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ABSTRACT

Eriophyid mite-transmitted, multipartite, negative-sense RNA plant viruses with membrane-bound spherical virions are classi-
fied in the genus Emaravirus. We report here that the eriophyid mite-transmitted Wheat mosaic virus (WMoV), an Emaravirus,
contains eight genomic RNA segments, the most in a known negative-sense RNA plant virus. Remarkably, two RNA 3 consensus
sequences, encoding the nucleocapsid protein, were found with 12.5% sequence divergence, while no heterogeneity was observed
in the consensus sequences of additional genomic RNA segments. The RNA-dependent RNA polymerase, glycoprotein precur-
sor, nucleocapsid, and P4 proteins of WMoV exhibited limited sequence homology with the orthologous proteins of other ema-
raviruses, while proteins encoded by additional genomic RNA segments displayed no significant homology with proteins re-
ported in GenBank, suggesting that the genus Emaravirus evolved further with a divergent octapartite genome. Phylogenetic
analyses revealed that WMoV formed an evolutionary link between members of the Emaravirus genus and the family Bunyaviri-
dae. Furthermore, genomic-length virus- and virus-complementary (vc)-sense strands of all WMoV genomic RNAs accumulated
asymmetrically in infected wheat, with 10- to 20-fold more virus-sense genomic RNAs than vc-sense RNAs. These data further
confirm the octapartite negative-sense polarity of the WMoV genome. In WMoV-infected wheat, subgenomic-length mRNAs of
vc sense were detected for genomic RNAs 3, 4, 7, and 8 but not for other RNA species, suggesting that the open reading frames
present in the complementary sense of genomic RNAs are expressed through subgenomic- or near-genomic-length vc-sense
mRNAs.

IMPORTANCE

Wheat mosaic virus (WMoV), an Emaravirus, is the causal agent of High Plains disease of wheat and maize. In this study, we
demonstrated that the genome of WMoV comprises eight negative-sense RNA segments with an unusual sequence polymor-
phism in an RNA encoding the nucleocapsid protein but not in the additional genomic RNA segments. WMoV proteins dis-
played weak or no homology with reported emaraviruses, suggesting that the genus Emaravirus further evolved with a divergent
octapartite genome. The current study also examined the profile of WMoV RNA accumulation in wheat and provided evidence
for the synthesis of subgenomic-length mRNAs of virus complementary sense. This is the first report to demonstrate that emara-
viruses produce subgenomic-length mRNAs that are most likely utilized for genome expression. Importantly, this study facili-
tates the examination of gene functions and virus diversity and the development of effective diagnostic methods and manage-
ment strategies for an economically important but poorly understood virus.

Eriophyid mite-transmitted, multipartite single-stranded RNA
plant viruses with negative polarity recently were classified in

the genus Emaravirus (1). The Emaravirus virions are membrane-
bound particles of 80 to 200 nm in diameter, resembling those of
Tospovirus. Members of the genus Emaravirus possess four to six
negative (�)-sense genomic RNA segments, with each segment
encoding one open reading frame (ORF) in its complementary
(�) sense. The RNA-dependent RNA polymerase (RdRp), glyco-
protein precursor (GP), nucleocapsid (NC), and putative move-
ment protein encoded by RNAs 1, 2, 3, and 4, respectively, exhibit
relatively low but detectable sequence homology among Emaravi-
rus species. In contrast, little or no homology was found among
emaraviruses for the protein encoded by RNA 5 (1). Although
emaravirus genomes are multipartite in nature, individual mem-
bers differ substantially in the number of genomic RNAs they pos-
sess. European mountain ash ringspot-associated virus (EMARaV), the

type species of the Emaravirus genus (2, 3), and Rose rosette virus
(RRV) (4) are quadripartite; Pigeonpea sterility mosaic virus
(PPSMV) (5, 6) and Raspberry leaf blotch virus (RLBV) (7) are
pentapartite; and Fig mosaic virus (FMV) (8–10) is a hexapartite
virus. The diverse number of genomic RNA segments suggests
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that emaraviruses evolve by acquiring additional genomic RNAs
in order to facilitate precise virus-host and virus-vector interac-
tions for virus survival.

Viruses employ efficient genome expression strategies for the
successful invasion of hosts by overcoming the hostile host envi-
ronment (11). However, the genome expression strategy of ema-
raviruses is poorly understood. The accumulation profile of
genomic-length virus- and virus-complementary (vc)-sense
RNAs and synthesis of messenger RNAs (mRNAs) in infected
plants have not been examined for emaraviruses. Moreover, it is
not clearly established whether ORFs present in the complemen-
tary strand of genomic RNAs directly translate from the genome-
length vc-sense RNAs or subgenomic-length mRNAs of virus-
complementary sense.

High Plains (HP) disease, an economically important disease
of wheat (Triticum aestivum L.) and maize (Zea mays L.), was first
found in the Great Plains region of the United States in 1993 and
1994 (12). Since then, HP disease has been reported from different
regions in the United States, Australia, and New Zealand (13–18).
The causal agent of HP disease is transmitted by the wheat curl
mite (Aceria tosichella Keifer) (19, 20) and was identified as High
Plains virus based on double-membrane virus-like particles and a
32-kDa NC protein from partially purified virion preparations
(12, 21). However, subsequent studies renamed the causal agent of
HP disease Wheat mosaic virus (WMoV), based on International
Committee on Taxonomy of Viruses conventions for naming
taxa, and suggested it as a tentative member of the Emaravirus
genus (1, 22). WMoV is a poorly studied virus because attempts to
characterize its genome have not been successful, mainly due to
the inability to transmit the virus mechanically and difficulty in
long-term maintenance of live virus due to complex virus-mite
transmission interactions and the annual nature of wheat and
maize. Additionally, most of the field-collected samples are
often coinfected with eriophyid mite-transmitted Wheat streak
mosaic virus (WSMV) and/or Triticum mosaic virus (TriMV).
Except for the partial sequence of RNA 3 encoding the NC
protein, the genome sequence of WMoV is not available (15,
17, 22, 23). The unusually low (18 to 31%) amino acid identity
of the NC protein with other reported emaraviruses prompted
further examination of the phylogenetic relationships of
WMoV.

In this study, we examined how the eriophyid mite-trans-
mitted negative-sense RNA plant viruses, with a diverse num-
ber of divergent RNA segments, further evolved by determin-
ing the genome composition of WMoV. The combination of
relatively pure virion RNA and high-throughput RNA se-
quencing technology allowed us to determine that WMoV con-
tains eight genomic RNA segments, the most found in any
known negative-strand RNA plant virus. Interestingly, signifi-
cant sequence polymorphism was found in an RNA encoding
the nucleocapsid protein but not in additional genomic RNA
segments. Phylogenetic analysis of NC proteins suggested that
WMoV formed an evolutionary link between emaraviruses and
members of the family Bunyaviridae. Additionally, the accumu-
lation profile of WMoV-specific RNAs in wheat demonstrated
that WMoV produces virus- and vc-sense strands of all genomic
RNAs plus subgenomic- or near-genomic-length mRNAs of vc
sense for its genome expression.

MATERIALS AND METHODS
Maintenance of WMoV-viruliferous wheat curl mite colony and
WMoV-infected wheat tissue. The WMoV-viruliferous wheat curl mite
colony was established by collecting wheat tillers with virus-like symp-
toms from several wheat fields in three western Nebraska counties (Box
Butte, Scottsbluff, and Chase) during the 2011 spring season. These tillers
were placed in contact with 14-day-old wheat (cv. Millennium) plants in
4-cm-diameter Cone-tainers (Stuewe and Sons Inc.) to enable wheat curl
mites to transfer to the new plants. All plants were covered with cylindrical
plastic cages with screened vent holes to prevent possible contamination
and were maintained in a growth chamber at 25 to 27°C with a 14-h light
and 10-h dark photoperiod. Three weeks after infestation, wheat plants
were assayed for WMoV infection by reverse transcription-PCR (RT-
PCR), using RNA 3-specific oligonucleotides (22) (see Table S1 in the
supplemental material). Subsequently, wheat curl mites from WMoV-
positive plants were used in a series of single-mite transfers to eliminate
possible contamination with WSMV and/or TriMV, followed by mite-
virus propagation as described in McMechan et al. (24).

Nucleocapsid purification and isolation of viral RNA. Symptomatic
leaves from wheat infested with WMoV-viruliferous mites were used for
partial purification of nucleocapsids as described in Lane (25), with slight
modifications (26). Viral RNA was isolated from partially purified nucleo-
capsids as described in Tatineni et al. (26) and analyzed on a 1.2% form-
amide-formaldehyde agarose gel (27).

