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Abstract

Segmenting brain from non-brain tissue within magnetic resonance (MR) images of the human

head, also known as skull-stripping, is a critical processing step in the analysis of neuroimaging

data. Though many algorithms have been developed to address this problem, challenges remain. In

this paper, we apply the “deformable organism” framework to the skull-stripping problem. Within

this framework, deformable models are equipped with higher-level control mechanisms based on

the principles of artificial life, including sensing, reactive behavior, knowledge representation, and

proactive planning. Our new deformable organisms are governed by a high-level plan aimed at the

fully-automated segmentation of various parts of the head in MR imagery, and they are able to

cooperate in computing a robust and accurate segmentation. We applied our segmentation

approach to a test set of human MRI data using manual delineations of the data as a reference

“gold standard.” We compare these results with results from three widely used methods using set-

similarity metrics.
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1. INTRODUCTION

Skull-stripping is the process of segmenting brain from non-brain tissues (e.g., skull, scalp,

eyes, or neck) in whole-head magnetic resonance (MR) images. Delineating the brain region

is important for applications such as surgical planning [1]; analysis of brain images, where

removing non-brain structures allows all subsequent analysis to focus on the brain voxels

specifically; or in brain registration [2, 3]. Skull-stripping can also perform an important role

in extracting cortical surface models [4], in analyzing how the brain changes over time in

longitudinal studies [5], and in examining how the brain is affected by disease [6].

Skull-stripping can be performed manually, and manually delineated brain masks are

typically used as the “gold standard” to validate automatic brain extraction algorithms.

Manual skull-stripping takes a substantial amount of time to complete for a MRI volume,
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and many groups have developed automated algorithms to address this problem. Still, users

often resort to manual clean-up of automated skull-stripping results or will forgo the use of

automated algorithms entirely. Achieving better reliability in automated skull-stripping

algorithms remains an important research problem, as this would be less labor-intensive

while also reducing rater variation across sets of images. Figure 1 shows a manual

identification of the brain (green) in a T1 MR image of the head (red).

Many automated approaches have been described in the literature and made available

publicly. The Brain Surface Extractor (BSE) applies Marr-Hildreth edge detection to the

image to obtain a connected component that represents the brain; it then applies

morphological operations to remove erroneous connected regions and to produce a smooth

brain mask [7]. In some cases, the erosion may fail to completely separate the brain from the

surrounding tissues, which can lead to attached skull, scalp, or dura. The Brain Extraction

Tool (BET) [8] uses a deformable model that evolves into the shape of the brain by relying

on local information in the image. This method is more robust for images where certain

areas do not have a clear boundary between the brain and non-brain tissue, but it does not

incorporate anatomical tissue regions and their relative positions. The Hybrid Watershed

Algorithm (HWA) [9], applies the watershed algorithm to the MR image to obtain a rough

estimate of the brain region, then fits a deformable surface to the region, and allows it to

deform based on geometric constraints and a statistical atlas. Comparisons of these and other

skull-stripping algorithms have appeared in [10].

In this paper, we introduce the application of “deformable organisms” [11] to the problem of

skull-stripping1. Within the deformable organisms framework, deformable models are

equipped with higher-level control mechanisms based on the principles of artificial life.

These mechanisms include sensing, reactive behavior, knowledge representation, and

proactive planning. Our new deformable organisms are governed by a high-level plan aimed

at fully-automated segmentation of various parts of the head in MR images, and they

cooperate in computing the segmentation. The organisms make use of local information,

such as edges, along with global image tissue classifications from K-means clustering. Their

intermediate goals of finding easily recognized features in the image make the final

segmentation more robust.

2. METHODS

2.1. Image Processing

The subject T1 MR of the head is first processed so that its results are available to the

deformable organisms as they segment the brain. The organisms are embedded in the image

space and “sense” the processed images by analyzing the intensities around them.

The images are processed in various ways to make different types of information available

to the sensors of the organisms. The basic T1 weighted MR image consists of a volume

grayscale intensity image and is used as a base for three different types of processing.

1[12] proposed a framework similar to deformable organisms for segmenting IntraVascular UltraSound (IVUS) images. Their work,
however, focused on establishing a set of rules that multiple agents can use to communicate in order to solve particular medical image
segmentation tasks.
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• The gradient of the base MR image is computed to create an image that emphasizes

the edges.

• A threshold is applied to the base image by finding a histogram of the intensities

and processing it to classify voxels lying within the head from those of the

surrounding air in the image.

• Once a threshold has been applied to the image, a K-Means classification is used to

classify the head voxels into K different classes. In our case we set K to 2 and 3

(Figure 2). The brain region is actually composed of two tissue types, but the rest of

the head adds interference into the classification.

2.2. Deformable Organisms

Our deformable organisms combine representations and control mechanisms of various

different types, as outlined below. Each layer is customized to whatever needs to be

segmented, in our case we focus on the brain.

