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The interferon (IFN)-inducible viperin protein restricts a broad range of viruses. However, whether viperin plays a role during
herpes simplex virus 1 (HSV-1) infection is poorly understood. In the present study, it was shown for the first time that wild-type
(WT) HSV-1 infection couldn’t induce viperin production, and ectopically expressed viperin inhibited the replication of UL41-
null HSV-1 but not WT viruses. The underlying molecular mechanism is that UL41 counteracts viperin’s antiviral activity by

reducing its mRNA accumulation.

iperin is a highly conserved, 361-amino-acid protein. It was

first identified as a gamma interferon (IFN-vy)-inducible
protein which is directly induced by human cytomegalovirus
(HCMYV), and its constitutive expression is low (1). The viperin
gene (also known as cig5 or RASD2) can also be categorized as an
antiviral interferon-stimulated gene (ISG) which limits the repli-
cation of many DNA and RNA viruses (1-14). However, whether
viperin plays a role during herpes simplex virus 1 (HSV-1) infec-
tion is unknown.

To investigate whether HSV-1 could induce the expression
of viperin, HEK293T cells were infected with wild-type (WT)
HSV-1 at different multiplicities of infection (MOI) or with
Sendai virus (SeV) (15). Infection with SeV induced a signifi-
cant amount of viperin; however, infection with a low MOI
(0.2) of HSV-1 induced only a trace amount of viperin, and
infection with a moderate MOI (2) abrogated the expression of
viperin (Fig. 1A).

To further explore whether viperin could inhibit the replica-
tion of WT HSV-1, HEK293T cells with ectopic expression of
viperin-Flag were infected with HSV-1 at an MOI of 0.2. Then
cells were harvested at the time points indicated in the figures, and
viral plaque assay was performed to determine viral replication
(16). As a result, ectopically expressed viperin did not affect the
replication of WT HSV-1 (Fig. 1B). The data from Western blot
(WB) analysis also showed that viperin did not affect viral protein
expression (Fig. 1C). These results demonstrated that ectopic ex-
pression of viperin failed to inhibit the replication of WT HSV-1.

The aforementioned data led us to hypothesize that at least
one of the HSV-1 proteins could counteract the expression of
viperin. As a member of the ISGs, viperin was effectively in-
duced by SeV (Fig. 1) (15). With a high-throughput screen
assay of all 84 proteins carried by HSV-1, dual-luciferase re-
porter gene assays were performed in HEK293T cells cotrans-
fected with viperin-luciferase reporter plasmid and individual
HSV-1 protein expression plasmid for 20 h and infected with
SeV (17). As a result, ectopically expressed UL41 abrogated the
expression of viperin; however, other HSV-1 proteins did not
(datanot shown). UL41 has been reported to degrade both viral
and cellular mRNAs (18-26). Recently, mRNA of tetherin has
been reported to be degraded by UL41 (27). Meanwhile, ICPO,
an E3 ubiquitin ligase, promotes degradation of many cellular
antiviral proteins, such as IRF3, IRF7, IFIl6, and ATRX
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(28-32). To confirm whether ICPO was involved in degradation
of viperin at the protein level, HEK293T cells were cotrans-
fected with UL41 or ICPO and viperin-Flag plasmids, and the
cells were harvested and subjected to WB analysis. UL41 abol-
ished viperin-Flag expression in a dose-dependent manner, but
ICPO did not (Fig. 2).

It was reported that viperin was a target of human RNase en-
doribonuclease (33) and that UL41 was an endoribonuclease with
a substrate specificity similar to that of RNase A (26). Therefore, it
is very likely that UL41 abolishes viperin expression via its RNase
activity to degrade viperin mRNA. To confirm this hypothesis,
HEK293T cells were infected with WT HSV-1, R2621 (UL41-null)
HSV-1, or SeV. Then cells were harvested at 8 h postinfection and
subjected to reverse transcription (RT)-PCR to analyze the viperin
mRNA (Fig. 3A). For normalization, 18S rRNA, which could not
be degraded by UL41, was used as an internal control (27). WT
HSV-1, but not R2621 HSV-1, significantly reduced the accumu-
lation of viperin mRNA. Similarly, HEK293T cells were infected
with WT or R2621 HSV-1 or SeV; 20 h after infection, the cells
were harvested and subjected to WB analysis (Fig. 3B). The data
showed that, compared with R2621 HSV-1, WT HSV-1 markedly
abrogated viperin expression. Collectively, the data demonstrated
that UL41 dampens the antiviral activity of viperin by reducing its
mRNA accumulation.

The above-described data led us to hypothesize that viperin
could inhibit replication of UL41-null virus. To test this assump-
tion, HEK293T cells with ectopic expression of viperin-Flag were
infected with WT or R2621 HSV-1 and harvested at the indicated
time points for WB analysis and viral plaque assay (16). As a result,
ectopically expressed viperin significantly reduced the expression
of UL46 and UL42 from R2621 but not WT HSV-1 (Fig. 4A). The
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FIG 1 Ectopically expressed viperin did not inhibit the replication of WT
HSV-1. HEK293T cells were infected with WT HSV-1 at an MOI of 0.2 or 2.0
or with SeV. (A) Twenty hours after infection, cells were harvested and sub-
jected to WB analysis with antibodies against UL46, B-actin, or viperin.
HEK293T cells were transfected with vector or with viperin-Flag plasmid.
Twenty-four hours after transfection, the cells were infected with HSV-1 atan
MOI of 0.2, and then cells were harvested at the indicated time points after
infection and subjected to viral plaque assay (B) or WB analysis with antibod-
ies against UL46, Flag, or B-actin (C). The results are from triplicate samples
with standard deviations.

viral plaque assay showed that ectopic expression of viperin sig-
nificantly inhibited the replication of R2621 but not WT HSV-1
(Fig. 4B).