Illumina sequencing library construction. TruSeq RNA library con-
struction of partially purified virion RNA was performed at the Interdis-
ciplinary Center for Biotechnology Research Gene Expression Core Facil-
ity, University of Florida, Gainesville, FL, using an Illumina TruSeq RNA
sample preparation kit (Illumina, San Diego, CA). Briefly, 1.5 �g of
WMoV RNA was fragmented using a divalent cation solution and incu-
bated at 94°C. This step was followed by first-strand cDNA synthesis using
avian myeloblastosis virus (AMV) reverse transcriptase (Roche, India-
napolis, IN) and random primers (Promega, Madison, WI). Synthesis of
double-stranded cDNA was performed using a second-strand master mix
provided with the kit, followed by end repair, dA-tailing, and Illumina
adaptor ligation. Finally, the library was enriched by 12 cycles of amplifi-
cation and purified by Agencourt AMPure beads (Beckman Coulter, Brea,
CA). The library size and mass were assessed by analysis in a Bioanalyzer
(Agilent Technologies, Santa Clara, CA). Typically, a 200- to 2,000-bp-
broad library peak was observed, with the highest peak at �500 bp. Quan-
titative PCR was used to validate the library’s functionality, using a Kapa
library quantification kit (Kapa Biosystems, Wilmington, MA) with mon-
itoring on an ABI 7900HT real-time PCR system.

Illumina MiSeq sequencing. Sequencing was performed using the
reagents provided in the Illumina 500-cycle MiSeq, version 2, sequencing
kit. Ten microliters of library was mixed with 10 �l of 0.1 N NaOH for 5
min. Then the library was diluted to 20 pM in the HT1 buffer provided
with the kit. A final dilution to 13 pM was performed with HT1 buffer for
a final volume of 1 ml. A volume of 600 �l was loaded onto the reagent
cartridge for sequencing. Denatured, diluted libraries were sequenced on
an Illumina MiSeq benchtop sequencer with the sequencing-by-synthesis
technology. Runs were set for “generate FASTQ only” workflow in Illu-
mina Experiment Manager. Reagent cartridges, 500-cycle MiSeq, version
2 (Illumina), were used to sequence libraries with paired-end indexed
runs of 251 cycles per read (two 251-cycle reads).

Bioinformatics. The filtered paired-end reads were mapped onto the
wheat genome sequence (28) using Bowtie (version 2.1.0) with the “very-
sensitive” option (29). To identify the possible adapter contamination, the
filtered paired-end reads were mapped onto the UniVec database. The
Trinity platform (30) was used for de novo assembly of contigs from reads
that were subtracted from the wheat genome. The gene expression levels
(the number of reads in a contig) were determined using Bowtie (version
2.1.0) (29). The numerical values of gene expression were measured by
reads per kilobase per million mapped reads (RPKM) to normalize for the
number of sequencing reads and total read length (31).
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Determination of the 5= end of genomic RNAs. The exact 5= end
sequence of WMoV RNAs was determined using partially purified virion
RNA as a template for a 5= rapid amplification of cDNA ends (RACE)
system (Life Technologies, Carlsbad, CA). The first-strand cDNA was
synthesized using respective minus-sense gene-specific primer 1 of RNAs
1 to 8 (see Table S1 in the supplemental material), followed by column
purification, C-tailing of the 3= end of first-strand cDNA, and PCR am-
plification with minus-sense gene-specific primer 2 of RNAs 1 to 8 (see
Table S1) and abridged anchor primer, essentially as described in the 5=
RACE kit. The PCR products were ligated into pGEM-T Easy vector (Pro-
mega), and the inserts were sequenced from 15 to 20 clones per
genomic RNA.

Sequence analyses. Pairwise sequence comparisons of WMoV pro-
teins and other reported emaraviruses and selected members of the Bun-
yaviridae were performed using the ALIGN program from a set of online
analysis tools (http://molbiol-tools.ca). Multiple protein sequence align-
ments were performed with the ClustalW program (32). Phylogenetic
analyses were performed with the MEGA, version 6.0, analysis package
(33) using the neighbor-joining (NJ) method with the JTT matrix and
pairwise gap deletion, with 1,000 bootstrap replicates as the test of phy-
logeny.

Northern blot hybridization. Total RNA was extracted from 400 mg
of WMoV-infected and healthy wheat leaves as described in Tatineni et al.
(34). Total RNA was separated through 1.2% agarose gels containing
formaldehyde, followed by electrotransfer to nylon membranes (Roche).
Nylon membranes were probed with digoxigenin (DIG)-labeled virus- or
vc-sense RNA-specific riboprobes of WMoV RNAs 1 to 8. Prehybridiza-
tion and hybridization were carried out in a hybridization buffer contain-
ing 50% formamide, 5� SSC (1� SSC is 0.15 M NaCl plus 0.015 M
sodium citrate), 2% blocking solution (Roche), 0.02% SDS, and 0.1%
N-lauroylsarcosine at 65°C for 2 to 3 h and overnight, respectively. The
nylon membranes were immunologically developed using an anti-DIG-
alkaline phosphatase (ALP) conjugate (Roche), essentially as described by
the supplier. The WMoV-specific RNA bands were captured and quanti-

fied using a Molecular Imager ChemiDoc XRS� with an Image Lab soft-
ware system (Bio-Rad).

Nucleotide sequence accession numbers. The genome sequence of
WMoV has been submitted to GenBank under accession numbers
KJ939623 RNA 1), KJ939624 (RNA 2), KJ939625 (RNA 3A), KJ939626
(RNA 3B), and KJ939627 to KJ939631 (RNAs 4 to 8).

RESULTS
Purification of nucleocapsids and RNA isolation. Nucleocapsids
were purified from symptomatic wheat leaves at 21 days postin-
festation with WMoV-viruliferous mites and from healthy wheat
leaves (negative control). A major protein band of 32 kDa was
detected from the nucleocapsid preparation of WMoV-infected
leaves but not from healthy tissue (Fig. 1A), suggesting that the
nucleocapsid preparation was relatively pure, except for a small
amount of wheat proteins.

RNA isolated from the healthy nucleocapsid (mock) prepara-
tion contained no discrete RNA bands but did produce a smear
toward the bottom of the gel (Fig. 1B). In contrast, four RNA
bands with sizes of 2,300 nucleotides (nt), 1,750 nt, 1,450 nt, and
1,350 nt were found in RNA isolated from the nucleocapsid
preparation of WMoV-infected tissue (Fig. 1B). A faint RNA
band of �7,000 nt was found when an excess amount of virion
RNA was loaded (data not shown). These data suggested that
the RNA isolated from partially purified nucleocapsids from
WMoV-infected tissue was relatively free of host RNAs, and it
was used for Illumina MiSeq sequencing. Additionally, protein
and RNA profiles from partially purified nucleocapsids were
similar to those observed by Skare et al. (22), further confirm-
ing that the RNA isolated from the nucleocapsid preparation
was indeed WMoV genomic RNA.

High-throughput sequencing of the WMoV genome. A total
of 14.8 million reads obtained from the Illumina MiSeq run (2

FIG 1 Analyses of nucleocapsids and virion RNA of WMoV. (A) SDS-
PAGE gel showing partially purified nucleocapsids from WMoV-infected
wheat. Lane M, protein markers; lane H, mock purification from healthy
wheat leaves; lane I, nucleocapsids purified from WMoV-infected symp-
tomatic wheat leaves. The position of nucleocapsids is indicated with an
arrow. (B) Formaldehyde-agarose gel (1.2%) electrophoresis of partially
purified virion RNA of WMoV (I) and RNA isolated from similarly puri-
fied preparation from healthy wheat leaves (H) as a negative control. Lane
M, RNA size ladder.

TABLE 1 RNA contigs found in high-throughput sequencing of WMoV
RNA

Contig no.a
Sequence
length (nt)

No. of reads
in contig RPKMb

12 1,339 190,309 32,589.61
13 6,850 185 6.19
14 1,386 55 9.10
16 1,080 33 7.01
17 752 38 11.59
18 2,204 490,538 51,034.21
19 1,746 498,711 65,494.54
19-1 6,981 468,852 15,399.92
20-1 7,611 2,926 88.15
20-2 2,830 904 73.25
23 1,636 12 1.68
27-1 1,439 341,883 54,477.49
27-2 1,441 245,797 39,112.27
28 1,715 312,065 41,723.56
29 1,434 170,401 27,247.29
30 1,671 100,258 13,757.61
44 1,346 73 12.44
47 563 27 11.00
51 1,001 39 8.93
54 1,880 52 6.34
60 4,266 83 4.46
a Contigs with excessive coverage of reads are indicated in bold.
b Reads per kilobase per million mapped reads.
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times 250 sequencing cycles), with a mean length of 198 nt, were
filtered by removing reads with nucleotide Ns and reads that did
not have the minimum quality score of 30 (Q30) per base across
the whole read length, resulting in 14.7 million reads. These
paired-end reads were further filtered by removing 70.4% of the
reads that were matched to the wheat genome (28). The remaining
4.4 million reads were used for de novo assembly of contigs using
the Trinity platform (30). Twenty-one contigs were obtained,
with sizes ranging from 563 to 7,611 nt. As shown in Table 1, some
of the contigs corresponded to fewer reads of 12 to 2,926, with low
RPKM expression values of 1.68 to 88.18 (Table 1); hence, no
further analyses of these sequences were performed.