2.2.1. Geometry and Physics—Each deformable organism is represented geometrically

as a 3D triangulated mesh. The models are initialized in the shapes of spheres that either

contract or expand to find the boundary of the object being modeled. Each geometric model

is deformed iteratively to model different structures in the MR images. Each vertex on the

mesh is moved either inwards or outwards along the direction of the normal vector at that

point. At each iteration, Laplacian smoothing is applied to the mesh to constrain the

movement of each vertex in order to maintain a smooth mesh that does not pass through

itself.

2.2.2. Perception—The perception layer enables the organism to sense the medical image

in which it is embedded. The vertices of the triangulated mesh are represented in real

coordinates embedded in a volume image represented by a set of voxels. Hence, nearest

neighbor interpolation was used to sample the image intensities at the location of a certain

point in the mesh. The locations of all the organisms in the image are computed by the

perception layer. A 3D rasterization method followed by dilation is used to calculate which

voxels in the volume are located within each organism. The dilation is required to deal with

the discrepancy between the low resolution of the volume image in which meshes are

embedded. When the mesh is rasterized it will conservatively choose a voxel that is only

partly intersected by the mesh and thus remove too many voxels from the boundary. The

dilation helps to fit the border voxels better to the boundary of the mesh and resolve this

discrepancy. This information is used by the motor control layer to regulate where an

organism is allowed to deform by restricting organisms from intersecting each other.

2.2.3. Motor Control—The motor control of the organism is a function of intensities

along the line normal to the mesh surface going through each vertex. The intensities along

this line are from the images available to the perception layer. This layer looks for or avoids

a particular intensity or relative intensity or tries to fit a certain model or statistic to the data

along these lines. The intensities along the normal lines are sampled from different types of

sensors and can each be processed using a different set of constraints.

Prasad et al. Page 3

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 September 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2.2.4. Behavior—The organism has a repertoire of behaviors. Translation is a behavior

that moves a particular organism rigidly without any deformation to the mesh, as does the

rotation behavior. These behaviors can take into account the organism’s relationship to other

organisms and use information about their locations to decide how to move rigidly. Another

behavior is the local deformation of the mesh. This behavior also depends on sensing

different information, various motor controls, and the locations of surrounding organisms.

Thus high level information about locating different regions in the image can be used to

create a plan for segmentation.

2.2.5. Cognition—The cognitive layer is created by putting together a set of behaviors to

accomplish certain goals. Different behaviors can be activated dynamically depending on

what goals have been accomplished or what features have or need to be located.

2.3. Skull-Stripping Plan

Figure 3 shows the image processing steps and the organism plan. The red arrow points to

the processing of the T1 MR image. The black arrows show the image and location

dependencies at each step. The images are sensed at various stages in the organism plans.

When a structure is found, its location can be helpful when locating other structures. For

instance, the deformation of the brain utilizes the location of the skin and the eyes to figure

out the bounds of where it can expand.

The Skull-Stripping plan dictates which organisms are used, the goals for each organism and

how the organisms interact. It begins by finding the location of a skin organism that

surrounds the head. Then using the skin organism’s location and shape, two eye organisms

are spawned. Finally, a brain organism is created that interacts with the three other

organisms to refine its own location.

Figure 4 shows an example of the organism deformations and interactions during the skull-

stripping process. The skin organism is initialized as a large spherical triangulated mesh that

is deformed into the surface of the head using the threshold of the initial MR image (Fig. 4A

and 4B). The skin organism is then processed to locate the nose. This information is used to

locate the eyes (Fig. 4C and 4D). Figure 4D shows the two eye organisms expanded to the

full size of the eye by sensing the 3-Means classification of the MR image. Once this is

complete, the skin organism again deforms to locate the area surrounding the brain by

deforming through the eyes by sensing their locations and by using edge information from

the 2-Means classified image as shown in Fig. 4E. In Fig. 4F, the eyes are again deformed

by sensing the 2-Means image to take into account the surrounding tissues and to restrict

more areas that the brain organism may try to expand into. Then using the location of the

eyes and skin meshes a brain organism is spawned (Fig. 4G) that deforms itself to match the

classification of tissues in the 3-Means image and to stay within the skin mesh and complete

the segmentation of the brain (Fig. 4H).

Figure 5 shows how the brain organism interacts with the skin (yellow) and eye (red)

organisms. Figure 5A shows how the brain organism (cyan) is expanding by sensing the

image forces from the 3-Means classification of the image. The blue arrows show the

direction in which the brain organism is deforming. Figure 5B shows that the organism is

Prasad et al. Page 4

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 September 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



restricted by the skin and eye organisms as it pushes outwards. It is able to sense the

locations of the other organisms and is forced to stay within the boundary as shown by the

red arrows.