The fact that ectopically expressed viperin inhibits the replication
of the R2621 mutant does not mean that the lower constitutive ex-
pression of viperin would play an important role in inhibition of
viral replication. To address this issue, HEK293T cells were trans-
fected with a viperin-specific small interfering RNA (siRNA) prior
to infection, and then the replications of WT and R2621 HSV-1
were compared with that in cells that had been transfected with a
nontargeting siRNA (9). As presented, knockdown of viperin did
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FIG 2 UL41, but not ICPO0, decreased the expression of viperin. HEK293T
cells were cotransfected with viperin-Flag and UL41-His or ICP0-Flag plas-
mids. Twenty-four hours after transfection, cells were harvested and subjected
to WB analysis with antibodies against Flag or B-actin. The data represent
results from one of the triplicate experiments.
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FIG 3 HSV-1 UL41 protein reduced the accumulation of viperin mRNA. (A)
HEK293T cells were infected with WT or R2621 HSV-1 at an MOI of 0.5 (+)
or 5.0 (++) or with SeV. Eight hours postinfection, cells were harvested and
then subjected to RT-PCR (Roche). (B) HEK293T cells were infected as de-
scribed for panel A withan MOI of 0.2 (+) or 2.0 (++). Twenty hours postin-
fection, cells were harvested and subjected to WB analysis with antibodies
against viperin and -actin.

not affect the replication of WT HSV-1 but did promote the rep-
lication of the R2621 HSV-1 (Fig. 4C).

To rule out the involvement of other late proteins in viperin
regulation other than UL41, Usl1 was chosen, as AUs11 HSV-1
had been constructed in our lab (34). Us11 is an RNA binding
tegument protein that prevents the activation of protein kinase R
(PKR) and oligoadenylate synthetases (OAS) and impairs type I
IFN responses by antagonizing retinoic acid-inducible gene I (RIG-I)
and melanoma differentiation-associated gene 5 (MDA-5) (34-36).
HEK293T cells were transfected with viperin-Flag or vector plasmids
prior to being infected with AUs11 HSV-1 at an MOI of 0.2, and the
titers were tested. As shown, ectopic expression of viperin did not
affect the replication of AUsl1 HSV-1 (Fig. 4D). Taken together,
these results indicated that UL41, but not other viral proteins, pro-
motes HSV-1 replication by ablation of the antiviral activity of vi-
perin.

Viperin restricts the replication of many RNA viruses, includ-
ing HIV, hepatitis C virus (HCV), SeV, and influenza virus, and
also DNA virus HCMV (1, 2,9, 11, 14, 15, 37). Viperin effectively
affects the replication of influenza virus by inhibiting its release
from the plasma membrane of infected cells (10) and inhibits
HCV replication by localizing and interacting with HCV non-
structural protein 5A at the lipid-droplet interface (6). Surpris-
ingly, we found that HSV-1 infection abolished viperin expression
and ectopic expression of viperin could not restrict the replication
of HSV-1,and HSV-1 UL41 protein was demonstrated for the first
time to dampen the antiviral activity of viperin.

To establish effective infection, HSV-1 has evolved multiple
mechanisms to evade host innate immunity (34, 38—44). UL41 is
an mRNA-specific RNase that triggers rapid degradation of host
mRNAs to facilitate the sequential expression of viral proteins (19,
20, 22, 26, 45-48). Our data demonstrated that ectopic expression
of UL41 or WT HSV-1 infection reduced the accumulation of
viperin mRNA, suggesting that UL41 degraded viperin mRNA to
promote the replication of HSV-1.

In brief, we have demonstrated for the first time that HSV-1
UL41 dampens expression of viperin to abrogate the antiviral ac-
tivity of viperin by reducing its mRNA accumulation. These find-
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FIG 4 Viperin counteracted the replication of UL41-null HSV-1. HEK293T cells were transfected with vector or with viperin-Flag plasmid. Twenty-four hours
after transfection, the cells were infected with the indicated viruses at an MOI of 0.2, and then cells were harvested at the indicated time points postinfection and
subjected to WB analysis with antibodies against UL46, UL42, Flag, and B-actin (A) or viral plaque assay on Vero cells (B). (C) HEK293T cells were transfected
with control or with siRNA specific to viperin. Twenty-four hours after transfection, the cells were infected and subjected to viral plaque assay as described for
panel A. (D) HEK293T cells were transfected and infected with AUs11 HSV-1 at an MOI of 0.2 and subjected to viral plaque assay as described for panel A. The
data represent results from one of the triplicate experiments.

ings will lead us to better understand the mechanisms employed
by HSV-1 to evade host antiviral activity and develop novel effec-
tive therapeutics to modulate HSV-1 pathogenesis.
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