In contrast, nine contigs were found with an abundance of
coverage at 100,258 to 498,711 reads with RPKM values of
13,758 to 65,495 (Table 1), suggesting that these contigs might
represent the genomic RNA segments of WMoV. Since all pre-
viously reported emaraviruses share a 12-nt conserved motif at
both ends of their genomic RNA segments (1), the presence of
these conserved nucleotides was examined in overexpressed
contigs, and a search was performed using blastx of the BLAST
program. WMoV genomic RNAs 1 to 5 were named based on
their sequence homology to orthologous proteins of other re-
ported emaraviruses, while RNAs 6 to 8 were named in order of
decreasing size.

The 6,981-nt contig 19-1 contained the 12-nt conserved motif
at both ends and displayed a weak homology with the RdRp-en-
coding RNA 1 of other emaraviruses; it was therefore designated
RNA 1 of WMoV (Table 1). The 2,204-nt contig 18 contained the
12-nt conserved motif at its 3= end and 5 of the 12 conserved
nucleotides at the 5= end and was predicted to encode a protein
homologous to GP of other emaraviruses (Table 1). Therefore,
this contig was designated RNA 2 of WMoV. Contigs 27-1 and
27-2 comprised 1,439 and 1,441 nt RNAs, respectively, with cov-
erage of 341,883 and 245,797 reads (Table 1). These two contigs
contained the 12-nt conserved motif at both ends with a signifi-
cant homology to the WMoV NC protein (22, 23), suggesting that
two consensus sequences of WMoV RNA 3 were present in par-
tially purified nucleocapsid preparation. The 1,671-nt contig 30
contained an emaraviral conserved 12-nt motif at the 3= end but
not at the 5= end and was predicted to encode a protein that dis-
played a weak homology with emaraviral P4, suggesting that this
contig represents RNA 4 of WMoV. The 1,715-nt contig 28 com-
prised the 12-nt conserved motif at both ends and possessed a
weak homology with emaraviral P5 and was therefore designated
RNA 5 of WMoV.

The remaining three contigs of 1,746 nt (contig 19), 1,434 nt
(contig 29), and 1,339 nt (contig 12) RNAs were found with a
coverage of 498,711, 170,401, and 190,309 reads, respectively
(Table 1). Contig 19 contained the 12-nt conserved motif at the
3= end but was missing 6 nt at the 5= end, while contigs 29 and
12 comprised the 12-nt conserved motif at both ends, suggest-
ing that RNAs of these three contigs might belong to the
WMoV genome. The RNA of contig 19 displayed a weak ho-
mology with the RLBV P5, while no significant homology was
found for RNAs of contigs 29 and 12 with reported GenBank
sequences in a BLAST search. Altogether, high-throughput
RNA sequencing of partially purified virion RNA found nine
RNA species with abundant reads, and these RNAs likely rep-
resent eight genomic RNA species of WMoV with two RNA 3
variants. After the discovery of two consensus sequences for

RNA 3, we reexamined the high-throughput sequence reads for
possible variants in the consensus sequences of other genomic
RNAs of WMoV, but none was found.

Authentication of contigs 19, 29, and 12 as WMoV-specific
genomic RNAs. Although contigs 19, 29, and 12 were covered
with a large number of reads, it is not clear whether the RNA
species represented by these contigs belong to the genomic RNAs
of WMoV as no significant homology (except a weak homology
for contig 19 RNA) was found with reported emaraviral proteins.
Moreover, so far only four to six RNA species have been reported
in the genomes of other emaraviruses (1). Authenticity of the RNA
sequences of these three contigs was examined by performing RT-
PCR with two sets of primers, using total RNA extracted from two
WMoV-infected wheat plants.

Authenticity of contig 19 was examined with the primer pairs
H-9/H-10 and H-15/H-16 (see Table S1 in the supplemental ma-
terial). As expected, 600- and 500-bp products were obtained
from total RNA from the infected plants but not from the healthy
sample (Fig. 2), suggesting that contig 19 belongs to the WMoV
genome. Contig 19 was designated genomic RNA 6. Contig 29 was
validated with PCR primer pairs H-1/H-4 and H-3/H-2 (see Table
S1); 750- and 500-bp products were obtained, as expected, for
primer positions from total RNA of the WMoV-infected sample,
but no product was obtained from the healthy sample (Fig. 2).
These results indicate that contig 29 is a WMoV-specific RNA; it
was tentatively designated genomic RNA 7. Two pairs of primers,
H-5/H-8 and H-7/H-6, corresponding to contig 12 were used for
its validation (see Table S1). As expected for the primer positions
in contig 12, RT-PCR products with sizes of 550 and 400 bp were
obtained from WMoV-infected samples (Fig. 2), suggesting that
contig 12 is specific to WMoV. This contig was named genomic
RNA 8. As a positive control, primers corresponding to RNA 3 of
WMoV were used for RT-PCR, obtaining a 400-bp-sized product
from infected samples (Fig. 2). These data revealed that RNAs
representing contigs 19, 29, and 12 are genomic RNAs 6, 7, and 8,
respectively, of WMoV.

WMoV is an octapartite virus. Sequence analyses revealed
that WMoV contains eight distinct RNA species in its genome, the
most genomic RNA species reported for any known emaravirus.
Each genomic RNA encodes an ORF in the vc strand with various
sizes of 5= and 3= nontranslated regions (NTRs) (Fig. 3). WMoV
RNAs 1 to 5 correspond to those found in other emaraviruses,
albeit with limited sequence homology, while RNAs 6 to 8 are
unique to WMoV, with no significant sequence homology with
other emaraviruses. Although six RNA species were reported in
the FMV genome (8, 10), none of the WMoV genomic RNAs 6 to
8 possesses significant homology with FMV RNA 6.

The 5= ends of all eight genomic RNAs were verified by the 5=
RACE system. The first 14 nt of all genomic RNAs of WMoV were
conserved (5=-AGU AGU GAU CUC CC. . .) and are complemen-
tary with the 3= end, with the exception of 2 nt, as observed in
members of the Emaravirus and Tenuivirus genera and the Bun-
yaviridae and Arenaviridae families (1, 35, 36). The extreme 3= end
conserved sequences were found in the contigs of all RNA species
obtained by high-throughput sequencing. The 13 nt at the 5= and
3= ends of all emaravirus and orthobunyavirus genomic RNAs are
conserved, with two mismatches (1).

RNA 1 is 6,981 nt long and contains a single large ORF between
nt 6913 and 98 with 94- and 68-nt-long 5= and 3= NTRs, respec-
tively (Fig. 3). This ORF encodes a 266-kDa protein (P1) of 2,272
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amino acids and has a sequence identity of only 33 to 42% with
other emaraviral RdRp proteins (Table 2). The P1 of WMoV
contains the following Bunyaviridae RdRp signature motifs:
motif A (DXKWS1114 –1118), motif B (QGXXXXXSS1200 –1208),
motif C (SDD1241–1243), motif D (KK1284 –1285), and motif E
(EFLST1294 –1298), similar to those found in RdRps of other ema-
raviruses (4, 7). RNA 2 is 2,211 nt long with a single ORF between
nt 2132 and 132 that encodes a putative GP protein (P2). This
RNA contains 128- and 79-nt NTRs at the 5= and 3= ends, respec-
tively (Fig. 3). WMoV P2 possesses low (24 to 35%) amino acid
identity with other emaraviral GP proteins (Table 2). A potential
cleavage site was predicted between Ala224 and Asp225, which
would release 25.7-kDa (GP1) and 50.9-kDa (GP2) proteins as
predicted for RRV (4).

RNA 3 contains two variant sequences of 1,439 nt (RNA 3A)
and 1,441 nt (RNA 3B) and encodes the 33-kDa NC protein (P3)
of 286 (P3-A) or 289 (P3-B) amino acids (Fig. 3 and 4). RNA 3A
and 3B, respectively, contain a 351- and 352-nt 5=NTR and a 224-
and 219-nt 3= NTR (Fig. 3). It is unusual to have two divergent
sequences encoding the NC protein in a purified virion RNA prep-
aration. The P3-A and P3-B proteins possess amino acid identities
of 82.6% and 89.0% with a Texas isolate (22) and of 86.4% and
99.0% with a Kansas isolate (23), respectively, of WMoV. The two
NC proteins of WMoV displayed 18 to 31% and 13 to 19% amino
acid identity with reported NC proteins of other emaraviruses
(Table 2) and tospoviruses (Table 3), respectively.

