx2e (80%) and a low prevalence of fedA (4.6%) and did not
detect fimF41a and fasA in STEC strains from clinically healthy
pigs (38). The production of Stx alone, without an adherence fac-
tor, is deemed to be insufficient to cause severe disease. In addi-
tion, none of swine STEC strains in this study belonged to sero-
groups O138, O139, O141, and O147, which are associated with
edema disease (17). Lastly, pigs in this study were in the finishing
period (10 to 24 weeks old), which is later than the usual onset age
for neonatal diarrhea (0 to 4 days old), postweaning diarrhea, and
edema disease (5 weeks old) (17). In the case of edema disease, the
expression of receptors for the STEC fimbrial adhesin (fedA) in
pigs is associated with younger age (17). Therefore, the older age
of pigs in this study may also explain why they did not develop
clinical symptoms when infected with E. coli strains carrying stx2e.

In addition to swine diseases, Stx2e-producing E. coli strains
are often implicated in infections of humans with mild disease or
no clinical symptoms (62–64). Stx variants are known to be asso-
ciated with disease severity in humans. For example, the stx2c and
stx2d activatable variants are more likely to be found in STEC
strains from HUS patients (64, 65), while stx1 variants are associ-
ated with STEC strains in humans with milder clinical symptoms
(62–64). Therefore, the swine STEC strains in this study predom-
inantly carrying stx2e and a few with stx1 may represent low risk to
human health. Moreover, one may notice that some swine STEC
strains analyzed in this study were O-untypeable and that most of
those that were identified belonged to serotypes that have not
previously been associated with human infections, except O59:
H19 (33). Nevertheless, in some rare cases, Stx2e-producing E. coli
strains have been recovered from HUS cases (66) and from hu-
mans with uncomplicated diarrhea (62, 63, 67, 68). More research
is needed to characterize and examine the frequencies of different
stx variant genes in swine-derived STEC strains from farms in
different geographic locations.

Several of the gene targets assessed in this study have not been
examined in swine STEC strains elsewhere. For example, the
ecs1763 gene, which was found only in a subset of EHEC strains
analyzed in a previous study (56), was prevalent in a high propor-

tion (84.7%) of the swine strains. However, the function associ-
ated with this ecs1763 gene has not yet been determined, and the
association between the presence of this gene and the clinical out-
come in human cases requires more research. In addition, the
combination of espK with espV, ureD, or Z2098 has been suggested
to be highly prevalent in EHEC strains and can be utilized for
EHEC detection purposes (45). Although ureD was present in
99.3% of our strains, the espK, espV, and Z2098 genes were absent
in the panel of strains used in this study. Considering the uncer-
tainties of the role of these putative virulence factors in causing
human illness, it is difficult to determine the health risk of many of
these swine STEC strains.

Our study is the first one to use PFGE to analyze STEC strains
recovered from repeated samples collected from pigs, while most
of the previous studies used PFGE to determine the genetic relat-
edness of STEC strains from swine and other species (60, 69–72).
The degrees of genetic relatedness of swine STEC strains to strains
from other animal species differed in those studies, and most stud-
ies focused on STEC O157:H7 (60, 69–71). Here, we found that
STEC O59:H21 strains, which predominated in this swine popu-
lation, were closely related among pigs in the same cohort. This
suggests that the same strain disseminated throughout each co-
hort and provides support for the idea of a point-source outbreak
at each of the three barns at two distinct finishing sites (43). Thus,
the pigs may have been exposed to the same point source of infec-
tions in the finishing-site environment. A longitudinal follow-up
study in cattle also reported closely related PFGE patterns among
STEC strains from cattle in the same cohort on the same farm (73).
More research, however, is needed to identify potential risk factors
for STEC shedding in swine and the common source of infection
associated with STEC strains shed by finishing swine.

It was found that swine STEC strains of the same serotype
could carry different virulence gene profiles. For example, two
distinct virulence gene profiles (profiles 1 and 2) were identified
within O59:H21 strains; however, the strains were closely related
by PFGE. This was not unexpected, as the two virulence gene
profiles (profiles 1 and 2) differed by the presence or absence of
estIa (STa), which is carried on a plasmid that can readily be
passed between strains with similar genetic backgrounds (54). Be-
cause PFGE can determine the genetic relatedness of the swine
STEC strains but cannot provide information regarding gene con-
tent (74), future studies using sequence-based molecular meth-
ods, including whole-genome sequencing, can provide insight
into the genetic diversity of swine STEC strains within and across
farms. Overall, these results demonstrate a high level of diversity
in virulence gene contents among the members of STEC popula-
tions from a small population of swine in the same geographic
location and enhance our understanding of the transmission dy-
namics of STEC among pigs in the same finishing barn. However,
whether swine STEC strains are potentially pathogenic to humans
and the role swine play in the transmission of STEC to humans
require further study.
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