2.4. Implementation

Operations and processing of the MR images was implemented using the Insight Toolkit

(ITK)2, an open-source C++ library for medical image analysis. The mesh operations and

the visualization of the deformable organisms was completed using the Visual Toolkit

(VTK)3, an open-source C++ library for 3D graphics, visualization, and image processing.

The entire deformable organisms method for skull-stripping takes less than three minutes on

an Intel 2GHz machine with 1.50 GB of RAM to segment an MR image.

2.5. Evaluation

We evaluated the performance of our algorithm using the Segmentation Validation Engine

(SVE; http://sve.loni.ucla.edu), a web-based resource that we developed previously [13].

SVE provides a set of 40 human whole-head T1-weighted MR images of 256 ×124 ×256

voxels (voxel size 0.86 × 1.50 × 0.86 mm3) that were delineated manually as part of the

LONI Probabilistic Brain Atlas (LPBA40) [14]. The 40 images were downloaded and

processed with our algorithm. The brain masks were then uploaded to the SVE server, which

computed a series of measures comparing our brain masks with the manually-delineated

masks. The overlap metrics used were the Jaccard Similarity, the Dice Coefficient,

Sensitivity, and Specificity; these are described in [13]. Validation results are archived,

allowing comparison with previously evaluated methods.

3. RESULTS

We applied the algorithm to a set of data, compared it to three existing algorithms, and

validated the results.

3.1. Other Algorithms

The deformable organism framework for skull-stripping was compared with FSL’s Brain

Extraction Tool (BET) [8] (version: BETv2.1 settings: -B), the Brain Surface Extractor

(BSE) [7] (version: BSEv08b settings: -n 5 -d 15 -s 0.65 -p –noneck), and the Hybrid

Watershed (HWA) [9] (version: HWA3 settings: -less).

Table 1 shows the mean for each of the metrics across the 40 images used to test the

algorithms [mean±S.D.]. The results from the SVE false positive and false negative

projection maps showed that the method includes too many voxels around the cerebellum

lobe and the inferior and anterior portions of the temporal lobe. These can be improved

through refining the parameters in the behavior layer. The method does do a good job at

delineating the area around the medial longitudinal fissure (the groove separating the two

2http://www.itk.org/
3http://www.vtk.org/
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hemispheres of the brain) and the anterior part of the parietal lobe when compared to the

other algorithms.

4. DISCUSSION

The use of deformable organisms to segment the brain in whole head human MR images can

help in cases where other algorithms include areas of tissue around the eyes and cases where

they include parts of the skin. This method could help in difficult cases where those

boundaries are hard to delineate. The behaviors within the deformable organisms framework

can be customized to perform different specific brain segmentation tasks. If a brain study

was sensitive to a particular lobe in the brain then the organisms could be customized so that

area had better accuracy during the skull-stripping process.

It also allows the segmentation process to be sensitive to many different types of image

information. In our case we process the images using K-Means classification, a threshold,

and the gradient. Each organism has its own set of goals and new organisms can build off of

what has already been accomplished in the segmentation task. The deformable organisms

framework also easily allows the addition of components using different types of images and

the use of additional deformations to improve segmentation performance.

The evaluation of the algorithm showed the areas of the brain where the deformable

organisms approach needs more tuning and where it provides good results. The ability for

each organism to be customized could allow for development of a skull-stripping plan

customized for each area of the brain.
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Fig. 1.
T1 MR image (red) with the brain location manually identified in green.
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Fig. 2.
3-Means classification of a T1 MR image. The intensities are mapped to three different

labels, segmenting it into three areas.
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Fig. 3.
The flow of data and steps of the algorithm. The red arrow shows processing steps for the

image and the black arrows represent information that is being passed.
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Fig. 4.
This figure shows the sequential steps that the skin (yellow), eye (red), and brain (cyan)

organisms use to skull-strip the head image.
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Fig. 5.
Interactions between the brain (cyan), eye (red), and skin (yellow) organisms. The arrows

(blue) in Subfigure A show how the brain organism is expanding and Subfigure B has

arrows (red) showing how its movement is restricted by the other organisms.
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Table 1

Results from the application on the LPBA40 dataset of deformable organisms (DO), the brain extraction tool

(BET), and the brain surface extractor (BSE). [mean±S.D.]

Method Jaccard Dice Sensitivity Specificity

DO 0.8954±0.0288 0.9446±0.0163 0.9616±0.0129 0.9864±0.0082

BSE 0.9431±0.0282 0.9705±0.0158 0.9747±0.0334 0.9941±0.0019

BET 0.9310±0.0089 0.9642±0.0048 0.9875±0.0117 0.9892±0.0014

HWA 0.8537±0.0184 0.9210±0.0107 0.9992±0.0003 0.9695±0.0053
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