WMoV RNA 4 is 1,682 nt in length, encoding an ORF (nt 1570
to 479) of a 42-kDa protein of 364 amino acids (P4). RNA 4 con-
tains 475- and 112-nt-long 5= and 3= NTRs, respectively (Fig. 3).
The P4 possesses 44% amino acid identity with RLBV P4 and only
14 to 23% identity with the P4 proteins of other emaraviruses
(Table 2).

RNA 5 is 1,715 nt long, with a single ORF (nt 1595 to 162) of a
56-kDa protein (P5). RNA 5 contains 158 and 120 nt as the 5= and
3=NTRs, respectively (Fig. 3). The P5 protein of WMoV possesses
18 to 24% amino acid sequence identity with the P5 proteins of
FMV, RLBV, and PPSMV, and the P5 protein has not been re-
ported for EMARaV and RRV. WMoV RNA 6 is 1,752 nt long with
an ORF encoding a 58-kDa protein (P6) between nt 1634 and 159
(Fig. 3). This RNA contains 5= and 3= NTRs of 155 and 118 nt,
respectively, lengths similar to those in RNA 5 of WMoV (Fig. 3).
A BLAST search revealed that the WMoV P6 possesses 23% amino
acid identity with 72% coverage with the P5 of RLBV but no sig-
nificant homology with other GenBank sequences. It is interesting
that both the P5 and P6 proteins of WMoV possess similar levels of
homology with the RLBV P5 protein.

RNA 7 is 1,434 nt long and comprises an ORF (nt 1317 to 403)
encoding a 36-kDa protein (P7) of 305 amino acids. It possesses
no sequence homology with proteins in GenBank. This RNA con-
tains 399- and 117-nt-long NTRs at the 5= and 3= ends, respec-
tively (Fig. 3). RNA 8 is 1,339 nt long with a single ORF, and 715-
and 93-nt-long NTRs at the 5= and 3= ends, respectively (Fig. 3).

FIG 2 Authentication of contigs 19, 29, and 12. Agarose gel (1.2%) electrophoresis of RT-PCR products from total RNA extracted from WMoV-infected wheat
plants using two pairs of primers for each contig. Primers specific to RNA 3 were used as a positive control. Lane M, DNA 1.0-kbp ladder; lanes 1 and 2, total RNA
from two WMoV-infected wheat plants; lane 3, RNA from healthy wheat; and lane 4, water control.
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The ORF (nt 1246 to 719) encodes a 21-kDa protein of 176 amino
acids that has no sequence homology with any other reported
proteins in GenBank.

Heterogeneity in RNA 3 sequence but not in other genomic
RNAs. Assembly of WMoV-specific reads into contigs revealed
one consensus sequence for each genomic RNA except for RNA 3,
for which two consensus sequences were found (Table 1). The
sequences of both RNA 3 contigs were covered with an abundance
of reads and differed significantly from each other by 12.5% and
11.1% at the nucleotide and amino acid levels, respectively. We

further examined RNA 3 divergence by amplifying a nearly com-
plete RNA 3 using a conserved forward primer corresponding to
nt 15 to 40 plus an XhoI site and a reverse primer complementary
to nt 1419 to 1395 plus a BamHI site. The RT-PCR product from
virion RNA was ligated into pGEM-7Zf(�) between XhoI and
BamHI restriction sites, and 60 independent clones were se-
quenced from both ends.

The length of RNA 3 (including the 5= and 3= end sequences
that were not present in the RT-PCR product) from the sequenced
clones was 1,439 nt and 1,441 nt in 47 and 10 clones, respectively.

FIG 3 Genome organization of WMoV. The presented schematic representations are genomic RNA segments with an encoded ORF (open rectangles) in each
of the genomic RNAs. The genomic RNAs are numbered from the 5= to 3= end. The columns at the right show the length of the 5= nontranslated region (NTR),
coding region of an ORF, and 3=NTR. Genomic RNAs 1 to 5 were named based on sequence homology with orthologous proteins of reported emaraviruses, and
RNAs 6 to 8 were designated in order of decreasing RNA size. aa, amino acids.

TABLE 2 Percent amino acid identities of RdRp and GP proteins (above the diagonal) and NC and P4 proteins (below the diagonal) between
members of the Emaravirus genus

Virusa

% Amino acid identities of RdRp and GP proteins (above the diagonal) or NC and P4 proteins (below the diagonal)b

EMARaV PPSMV FMV RRV RLBV WMoV

EMARaV 100 48.1 and 38.7 49.3 and 37.6 48.8 and 36.8 35.2 and 26.4 33.7 and 24.7
PPSMV 33.3 and 15.8 100 52.7 and 43.4 53.3 and 43.2 34.6 and 28.0 32.8 and 24.4
FMV 38.7 and 15.7 40.9 and 39.6 100 68.6 and 50.0 34.1 and 25.5 33.5 and 25.6
RRV 31.8 and 15.2 40.9 and 38.4 59.7 and 59.3 100 33.7 and 26.4 33.4 and 28.0
RLBV 23.8 and 14.1 27.7 and 24.1 22.2 and 20.3 24.8 and 23.7 100 42.2 and 35.1
WMoVc 19.1 (18.4) and 13.8 20.3 (19.9) and 20.1 21.8 (20.3) and 22.7 20.4 (19.4) and 22.3 31.0 (29.6) and 44.2 100
a EMARaV, European mountain ash ringspot-associated virus (GenBank accession number NC_013105-08); PPSMV, Pigeon pea sterility mosaic virus (HF568801-04); FMV, Fig
mosaic virus (HQ703343 to HQ703346); RRV, Rose rosette virus (HQ871942 to HQ871945); RLBV, Raspberry leaf blotch virus (FR823299 to FR823302), WMoV: Wheat mosaic virus
(this study).
b RdRP, RNA-dependent RNA polymerase encoded by RNA 1; GP, glycoprotein precursor protein encoded by RNA 2; NC, nucleocapsid protein encoded by RNA 3. P4 protein was
encoded by RNA 4.
c Identities of WMoV P3-A and P3-B proteins encoded by two RNA 3 sequences with the P3s of reported emaraviruses are shown outside and inside the parentheses, respectively.
The P3-A and P3-B proteins of WMoV are 88.9% identical to each other.
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However, a few additions or deletions in the U-rich region of the
5= NTR resulted in 1,438 nt (1 clone) and 1,440 nt (2 clones) of
RNA 3. Sixty sequences aligned by ClustalW that clustered into 50
RNA 3A sequences and 10 RNA 3B sequences further confirm the
presence of two divergent RNA 3 sequences at a 5 to 1 ratio. The
NC proteins of RNA 3A and 3B differed from each other by 11.1%,
with a 3-amino-acid insertion in P3-B at positions 24 and 25 and
at the C terminus of the protein (Fig. 4). These data demonstrate

that the purified virion RNA preparation of WMoV contains two
divergent RNA 3 sequences.

To determine whether the heterogeneity observed in RNA 3
also exists in other WMoV genomic RNAs, RNAs 4, 5, and 7 were
selected as representative RNA segments and amplified by RT-
PCR from virion RNA using RNA segment-specific forward (with
an XhoI site) and reverse (with a BamHI site) primers positioned
downstream and upstream of the 5= and 3= conserved sequences,
respectively. The RT-PCR products were ligated into pGEM-
7Zf(�), and 30 clones per RNA segment were sequenced in both
directions. No clone with �1% sequence divergence from the
RNA 4, 5, and 7 consensus sequences was found. The nucleotide
and amino acid differences in the total sequence of 30 clones were
estimated to be, respectively, 0.07% and 0.04% for RNA 4, 0.02%
and 0.0% for RNA 5, and 0.09% and 0.07% for RNA 7. As ob-
served within the RNA 3A and 3B sequences, a few additions or
deletions were observed in the U-rich regions of 5= NTRs, and a
few random nucleotide substitutions were observed in the coding
regions without forming specific sequence groups. These data,
together with the absence of divergent consensus sequences for
RNAs 1, 2, and 4 to 8 from high-throughput sequencing, suggest
that these genomic RNA sequences are nearly homogeneous.

WMoV is a distinct emaravirus. Phylogenetic analysis was
performed with the MEGA, version 6.0, analysis package using the
neighbor-joining method with RdRp, GP, and NC proteins of all
known emaraviruses and representative members of the family
Bunyaviridae and the genus Tenuivirus (Fig. 5). Phylogenetic trees
with RdRp, GP, and NC proteins resulted in similar topologies,
with all emaraviruses clustered into two distinct clades (Fig. 5).
WMoV and RLBV formed as sister taxa in a separate clade from
other emaraviruses, suggesting that emaraviruses evolved into two
distinct lineages. These two emaraviral clades share a most recent

FIG 4 Alignment of nucleocapsid protein sequences encoded by WMoV RNAs 3A and 3B. The two P3 sequences (P3-A and P3-B) differ from each other
by 11.1% at the amino acid identity level. RNAs 3A and 3B of WMoV are 1,439 and 1,441 nt in length, encoding 286 and 289 amino acids, respectively.

TABLE 3 Amino acid identity of Wheat mosaic virus proteins with those
of selective members of the Bunyaviridae family

Genus Virusa

% amino acid identity

RdRP
(P1)b

GC precursor
(P2)c

Nucleocapsid
(P3)d

P3A P3B

Tospovirus TSWV 16.6 14.9 16.1 13.3
INSV 16.8 14.4 17.6 18.5
PBNV 17.5 14.2 13.7 13.9

Orthobunyavirus LACV 17.9 11.5 14.0 15.0
BUNV 18.1 12.0 16.0 12.8

Nairovirus CCHFV 13.9 9.9 12.9 11.0
DUGV 13.4 10.9 12.8 13.0

Hantavirus HTNV 14.6 13.6 12.4 12.6
a TSWV, Tomato spotted wilt virus (GenBank accession numbers D10066, S48091, and
D00645); INSV, Impatiens necrotic spot virus (X93218, M74904, and X66972); PBNV,
Peanut bud necrosis virus (AF025538, U42555, and U27809); LACV, La Crosse virus
(AF528165 to AF528167); BUNV, Bunyamwera virus (X14383, M11852, and D00353);
CCHFV, Crimean-Congo hemorrhagic fever virus (AY389361, AF467768, and U88410);
DUGV, Dugbe virus (U15018, M94133, and AF434161); HTNV, Hantaan virus
(X55901, M14627, and M14626).
b RNA-dependent RNA polymerase encoded by RNA 1 or large RNA.
c Glycoprotein precursor protein encoded by RNA 2 or medium RNA.
d Nucleocapsid protein encoded by RNA 3 or small RNA.
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common ancestor with members of the genera Orthobunyavirus
and Tospovirus (for RdRp and GP) and Tospovirus, Nairovirus,
and Orthobunyavirus (for NC protein) (Fig. 5). Though WMoV
and RLBV formed as sister taxa in a clade, these two viruses are
distinct from each other, with only 42%, 35%, and 31% amino
acid identity between the RdRp, GP, and NC proteins, respectively
(Table 2). The two NC proteins of WMoV formed into two sepa-
rate branches with a strong bootstrap support value in a clade
along with RLBV (Fig. 5C), further confirming the presence of two
divergent copies of NC protein. These data suggest that WMoV is
a distinct virus, which evolved with eight divergent genomic RNA
segments with significant polymorphism in RNA 3 encoding the
NC protein.

Accumulation of WMoV-specific RNAs in wheat. The accu-
mulation profile of WMoV-specific RNAs in wheat was examined
by Northern blot hybridization using strand-specific riboprobes
of genomic RNAs 1 to 8. PCR products of 459 to 971 bp of
genomic RNAs 1 to 8 were amplified using RNA segment-specific
primers containing the SP6 and T7 RNA polymerase promoter
sequences in the forward and reverse primers, respectively (see
Table S1 in the supplemental material). Gel-eluted PCR products

of RNAs 1 to 8 were used for in vitro transcription to synthesize the
virus- or vc-sense DIG-labeled riboprobes with SP6 or T7 RNA
polymerase, respectively. The strength and specificity of virus-
and vc-sense riboprobes for each genomic RNA were examined by
including 5 ng of in vitro transcripts (without DIG-labeled nucle-
otide mix) of each probe in Northern blot hybridization and prob-
ing with the virus- or vc-sense riboprobes of respective RNAs. All
riboprobes were hybridized with the opposite sense transcript,
and both the virus- and vc-sense riboprobes hybridized approxi-
mately with the same intensities with in vitro transcripts of the
opposite polarity (Fig. 6B). These data suggest that the riboprobes
are highly specific and that the virus- and vc-sense riboprobes of
each genomic RNA segment are approximately equal in strength.

Total RNA (200 ng per lane) from WMoV-infected and
healthy wheat leaves was used for Northern blot hybridization.
The virus- and vc-sense-strand RNA-specific riboprobes of RNAs
1 to 8 readily detected the virus- and vc-sense strands of respective
genomic RNAs (Fig. 6A). Accumulation of virus-sense genomic
RNA strands was 10- to 20-fold greater than that of genomic com-
plementary-strand RNAs (Fig. 6A). Additionally, accumulation of
shorter-than-genomic RNAs of vc sense was detected with probes

FIG 5 Phylogenetic analyses of emaraviruses, representative members of Bunyaviridae, and Tenuivirus. Unrooted bootstrap consensus phylogenetic trees were
generated from the amino acid sequences of RdRp (A), glycoprotein precursor protein (B), and nucleocapsid protein (C). Phylogenetic trees were constructed
by the neighbor-joining method using the JTT matrix and pairwise gap deletion with 1,000 bootstrap replicates; bootstrap support is indicated at branch points.
The bar represents the number of amino acid replacements per site. Note that WMoV formed a separate clade with RLBV from other members of the genus
Emaravirus. GenBank accession numbers of proteins and the names of viruses used for phylogenetic analyses are given in Tables 2 and 3.
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specific to genomic RNAs 3, 4, 7, and 8 (Fig. 6A). Shorter-than-
genomic vc-strand RNAs most likely represent subgenomic-
length mRNAs for the expression of ORFs present in the vc-sense
genomic RNA strands. However, subgenomic-length mRNAs
were not detected for the genomic RNAs 1, 2, 5, and 6 (Fig. 6A),
and this is most likely due to shorter 5=NTRs and lack of a putative
transcription termination signal containing U-rich regions in
these RNAs (37, 38). Our data suggest that each WMoV genomic
RNA species produces genomic-length virus- and vc-sense RNAs
and subgenomic- or near-genomic-length mRNAs of vc sense in
wheat. Taken together, detection of virus- and vc-sense strands of
eight genomic RNA segments and of subgenomic-length mRNAs
of vc strand for genomic RNAs 3, 4, 7, and 8 in wheat further
confirmed that WMoV is an octapartite negative-strand RNA vi-
rus that employs subgenomic- or near-genomic-length mRNAs of
vc sense for genome expression.

DISCUSSION

The use of relatively pure virion RNA for high-throughput RNA
sequencing enabled us to determine that the eriophyid mite-
transmitted WMoV comprises eight genomic RNAs, the largest
number of genomic RNAs found in any known negative-strand
RNA plant virus. Interestingly, we found two significantly diver-
gent RNA 3 consensus sequences, but the additional genomic
RNAs were homogeneous in nature. The octapartite nature of the
WMoV genome was further confirmed by detecting asymmetric
accumulation of virus- and vc-sense strands of all genomic
RNAs in infected wheat. Moreover, vc-sense subgenomic-
length mRNAs were detected for genomic RNAs 3, 4, 7, and 8.

Proteins encoded by WMoV RNAs 1 to 4 displayed weak ho-
mology with the respective homologous proteins of known ema-
raviruses. The P4 proteins of FMV and RLBV have been demon-
strated to be involved in cell-to-cell movement (39, 40). Based on
sequence homology with other emaraviral P4 proteins, it is likely
that the P4 of WMoV might also be involved in cell-to-cell move-
ment. Although the P5 and P6 proteins of WMoV are unrelated,
both of these proteins displayed 23 to 24% amino acid identity
with the RLBV P5 protein in a BLAST search. Additionally, the P5,
but not the P6, of WMoV possesses weak homology with the P5
proteins of FMV and PPSMV. It is unusual that two WMoV-
encoded proteins show sequence homology, though weak, with
one protein of RLBV. Perhaps the P5 and P6 of WMoV comple-
ment each other’s functions in the virus life cycle. The possibility
of genomic RNAs 6, 7, and 8 being defective RNAs was excluded
because these RNAs do not have sequence homology with any
other genomic RNAs of WMoV which likely acts as helper RNAs
for defective RNAs. Moreover, these RNAs encode an ORF in vc
strands similar to other genomic RNAs, and genomic-length vc-
sense RNA strands and subgenomic-length mRNAs have been
detected (for RNAs 7 and 8) (see below). It is possible that the P5
to P8 proteins of WMoV are involved in the virus life cycle
through roles such as virus transport, determination of host range
and pathogenicity, suppression of host RNA silencing, and trans-
mission by wheat curl mites.

Members of the genus Emaravirus are unusually divergent,
with a variable number of genomic RNA segments (1). The RdRp,
GP, and NC proteins possess weak to moderate identities of 33 to
67%, 24 to 50%, and 19 to 60%, respectively, among members of
the genus Emaravirus (Table 2). Although WMoV genome orga-
nization is similar, except for the octapartite nature, to that of
other emaraviruses, WMoV-encoded RdRp, GP, and NC proteins
are divergent from other emaraviruses, with homologies compa-
rable to those between members of different genera in a family
(41). Based on lack of significant homology of WMoV RNAs 6 to
8 with GenBank sequences, it is possible that WMoV might have
evolved by acquiring some or all of these genomic RNAs as virus-
specific genes, as shown for Citrus tristeza virus (42). Although
WMoV is distinct from other emaraviruses, it should be main-
tained as a definitive species in the genus Emaravirus based on
similar genome organization, conserved 5= and 3= end sequences,
limited sequence homology, and eriophyid mite transmission.

Phylogenetic analyses revealed that WMoV formed a separate
clade with RLBV from those of other emaraviruses sharing com-
mon ancestors with members of the genera Orthobunyavirus, To-
spovirus, and Nairovirus. Additionally, the NC protein of WMoV
displayed 19% amino acid identity with that of EMARaV, the type

FIG 6 Accumulation of WMoV-specific RNAs in wheat. (A) Northern blot
hybridization of total RNA from healthy (H) and WMoV-infected (I) wheat.
The virus- and virus complementary-sense RNA-specific riboprobes were gen-
erated for portions of ORFs (459 to 971 nt) encoded by RNAs 1 to 8. Note that
virus (v)-sense RNA strands accumulated in large amounts compared to virus
complementary (vc)-sense RNA strands. RNAs 3, 4, 7, and 8 produced short-
er-than-genomic vc-strand RNAs, which are most likely subgenomic-length
mRNAs. Subgenomic-length mRNAs were not detected for RNAs 1, 2, 5, and
6, which most likely express through near-genomic-length mRNAs that are
difficult to separate from the respective genomic-length vc-strand RNAs. Solid
and open arrowheads indicate the positions of genomic-length virus- and
vc-sense RNAs, respectively. Subgenomic-length mRNAs are indicated with
asterisks. (B) The specificity and strength of DIG-labeled riboprobes were
examined by hybridizing each probe with the positive- and negative-sense
transcripts of the corresponding probe. Riboprobes for RNA 6 are presented as
representative of the probes of all other genomic RNAs.
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species of Emaravirus, as well as with Impatiens necrotic spot virus,
a Tospovirus (Tables 2 and 3), suggesting that WMoV formed an
evolutionary link between emaraviruses and members of the ge-
nus Tospovirus of the family Bunyaviridae.

We found two distinct RNA 3 sequences in virion RNA with
87.5% nucleotide homology. The sequence difference found be-
tween these two RNA 3 variants is similar to what is often observed
among strains of various other viruses (41). The presence of se-
quence heterogeneity in only one of the eight genomic RNA seg-
ments indicates that the RNA 3 heterogeneity might not be due to
mixed infection of wheat with two strains of WMoV. RNA 3 is the
least expected genomic RNA to have heterogeneity because it en-
codes the NC protein, a structural protein that encapsidates
genomic RNAs. It is possible that WMoV might tolerate variations
in the NC protein but not in other proteins, and it is not clear why
an RNA encoding a structural protein is more flexible than the
other genomic RNA segments. What is the advantage for a virus to
have two distinct RNA 3 sequences? What is the functional role of
the two divergent RNA 3 sequences in virus biology? It is possible
that WMoV might have acquired RNA 3A and 3B as the result of
functional speciation and that the duplicated RNA 3 species might
be involved in closely related but distinct functions. Moreover, the
presence of RNA 3A and 3B at a 5-to-1 ratio may reflect their
differential functional requirements in virus biology. Perhaps the
major (P3-A) and minor (P3-B) components of the NC protein
might be required for encapsidation of WMoV in wheat and
wheat curl mites, respectively, although it remains to be known
whether WMoV replicates in its vector. It has been shown that
EMARaV is located internally in the pear leaf blister mite (43)
and that Tomato spotted wilt tospovirus replicates in thrips (44).
However, exploring the biological significance of RNA 3 heter-
ogeneity is beyond the scope of the present work. Future stud-
ies should shed light on the nature and biological significance
of the two RNA 3 variants found in virion RNA. Though we
found nine genomic RNA segments with two copies of RNA 3
in a partially purified nucleocapsid preparation, additional ex-
periments are needed to unequivocally claim WMoV as a nine-
segment virus.

WMoV replication in wheat might have resulted in 10- to 20-
fold more accumulation of virus-sense genomic RNAs than
genomic-length vc-sense strands. Furthermore, detection of vi-
rus- and vc-sense strands of all genomic RNAs in wheat confirmed
the presence of eight RNA segments in the WMoV genome. De-
tection of virus- and vc-sense strands of RNAs 2 and 3 in WMoV-
infected wheat by Skare et al. (22) further supported the synthesis
of genomic-length virus- and vc-sense RNAs of all genomic RNAs
in infected wheat. Accumulation of virus-sense genomic RNAs in
abundant amounts, as is the case for RNA viruses compared to
ORF-containing vc-strand RNAs, further confirmed the negative-
sense polarity of genomic RNAs. Additionally, WMoV genomic
RNAs 3, 4, 7, and 8 produced shorter-than-genomic complemen-
tary-sense RNAs in wheat, which probably represent subgenomic-
length mRNAs for the expression of ORFs present in vc-sense
genomic RNA strands. In contrast, subgenomic-length mRNAs
were not detected for genomic RNAs 1, 2, 5, and 6, possibly due to
a small size difference between the genomic-length vc-sense RNAs
and subgenomic-length mRNAs. WMoV genomic RNAs 1, 2, 5,
and 6 possess short 5= NTRs without a U-rich region, which may
have potential transcription termination signals (37, 38). Our data
suggest that asymmetric accumulation of genomic-length virus-

and vc-sense RNA strands and production of vc-sense sub-
genomic-length mRNAs demonstrated replication of all genomic
RNAs in wheat and expression of ORFs, possibly through sub-
genomic-length (for RNAs 3, 4, 6, and 7) or near-genomic-length
(for RNAs 1, 2, 5, and 6) mRNAs of vc sense. Previously, it has
been reported that mRNAs of FMV RNAs 2 and 3 were generated
by a cap-snatching mechanism (45) and that genomic-length vi-
rus- and vc-sense RNAs, but not subgenomic-length mRNAs,
were detected for genomic RNAs 3, 5, and 6 (10). We demon-
strated for the first time that emaraviruses produce subgenomic-
length mRNAs that are most likely utilized for genome expression.
Additionally, detection of subgenomic-length mRNAs in WMoV-
infected wheat could provide a unique opportunity to examine the
promotion and termination mechanisms of mRNAs of emaravi-
ruses using WMoV as a model system.

Availability of the genome sequence of WMoV will have prac-
tical implications for the management of High Plains disease of
wheat and maize. The highly variable nature of the WMoV NC
protein (22, 23; also this study) may explain why antibodies pro-
duced against one strain of WMoV failed to detect some field
isolates (15). The significantly variable nature of RNA 3 suggests
that NC protein-based diagnostic methods are unreliable and that
serology- or PCR-based diagnostic methods based on other
proteins or genomic RNAs would facilitate broad-spectrum
and reliable detection of WMoV isolates. Additionally, hetero-
geneity in RNA 3 suggests that RNA 3-based disease manage-
ment strategies may have serious consequences on the devel-
opment of transgenic resistant plants and that WMoV isolates
may easily overcome such resistance due to the highly variable
nature of RNA 3. Moreover, availability of the genome se-
quence will facilitate the management of High Plains disease
through the development of transgenic plants resistant to
WMoV using RNA interference technology.

ACKNOWLEDGMENTS

We thank Jonathan Horrell and Melissa Bartels for their technical assis-
tance. We thank David M. Amador and Yanping Zhang for MiSeq RNA
sequencing and William G. Farmerie for sequence data analyses at the
Interdisciplinary Center for Biotechnology Research, University of Flor-
ida, Gainesville, FL, and Jean-Jack M. Riethoven and Seong-il Eyun,
Bioinformatics Core Research Facility, University of Nebraska—Lincoln,
Lincoln, NE, for high-throughput sequence data analyses.

Funding for this work was partially provided by the Agriculture
and Food Research Initiative Competitive Grants Program, grant
number 2013-68004-20358, from the National Institute of Food and
Agriculture.

Mention of trade names or commercial products in this publication is
solely for the purpose of providing specific information and does not
imply recommendation or endorsement by the U.S. Department of Agri-
culture.

REFERENCES
1. Mielke-Ehret N, Mühlbach HP. 2012. Emaravirus: A novel genus of

multipartite, negative strand RNA plant viruses. Viruses 4:1515–1536.
http://dx.doi.org/10.3390/v4091515.

2. Mühlbach HP, Mielke-Ehret N. 2011. Emaravirus, p 767–770. In King AMQ,
Adams MJ, Carstens EB, Lefkovitz EJ (ed), Virus taxonomy: classification and
nomenclature of viruses. Ninth report of the International Committee on
Taxonomy of Viruses. Academic Press, London, United Kingdom.

3. Mielke N, Muehlbach HP. 2007. A novel, multipartite, negative-strand
RNA virus is associated with the ringspot disease of European mountain
ash (Sorbus aucuparia L.). J. Gen. Virol. 88:1337–1346. http://dx.doi.org
/10.1099/vir.0.82715-0.

An Octapartite Negative-Strand RNA Plant Virus

October 2014 Volume 88 Number 20 jvi.asm.org 11843

http://dx.doi.org/10.3390/v4091515
http://dx.doi.org/10.1099/vir.0.82715-0
http://dx.doi.org/10.1099/vir.0.82715-0
http://jvi.asm.org


4. Laney AG, Keller KE, Martin RR, Tzanetakis IE. 2011. A discovery 70
years in the making: characterization of the rose rosette virus. J. Gen.
Virol. 92:1727–1732. http://dx.doi.org/10.1099/vir.0.031146-0.

5. Kumar PL, Jones AT, Reddy DVR. 2003. A novel mite-transmitted virus
with a divided RNA genome closely associated with pigeonpea sterility
mosaic disease. Phytopathology 93:71– 81. http://dx.doi.org/10.1094
/PHYTO.2003.93.1.71.

6. Elbeaino T, Digiaro M, Uppala M, Sudini H. 2014. Deep sequencing of
Pigeonpea sterility mosaic virus discloses five RNA segments related to
emaraviruses. Virus Res. 188:27–31. http://dx.doi.org/10.1016/j.virusres
.2014.03.022.

7. McGavin WJ, Mitchell C, Cock PJA, Wright KM, MacFarlane SA. 2012.
Raspberry leaf blotch virus, a putative new member of the genus Emara-
virus, encodes a novel genomic RNA. J. Gen. Virol. 93:430 – 437. http://dx
.doi.org/10.1099/vir.0.037937-0.

8. Elbeaino T, Digiaro M, Martelli GP. 2009. Complete nucleotide se-
quence of four RNA segments of fig mosaic virus. Arch. Virol. 154:1719 –
1727. http://dx.doi.org/10.1007/s00705-009-0509-3.

9. Walia JJ, Salem NM, Falk BW. 2009. Partial sequence and survey analysis
identify a multipartite, negative-sense RNA-virus associated with fig mo-
saic. Plant Dis. 93:4 –10. http://dx.doi.org/10.1094/PDIS-93-1-0004.

10. Ishikawa K, Maejima K, Komatsu K, Kitazawa Y, Hashimoto M, Takata
D, Yamaji Y, Namba S. 2012. Identification and characterization of two
novel genomic RNA segments of fig mosaic virus, RNA5 and RNA6. J.
Gen. Virol. 93:1612–1619. http://dx.doi.org/10.1099/vir.0.042663-0.

11. Hull R. 2002. Matthews’ plant virology, 4th ed. Academic Press, New
York, NY.

12. Jensen SG, Lane LC, Seifers DL. 1996. A new disease of maize and wheat
in the high plains. Plant Dis. 80:1387–1390. http://dx.doi.org/10.1094/PD
-80-1387.

13. Lebas BSM, Ochoa-Corona FM, Elliott DR, Tang Z, Alexander BJR.
2005. Development of an RT-PCR for High Plains virus indexing scheme
in New Zealand post-entry quarantine. Plant Dis. 89:1103–1108. http://dx
.doi.org/10.1094/PD-89-1103.

14. Burrows M, Franc G, Rush C, Blunt T, Ito D, Kinzer K, Olson J,
O’Mara J, Price J, Tande C, Ziems A, Stack J. 2009. Occurrence of
viruses in wheat in the Great Plains region 2008. Plant Health Progress.
http://dx.doi.org/10.1094/PHP-2009-0706-01-RS.

15. Seifers DL, Martin TJ, Harvey TL, Haber S, Krokhin O, Spicer V, Ying
S, Standing KG. 2009. Identification of variants of the High Plains virus
infecting wheat in Kansas. Plant Dis. 93:1265–1274. http://dx.doi.org/10
.1094/PDIS-93-12-1265.

16. Byamukama E, Seifers DL, Hein GL, De Wolf E, Tisserat NA, Langham
MAC, Osborne LE, Timmerman A, Wegulo SN. 2013. Occurrence and
distribution of Triticum mosaic virus in the central Great Plains. Plant Dis.
97:21–29. http://dx.doi.org/10.1094/PDIS-06-12-0535-RE.

17. Stewart LR, Paul PA, Qu F, Redinbaugh MG, Miao H, Todd J, Jones M.
2013. Wheat mosaic virus (WMoV), the causal agent of High Plains dis-
ease, is present in Ohio wheat fields. Plant Dis. 97:1125. http://dx.doi.org
/10.1094/PDIS-03-13-0243-PDN.

18. Coutts BA, Cox BA, Thomas GJ, Jones RAC. 2014. First report of Wheat
mosaic virus infecting wheat in Western Australia. Plant Dis. 98:285. http:
//dx.doi.org/10.1094/PDIS-03-13-0288-PDN.

19. Seifers DL, Harvey TL, Martin TJ, Jensen SG. 1997. Identification of the
wheat curl mite as the vector of the High Plains virus of corn and wheat. Plant
Dis. 81:1161–1166. http://dx.doi.org/10.1094/PDIS.1997.81.10.1161.

20. Skare JM, Wijkamp I, Rezende JAM, Michels GJ, Rush CM, Scholthof
KBG, Scholthof HB. 2003. Colony establishment and maintenance of the
eriophyid wheat curl mite Aceria tosichella for controlled transmission
studies on a new virus-like pathogen. J. Virol. Methods 108:133–137. http:
//dx.doi.org/10.1016/S0166-0934(02)00257-4.

21. Louie R, Seifers DL, Bradfute OE. 2006. Isolation, transmission and
purification of the High Plains virus. J. Virol. Methods 135:214 –222. http:
//dx.doi.org/10.1016/j.jviromet.2006.03.023.

22. Skare JM, Wijkamp I, Denham I, Rezende JAM, Kitajima EW, Park JW,
Desvoyes B, Rush CM, Michels G, Scholthof KBG, Scholthof HB. 2006.
A new eriophyid mite-borne membrane-enveloped virus-like complex
isolated from plants. Virology 347:343–353. http://dx.doi.org/10.1016/j
.virol.2005.11.030.

23. She Y-M, Seifers DL, Haber S, Ens W, Standing KG. 2004. Character-
ization of the agent of “High Plains disease.” J. Biol. Chem. 279:488 – 494.
http://dx.doi.org/10.1074/jbc.M308506200.

24. McMechan AJ, Tatineni S, French R, Hein GL. 2014. Differential trans-

mission of Triticum mosaic virus by wheat curl mite populations collected
in the Great Plains. Plant Dis. 98:806 – 810. http://dx.doi.org/10.1094
/PDIS-06-13-0582-RE.

25. Lane LC. 1986. Propagation and purification of RNA plant viruses. Meth-
ods Enzymol. 118C:687– 696.

26. Tatineni S, Ziems AD, Wegulo SN, French R. 2009. Triticum mosaic
virus: a distinct member of the family Potyviridae with an unusually long
leader sequence. Phytopathology 99:943–950. http://dx.doi.org/10.1094
/PHYTO-99-8-0943.

27. Sambrook J, Russell D. 2001. Molecular cloning: a laboratory manual,
3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

28. Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen
AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D,
Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Gill B, Kianian
S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer
KFX, Edwards KJ, Bevan MW, Hall N. 2012. Analysis of the bread wheat
genome using whole-genome shotgun sequencing. Nature 491:705–710.
http://dx.doi.org/10.1038/nature11650.

29. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie
2. Nat. Methods 9:357–359. http://dx.doi.org/10.1038/nmeth.1923.

30. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden
J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis
J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN,
Henschel R, LeDuc RD, Friedman N, Regev A. 2013. De novo transcript
sequence reconstruction from RNA-seq using the Trinity platform for
reference generation and analysis. Nat. Protoc. 8:1494 –1512. http://dx.doi
.org/10.1038/nprot.2013.084.

31. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008.
Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat.
Methods 5:621– 628. http://dx.doi.org/10.1038/nmeth.1226.

32. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins D. 1997.
The Clustal_X windows interface: flexible strategies for multiple sequence
alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876 –
4882. http://dx.doi.org/10.1093/nar/25.24.4876.

33. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6:
Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:
2725–2729. http://dx.doi.org/10.1093/molbev/mst197.

34. Tatineni S, Graybosch RA, Hein GL, Wegulo SN, French R. 2010.
Wheat cultivar-specific disease synergism and alteration of virus accumu-
lation during co-infection with Wheat streak mosaic virus and Triticum
mosaic virus. Phytopathology 100:230 –238. http://dx.doi.org/10.1094
/PHYTO-100-3-0230.

35. Falk BW, Tsai JH. 1998. Biology and molecular biology of viruses in the
genus Tenuivirus. Annu. Rev. Phytopathol. 36:139 –163. http://dx.doi.org
/10.1146/annurev.phyto.36.1.139.

36. Walter TC, Barr JN. 2011. Recent advances in the molecular and cellular
biology of bunyaviruses. J. Gen. Virol. 92:2467–2484. http://dx.doi.org/10
.1099/vir.0.035105-0.

37. Hutchinson KL, Peters CJ, Nichol ST. 1996. Sin Nombre virus mRNA
synthesis. Virology 224:139–149. http://dx.doi.org/10.1006/viro.1996.0515.

38. van Knippenberg I, Lamine M, Goldbach R, Kormelink R. 2005. To-
mato spotted wilt virus transcriptase in vitro displays a preference for cap
donors with multiple base complementarity to the viral template. Virol-
ogy 335:122–130. http://dx.doi.org/10.1016/j.virol.2005.01.041.

39. Ishikawa K, Maejima K, Komatsu K, Netsu O, Keima T, Shiraishi T,
Okano Y, Hashimoto M, Yamaji Y, Namba S. 2013. Fig mosaic emara-
virus p4 protein is involved in cell-to-cell movement. J. Gen. Virol. 94:
682– 686. http://dx.doi.org/10.1099/vir.0.047860-0.

40. Yu C, Karlin DG, Lu Y, Wright K, Chen J, MacFarlane S. 2013.
Experimental and bioinformatic evidence that raspberry leaf blotch ema-
ravirus P4 is a movement protein of the 30K superfamily. J. Gen. Virol.
94:2117–2128. http://dx.doi.org/10.1099/vir.0.053256-0.

41. King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (ed). 2011. Virus
taxonomy: classification and nomenclature of viruses. Ninth report of the
International Committee on Taxonomy of Viruses. Academic Press, Lon-
don, United Kingdom.

42. Tatineni S, Robertson CJ, Garnsey SM, Dawson WO. 2011. A plant virus
evolved by acquiring multiple nonconserved genes to extend its host
range. Proc. Natl. Acad. Sci. U. S. A. 108:17366 –17371. http://dx.doi.org
/10.1073/pnas.1113227108.

Tatineni et al.

11844 jvi.asm.org Journal of Virology

http://dx.doi.org/10.1099/vir.0.031146-0
http://dx.doi.org/10.1094/PHYTO.2003.93.1.71
http://dx.doi.org/10.1094/PHYTO.2003.93.1.71
http://dx.doi.org/10.1016/j.virusres.2014.03.022
http://dx.doi.org/10.1016/j.virusres.2014.03.022
http://dx.doi.org/10.1099/vir.0.037937-0
http://dx.doi.org/10.1099/vir.0.037937-0
http://dx.doi.org/10.1007/s00705-009-0509-3
http://dx.doi.org/10.1094/PDIS-93-1-0004
http://dx.doi.org/10.1099/vir.0.042663-0
http://dx.doi.org/10.1094/PD-80-1387
http://dx.doi.org/10.1094/PD-80-1387
http://dx.doi.org/10.1094/PD-89-1103
http://dx.doi.org/10.1094/PD-89-1103
http://dx.doi.org/10.1094/PHP-2009-0706-01-RS
http://dx.doi.org/10.1094/PDIS-93-12-1265
http://dx.doi.org/10.1094/PDIS-93-12-1265
http://dx.doi.org/10.1094/PDIS-06-12-0535-RE
http://dx.doi.org/10.1094/PDIS-03-13-0243-PDN
http://dx.doi.org/10.1094/PDIS-03-13-0243-PDN
http://dx.doi.org/10.1094/PDIS-03-13-0288-PDN
http://dx.doi.org/10.1094/PDIS-03-13-0288-PDN
http://dx.doi.org/10.1094/PDIS.1997.81.10.1161
http://dx.doi.org/10.1016/S0166-0934(02)00257-4
http://dx.doi.org/10.1016/S0166-0934(02)00257-4
http://dx.doi.org/10.1016/j.jviromet.2006.03.023
http://dx.doi.org/10.1016/j.jviromet.2006.03.023
http://dx.doi.org/10.1016/j.virol.2005.11.030
http://dx.doi.org/10.1016/j.virol.2005.11.030
http://dx.doi.org/10.1074/jbc.M308506200
http://dx.doi.org/10.1094/PDIS-06-13-0582-RE
http://dx.doi.org/10.1094/PDIS-06-13-0582-RE
http://dx.doi.org/10.1094/PHYTO-99-8-0943
http://dx.doi.org/10.1094/PHYTO-99-8-0943
http://dx.doi.org/10.1038/nature11650
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1038/nprot.2013.084
http://dx.doi.org/10.1038/nprot.2013.084
http://dx.doi.org/10.1038/nmeth.1226
http://dx.doi.org/10.1093/nar/25.24.4876
http://dx.doi.org/10.1093/molbev/mst197
http://dx.doi.org/10.1094/PHYTO-100-3-0230
http://dx.doi.org/10.1094/PHYTO-100-3-0230
http://dx.doi.org/10.1146/annurev.phyto.36.1.139
http://dx.doi.org/10.1146/annurev.phyto.36.1.139
http://dx.doi.org/10.1099/vir.0.035105-0
http://dx.doi.org/10.1099/vir.0.035105-0
http://dx.doi.org/10.1006/viro.1996.0515
http://dx.doi.org/10.1016/j.virol.2005.01.041
http://dx.doi.org/10.1099/vir.0.047860-0
http://dx.doi.org/10.1099/vir.0.053256-0
http://dx.doi.org/10.1073/pnas.1113227108
http://dx.doi.org/10.1073/pnas.1113227108
http://jvi.asm.org


43. Mielke-Ehret N, Thoma J, Schlatermund N, Mühlbach HP. 2010.
Detection of European mountain ash ringspot-associated virus-
specific RNA and protein P3 in the pear leaf blister mite Phytoptus pyri
(Eriophyidae). Arch. Virol. 155:987–991. http://dx.doi.org/10.1007
/s00705-010-0667-3.

44. Wijkamp I, Lent JV, Kormelink R, Goldbach R, Peters D. 1993. Mul-

tiplication of Tomato spotted wilt virus in its insect vector, Frankliniella
occidentalis. J. Gen. Virol. 74:341–349. http://dx.doi.org/10.1099/0022
-1317-74-3-341.

45. Walia JJ, Falk BW. 2012. Fig mosaic virus mRNAs show generation by
cap-snatching. Virology 426:162–166. http://dx.doi.org/10.1016/j.virol
.2012.01.035.

An Octapartite Negative-Strand RNA Plant Virus

October 2014 Volume 88 Number 20 jvi.asm.org 11845

http://dx.doi.org/10.1007/s00705-010-0667-3
http://dx.doi.org/10.1007/s00705-010-0667-3
http://dx.doi.org/10.1099/0022-1317-74-3-341
http://dx.doi.org/10.1099/0022-1317-74-3-341
http://dx.doi.org/10.1016/j.virol.2012.01.035
http://dx.doi.org/10.1016/j.virol.2012.01.035
http://jvi.asm.org

	An Eriophyid Mite-Transmitted Plant Virus Contains Eight Genomic RNA Segments with Unusual Heterogeneity in the Nucleocapsid Protein
	MATERIALS AND METHODS
	Maintenance of WMoV-viruliferous wheat curl mite colony and WMoV-infected wheat tissue.
	Nucleocapsid purification and isolation of viral RNA.
	Illumina sequencing library construction.
	Illumina MiSeq sequencing.
	Bioinformatics.
	Determination of the 5 end of genomic RNAs.
	Sequence analyses.
	Northern blot hybridization.
	Nucleotide sequence accession numbers.

	RESULTS
	Purification of nucleocapsids and RNA isolation.
	High-throughput sequencing of the WMoV genome.
	Authentication of contigs 19, 29, and 12 as WMoV-specific genomic RNAs.
	WMoV is an octapartite virus.
	Heterogeneity in RNA 3 sequence but not in other genomic RNAs.
	WMoV is a distinct emaravirus.
	Accumulation of WMoV-specific RNAs in wheat.

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES


