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Introduction
Cancer is a disease caused by multiple genetic mutations. To 
explore the underlying biological system, numerous methods 
based on genomic data from single platforms have been 
proposed. For example, methods for reverse engineering gene 
regulatory networks from mRNA gene expression data can 
successfully describe complex biological systems1–3 but are 
applicable to just one platform. However, cancer arises from 
a series of genome-wide genetic mutations (eg, DNA copy  
number alterations) and epigenetic mutations (eg, DNA 
methylation) rather than a small number of platform-specific 
mutations.4 Given this complexity, recovering a regulatory 
network from a single platform can only provide a partial 
view of the cancer genome. Therefore, the focus should shift 
from single-platform analysis to integrative analysis of data 
arising from multiple genomic platforms. This is feasible, in 

part, because of the rapid development of high-throughput 
genome-wide profiling technologies such as microarrays5 
and array comparative genomic hybridization, aCGH.6 Thus, 
multi-platform data of matched tumor/patient samples are now 
widely available, which motivates integrative network analy-
sis to elucidate mechanisms of cancer development and pro-
gression. Specifically, since 2006, the Cancer Genome Atlas 
(TCGA) research network1 has made a great effort to col-
lect and make publicly available such data (including mRNA 
gene expression, DNA methylation) for over 30 types of can-
cer, including glioblastoma multiforme (GBM), squamous 
cell lung carcinoma, and ovarian serous cystadenocarcinoma, 
among others.

In this study, we are particularly interested in GBM as it 
is the most common and most lethal malignant primary brain 
tumor in human adults.7 Due to its aggressiveness, GBM 
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was the first cancer profiled by TCGA. Multiple-platform 
genomic data were collected by TCGA, which included DNA 
copy number, DNA methylation, and mRNA gene expres-
sion for the same set of samples. Associated with each sample, 
the clinical outcome (eg, the patient’s survival time) was 
also recorded.

Our goal is to integrate multiple types of genetic data 
with the clinical outcome of interest to better understand the 
relationships between genetic and epigenetic alterations and 
also how these mutations affect a patient’s clinical outcome. 
Multiple integrative network approaches have been proposed in 
the literature. Stingo et al.8 integrated microRNA and mRNA  
expression data to construct microRNA regulatory networks. 
Cheng et  al.9 presented integrative regulatory networks of 
transcription factors, genes, and microRNA. Zhang et  al.10 
integrated gene expression profiles with high-throughput 
protein–protein interaction data. Rhodes and Chinnai-
yan11 discussed integrative network analysis of cancer tran-
scriptome data. However, these approaches only deal with 
interactions between genetic and/or epigenetic mutations 
without studying their relationships with clinical outcome 
information, which is of great importance in cancer research. 
Recently, Wang et  al.12 proposed an undirected integra-
tive network-based analysis of two platforms (mRNA gene 
expression and microRNA expression) and patients’ clinical 
outcomes (survival times). They adopted a Gaussian graphi-
cal model approach (treating different platforms and clini-
cal outcome as nodes) to model joint dependencies among 
platforms and survival times. In their case study, they found 
many mRNA–microRNA pairs associated with patients’ 
clinical outcomes, some of which are consistent with the 
findings in the literature. With similar motivation, we con-
struct a method based on an integrative Bayesian network 
for multiple platforms. Essentially, we would like to explore 
the various possible (directed) relationships among plat-
forms and clinical outcome as exemplified in Figure 1. For 
example, in Scenario 2, gene expression, copy number, and 
methylation independently affect clinical outcome; whereas 
in Scenario 3, copy number and methylation do not directly 
regulate clinical outcome. Instead, they indirectly affect 
clinical outcome through gene expression. Our goal is to find 
which regulatory mechanism is best supported by the data. 
One common feature between Wang et  al.12 and our work  
is that instead of estimating a large network of all genes from 

single platform, we estimate a large number of networks, one 
for each gene, from multiple-platform genomics data. How-
ever, our method has at least three innovations that give it an 
advantage over the existing approaches.

1.	 We consider three platforms rather than two platforms. 
This small increase in the number of platforms leads to 
an exponential increase in the dimensionality of the net-
work space, increasing the number of potential regula-
tory networks from 25 to 543, and thus greatly increasing 
the computational complexity of the problem.13

2.	 Unlike undirected graphs, a Bayesian network has 
the ability to detect directed relationships, which 
are more biologically interpretable. Moreover, the 
proposed Bayesian network approach is more flexible 
than the decomposable network approach considered 
in Wang et al.12 as decomposable graphs are a subset of 
all possible Bayesian networks. For example, in Scenario 
2 of Figure 1, gene expression, copy number, and methy-
lation are mutually (unconditionally) independent but 
are conditionally dependent given the clinical outcome. 
There are no undirected network equivalents that can 
capture such dependence structure.

3.	 We incorporate biological information and use a Markov 
equivalence property of Bayesian networks for dimension 
reduction, which makes it feasible to perform network-
based analysis of genome-wide data.

Due to the compact factorization of a Bayesian network, 
we formulate it in terms of a set of linear regressions. For the 
purpose of learning the structure of the network, we apply 
a model selection technique via Bayes factors. Empirically, we 
demonstrate the performance of our approach in recovering 
the integrative network via simulation studies. Our method 
generally works very well in learning structures, especially in 
controlling the false discovery rate (FDR), as shown in the 
simulation study section. Finally, we apply our approach to 
the GBM data, integrating mRNA expression, copy number, 
and methylation along with survival times. While some of 
our findings are consistent with those reported in the litera-
ture, genes newly-identified by our approach may represent 
novel biomarkers that could be further confirmed by biologi-
cal experiments.

Probability Model
A graphical model is a “marriage” between probability theory 
and graph theory14 that provides both computational conve-
nience and useful interpretation for high-dimensional data. 
A Bayesian network, also known as a directed acyclic graph, is 
a graphical model in which all the edges are directed. Formally, 
a Bayesian network Γ = (ς, Ε) consists of a set ς of nodes rep-
resenting random variables and a set Ε of edges representing 
conditional dependence between the nodes. In our applica-
tion, for each gene g we define a Bayesian network Γg = (ςg, Εg) 

C C C

G

Y
Scenario 1 Scenario 2 Scenario 3

Y Y

M M MG G

Figure 1. Three scenarios considered in our simulation study.
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with ςg = {Y, Gg, Cg, Mg}, where Y is the clinical outcome, Gg 
is the mRNA gene expression, Cg is the DNA copy number, 
Mg is the DNA methylation status, and Εg ⊂ ςg × ςg contains 
the interactions between the platforms and the patients’ clini-
cal outcomes. Given a priori ordering, say, {Mg, Cg, Gg, Y} (ie, 
the node present earlier in the ordering can affect those that 
appear later, but not vice versa; the next paragraph describes 
how we obtain the ordering), we can factorize the joint distri-
bution into local (conditional) distributions as

	

( , , , ) ( ) ( | ( )) ( |

( )) ( | ( ))
g g g g g g g

g

p M C G Y p M p C pa C p G

pa G p Y pa Y

=

	 (1)

where pa(⋅) denotes the parent set, ie, the set of nodes pointing 
at the given node. For example, in Scenario 1 of Figure  1, 
pa(G) = {C}, pa(Y) = {C, M}.

We are interested in exploring the biological relationships 
among these four variables using Bayesian networks on a gene-
by-gene basis. There are 543 possible Bayesian networks for dif-
ferent edge combinations for the four nodes.13 However, from 
a priori biological knowledge, we exclude the possibilities that 
Y → Gg, Y → Cg, Y → Mg, Gg → Cg, and Gg → Mg; that is, clin-
ical outcome cannot affect mRNA expression, copy number, 
or methylation as genomic variables are measured at baseline 
and the clinical outcome is measured at follow-up times; and 
mRNA expression cannot affect copy number and methyla-
tion since according to the central dogma of molecular biology, 
mRNA is produced by transcription from segments of DNA 
on which the copy number and methylation are measured, but 
the reverse processes are rare and biologically uninterpretable. 
As a consequence, the number of possible graphical models is 
reduced to 96. We notice that the direction of the edge between 
Mg and Cg does not affect the conditional independence asser-
tion of the Bayesian network due to Markov equivalence. In 
other words, we cannot discriminate between two graphs that 
only differ in the direction of the edge between Mg and Cg, as 
the likelihood of these two graphs is identical.13 In summary, 
we define the following edges of interest:

   

Platform-outcome edges: 

γ γ γg g g g gI G Y I C Y( ) ( ) ( )( ), ( ),1 2 3= → = → = II M Yg( ),→

Between platform edges: 

φ φ δg g g g g g
gI M G I C G( ) ( ) ( )( ), ( ),1 2= → = → == →I M Cg g( ),

where I(⋅) is the indicator function that shows whether the given 
relationship is present or not. Then the model space can be repre-
sented by binary parameters Gg g g g g g g= ( , , , , , ).( ) ( ) ( ) ( ) ( )γ γ γ φ φ δ1 2 3 1 2  
Therefore, the number of possible models is further reduced 
to 26 =  64, and, as a consequence, the ordering is naturally 
defined as {M, C, G, Y}.

Suppose we have n samples of gene expression 
G g g g

nG G= ′( , , ) ,( ) ( )1 …  copy number Cg g g
nC C= ′( , , ) ,( ) ( )1 …  and  

methylation status M g g g
nM M= ′( , , )( ) ( )1 …  matched to a cer-

tain gene g. We also have clinical outcome Y =  (Y1, … , Yn)’ 
associated with each sample. Each conditional distribution in 
(1) is then modeled as a set of conditional normal distributions 
(linear models):

	

| , , , , , ~ ( | , )

| , , , , ~ ( | , )
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	 (2)

with binary vectors γ γ γ γ φ φ φg g= ′ = ′( , , ) , ( , ) ,( ) ( ) ( ) ( ) ( )
g g g g g
1 2 3 1 2  

design matrices Hg = (Gg, Cg, Mg), Rg = (Mg, Cg), and regres-

sion coefficients β β β β α α αg g= ′ = ′( , , ) , ( , ) .( ) ( ) ( ) ( ) ( )
g g g g g
1 2 3 1 2  

We use a binary vector as the subscript of the matrix (vector) 
to denote the submatrix (subvector) with columns (rows) for 
which the corresponding binary variable is 1. Inference on the 
binary vectors γg, φg leads to the identification of the edges 
of the Bayesian network for each gene and consequently to 
the understanding of the regulatory mechanisms related to the 
disease of interest.

Bayesian Inference
Prior distribution. We treat parameters β α ω σg g g, , , ,g

2  
τ λ ηg g g

2 2 2, ,  as random, and place conjugate priors on all 
parameters for computational ease. In particular,

	

| ~ ( , ) ~ ( , )

| ~ ( , ) ~ ( , )

| ~ ( , ) ~ ( , )

~ ( , )

g g g

g g g

g g g

g

N V IG a b

N V IG a b

N V IG a b

IG a b

β β σ σ

α α τ τ

ω ω λ λ

η η

β σ µ σ σ

α τ µ τ τ

ω λ µ λ λ

η

2 2 2

2 2 2

2 2 2

2

g

g

g

where IG(⋅, ) is the inverse-Gamma distribution. And a priori 
we assume each model Gg

i  is equally likely, p g
i( ) ,G = 1

64  for 
i  =  1, … ,64. These prior distributions fall in the invariant 
class characterized by Geiger and Heckerman,15 implying that 
two independence-equivalent graphs, ie, two graphs that dif-
fer only by the direction of the edge between Mg and Cg, are 
assigned the same marginal likelihood.

Marginal likelihood and posterior distribution of 
regression coefficients. Next, we provide the marginal likeli-
hood and marginal posterior distribution of the regression coef-
ficients. For ease of notation, we rewrite the model generically,

	
2 2| , , ~ ( , ),nW N W Iθ κ θ κZ

with design matrix W, regression coefficients θ, and residual vari-
ance κ2. The parameters follow normal-inverse-Gamma priors,
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	 ( )2 2 2| ~  ( , ),  ~ IG ,  .N µ V a bθ κ κ κ

Due to conjugacy, we can analytically integrate out parameters  
θ, κ2 and obtain the marginal likelihood of Z, which is given by

	
| ~ ( , ( )),a n

bW MVT W I WVW
a

µ + ′2Z 	 (3)

where In is the identity matrix with dimension n and MVT2a (⋅, ) 
stands for a multivariate Student’s t distribution with degrees 
of freedom 2a. Likewise, we can obtain the marginal posterior 
distribution of θ in closed form, which is also a multivariate 
Student’s t distribution,

	 * * *| , ~ ( , ),W MVTνθ µ ∑Z

where ν*  =  2a*, µ*  =  V*(V–1µ  +  W′ Z) and ∑ =* *
*
*

b
a V  with 

V V W W a a b b V Vn
* * * * * *( ) , , ( ).= + ′ = + = + ′ + ′ − ′− − − −1 1

2
1
2

1 1µ µ µ µZ Z  
Under a squared error loss, the Bayes estimator of θ is *

ˆ .θ µ=
Model selections via Bayes factors. Our goal is to select 

the best Bayesian network supported by the data for each 
gene. To this end, we rank the 64 models according to their 
marginal likelihood and denote the best and the second best 
models by Gg

( )1  and Gg
( ) ,2  respectively. For model comparison, 

we calculate the Bayes factor for these two models

	

( )

( )

( , , , | )
( , , , | )

g g g g

g g g g

p M C G Y
BF

p M C G Y
=

1

12 2

G
G

by equations (1–3). Since the distribution in (3) is in closed 
form, no stochastic algorithm such as a Markov chain Monte 
Carlo algorithm is needed in our calculation of Bayes factors. 
According to Jeffrey’s scale,16 if BF12 . 3, we conclude that 
there is substantial evidence supporting the best model, ie, 
Gg

( )1  is significant. Notice that since the prior distribution of 
the model is uniform, the posterior distribution of model Gg

i( )  
is simply proportional to the marginal likelihood and is given by

	

( )
( )

( )

( , , , | )
( | , , , ) .

( , , , | )

i
g g g gi

g g g g i
g g g gj

p M C G Y
p M C G Y

p M C G Y
=

=
∑ 64

1

G
G

G
	 (4)

We use this posterior probability to rank genes in our 
analysis of GBM data. Essentially, a gene ranks higher when 
the associated gene network has greater posterior probability. 
This approach yields a list of genes with regulatory networks 
that are clearly supported by the data. Such a list could guide 
biologists in screening out a large number of genes that are 
irrelevant to clinical outcome and allow them to focus their 
experiments solely on this small set of genes.

Moreover, given the posterior probability of each Bayesian 
network, we can easily calculate the posterior probability of 

edge selection. For example, the posterior probability of edge 
(Mg, Y) is given by

	
( ) ( )

( edge ( , ) is present | , , , )

( , , , | ) {( , ) }.

g g g g

j j
g g g g g g

j

p M Y M C G Y

p M C G Y I M Y
=

=

∈∑
64

1

G G

Simulation Study
In this section, we evaluate the performance of our proposed 
method with simulated examples. To mimic the GBM data 
analysis, which we describe in the next section, we set the 
sample size at n =  233 and set the regression coefficients at 
around the values estimated from the GBM data. We consider 
three scenarios (given in Figure 1). For each edge, we vary the 
regression coefficient in the range {–0.4, –0.2, –0.1, 0.1, 0.2, 
0.4} (totaling 63 = 216 combinations), and for each combina-
tion of regression coefficients, we generate 1000 datasets.

The residual variances are set at 0.25. For the hyperparam-
eters specification, our goal is to be objective/non-informative. 
Using the generic notation in computing the marginal likeli-
hood, the hyperparameters (a, b) of inverse-Gamma are set at 
(0.5, 10); we adopt a standard g-prior setting for the hyper-
covariance V of regression coefficient: V = g(W′W)–1 with 
g = n. To evaluate the performance of our model selection, we 
calculate the percentage of correctly selected models (PCM), 
the percentage of incorrectly selected models (PIM), and the 
percentage of non-significant models (PNM), ie, BF12 , 3. 
We also compute the true positive rate (TPR) and FDR, 
which are defined as the proportion of edges correctly selected 
and the proportion of incorrectly selected edges among all 
selected edges, respectively, ignoring whether the best model 
is significant or not. An edge included in the best Bayesian 
network is correctly selected if it is part of the true Bayesian 
network. The TPR and FDR show the edge-wise performance 
of our method without formal hypothesis testing. The TPR 
and FDR then quantify how much the best model deviates 
from the truth under very noisy data for which the best model 
would never pass the significance test. In addition, we define 
two complexity measures for illustration purposes.

•	 Median correlation complexity measure (MCC): 
ˆmedian(| | )u− ∑1  where | ⋅ | is the element-wise absolute 

value and ˆ u∑  is the upper triangular part of the sample 
correlation. The intuition behind this is that higher cor-
relation renders easier detection, hence it is assigned a 
lower level of complexity.

•	 Frobenius norm complexity measure (FNC): 
ˆ|| | |||u

FA− ∑  where A is the adjacency matrix of 
{M, C, G, Y} (eg, A12  =  1 if and only if M  →  C) and  
|| ⋅ ||F is the Frobenius norm. We center it only for plotting 
ease. The intuition is that the most complex (the simplest) 
case is having perfect correlation between disconnected 
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(connected) nodes while having zero correlation 
between connected (disconnected) nodes. Hence, the 
closer the correlation to the adjacency matrix, the less 
complex the case. Also, we use the Frobenius norm to 
quantify the closeness.

In Figure 2, we plot PCM, PIM, and TPR against the 
MCC for the three scenarios. In order to better understand 
the performance of the method under different levels of com-
plexity, we use a black-and-white gradient to reflect the FNC 
level, with black indicating high complexity and white indicat-
ing low complexity. We do not show PNM and FDR because 
PNM is determined by PCM and PIM as they must sum up 
to one, and FDR is uniformly very close to zero, which implies 
that our method performs uniformly well in controlling the 
FDR (ie, our method does not select any spurious edges). In 
Table 1, we list eight combinations for different magnitude of 
regression coefficients in Scenario 3 (namely, all possible com-
binations that each regression coefficient has either small (0.1) 
or large (0.4) magnitude; the sign is chosen randomly). This 
provides a connection between the complexity measures and 
the regression coefficients. We refer readers who would like to 
explore more on the connections to full tabulated results for all 
scenarios in supplementary material (Tables 1–12).

As expected, the performance of our approach improves 
as the complexity decreases for all the scenarios. Generally, 
the performances of Scenarios 1 and 2 are similar; whereas 
the performance of Scenario 3 is a bit worse than those of the 
other two, especially in the extreme case where the PCM of 
Scenario 3 goes to zero while the PCMs of Scenarios 1 and 
2 are always well above zero. Although the PCM drops very 

low when the complexity increases, the edge-wise TPR is 
still quite satisfactory. For example, for Scenario 2, even in 
the extremely complex cases, the TPR is still around 0.75 (or 
equivalently, the false negative rate = 1−TPR = 0.25), despite 
the PCM dropping down to around 0.15.

Generally, our approach shows good performance in 
recovering networks between platforms and patients’ out-
comes. Particularly, we have very good control of the FDR 
throughout the scenarios. Although in the situation where the 
signal is very weak (ie, the magnitude of the coefficient is very 
small) the graph-wise performance is not ideal, the edge-wise 
performance is still quite reasonable. We also show a three-
dimensional plot for Scenario 1 with each coordinate being 
one regression coefficient in Figure 3. Large dot size indicates 
lower PCM and darker color shows lower TPR. As the regres-
sion coefficients get farther away from zero, the performance 
gets better.

To test the robustness of our approach, we conduct a sen-
sitivity analysis on the hyperparameters (a, b) of the inverse-
Gamma prior and the hyperparameter g of the g-prior. We 
summarize the results for Scenario 1  in Table 2. The edge-
wise performance is very robust to different hyperparameter 
settings while the graph-wise performance shows a reasonable 
trade-off between PCM and PIM as the hyperparameters 
vary. That is, higher PCM usually associates with higher PIM. 
In general, we would not recommend setting b higher than 50 
and g too away from sample size n.

We develop a frequentist analog of our Bayesian method 
for comparison. Specifically, while keeping the model formu-
lation unchanged, we rank models by Bayesian information 
criterion (BIC) instead of marginal likelihood and test the 

1.00
Scenario 1 Scenario 2 Scenario 3

P
C

M
P

IM
T

P
R

0.75

0.50

0.50

0.25

0.25

0.00

1.00
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1.00

0.50

0.25

0.00
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1.00

Frobenius norm
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Figure 2. Bayesian approach. The percentage of correctly selected models (PCM), the percentage of incorrectly selected models (PIM), and the true 
positive rate (TPR) are plotted against the median correlation complexity measure (MCC) for each scenario. The gradient reflects the Frobenius norm 
complexity measure (FNC) level.
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significance of the best model via a non-nested frequentist 
hypothesis testing procedure instead of Bayes factor. How-
ever, this approach is “ad-hoc”: when the best model is nested 
in the second best model, since the smaller model has to be 
always on the null hypothesis, we claim that the best model is 
significant if we fail to reject the alternative. In other words, 
we “accept the null hypothesis”. Bayes factor, on the contrary, 
naturally evaluates evidence in favor of the null hypothesis. 
While in general the frequentist analog produces results com-
parable to our Bayesian approach (as shown in Figure 4): the 
frequentist approach generally has slightly higher error rate 
(PIM) along with higher PCM. This shows that our Bayesian 
methods strike the right balance between model selection and 
error rates, in fully probabilistic modeling framework. Besides, 
the performance of the frequentist analog also depends on the 
criterion (AIC, BIC, R2, and so on) that we choose to rank 
the model.

GBM Data Analysis
From the TCGA GBM dataset, we extract 233  samples of 
mRNA gene expression G, copy number C, and methylation M.  
Originally, there were 12,042  genes for mRNA expression 
data. After removing duplicate genes and matching them with 
copy number and methylation data, we analyze the data from 
three platforms on the same set of 9,412 genes. Many genes 
have duplicates within the copy number and methylation data. 
We perform principal component analysis (PCA) on duplicate 
genes and project them onto the leading eigen vectors, which 
explains most of the variability. We also have a matched sur-
vival time (T, ∆) for each tumor sample, where T denotes 
the observed survival time and binary variable ∆ denotes the 
censoring indicator. For a censored survival time, we impute 
the survival time by calculating the mean residual life using 
a Kaplan–Meier estimate

	

if

( | ) if
i i

i
i i

T
Y

E T T T

∆ =
 > ∆ =

1

0

for i = 1,2, … , 233 with

	

ˆ( )( | ) ,ˆ( )i
i i T

i

S uE T T T T du
S T

∞
> + ∫

where ˆ( )S ⋅  is the Kaplan–Meier estimate of the survival 
function. Then we perform log-transformation on both the 
observed and imputed survival times. All the data are scaled 
to have mean 0 and standard deviation 1. We apply model (2) 
to each gene. To summarize the results, we focus on networks 
for which the corresponding genes are relevant to the clinical 

Table 1. Simulation study. Results for eight regression coefficients 
settings in Scenario 3.

Regression 
coefficients

MCC FNC PCM PIM TPR

(−0.1,−0.1,−0.1) 0.93 1 0.02 0.27 0.54

(−0.4,−0.1,−0.1) 0.85 0.75 0.26 0.12 0.82

(0.1,0.4,0.1) 0.89 0.7 0.06 0.28 0.67

(0.1,0.1,0.4) 0.98 0.74 0.08 0.3 0.66

(0.4,0.4,−0.1) 0.56 0.32 0.44 0.12 0.9

(−0.4,−0.1,−0.4) 0.84 0.47 0.44 0.1 0.91

(−0.1,0.4,−0.4) 0.96 0.37 0.19 0.3 0.8

(0.4,0.4,−0.4) 0 0.02 0.83 0.01 1
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Figure 3. Simulation study. 3D plot for Scenario 1 with each coordinate being one regression coefficient in Figure 3. Large dot size indicates lower 
percentage of correctly selected models (PCM) and darker color shows lower true positive rate (TPR).
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outcome, ie, having at least one edge between {M, C, G} and Y. 
Moreover, we further divide the networks into four categories 
that have different biological interpretations:

1.	 Epigenomic networks: methylation directly affects the 
clinical outcome, but copy number does not directly 
affect the clinical outcome;

2.	 Genomic (copy number) networks: the copy number 
directly affects the clinical outcome, but methylation 
does not directly affect the clinical outcome;

3.	 Transcriptomic networks: only gene expression directly 
affects the clinical outcome;

4.	 multi-platform networks: both methylation and copy 
number directly affect the clinical outcome.

We rank networks by their posterior probability (4) for 
each category. In Figure 5, we show the top four significant 
models for epigenomic, genomic, and transcriptomic net-
works. Blue arrows represent positive relationships, while 
red arrows represent negative ones. Since the direction of 
the edge between Mg and Cg cannot be determined, we use  
a bi-directed edge to represent this connection. Bi-directed 
edges can be interpreted in either direction. The posterior 
probability of each network is given at the top of each network, 
along with the corresponding gene/probe symbol. In addition, 
next to each arrow present in the network, we also provide its 
posterior probability. We do not have a plot for the complex 
networks because we found only two models, neither of which 
was significant, and their posterior probabilities were very 
low. Complementary to Figure 5, we list all the genes with 
significant epigenomic, genomic, or transcriptomic networks 
in Table 3. We use boldface to indicate positive regulations 
between corresponding platforms and clinical outcome, and 
present the posterior probability of the network within paren-
theses. There are 23 genes with epigenomic networks, 31 genes 
with genomic networks, and 7 genes with transcriptomic net-
works, totaling 61 genes.

Some of our findings are consistent with the exist-
ing literature. For example, in our study, we find that gene 
CDKN2C (shown in Figure  5), also known as p18 or 
INK4C, is directly related to the survival time of a patient 
with GBM. In particular, the copy number of CDKN2C 
is positively correlated with the patient’s survival time, 
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Figure 4. Frequentist approach. The percentage of correctly selected models (PCM), the percentage of incorrectly selected models (PIM), and the true 
positive rate (TPR) are plotted against the median correlation complexity measure (MCC) for each scenario. The gradient reflects the Frobenius norm 
complexity measure (FNC) level.

Table 2. Sensitivity analysis (Scenario 1).

Hyperparameters PCM PIM TPR FDR

a = 0.5 b = 10 g = n 0.73 0.27 0.92 0.01

a = 0.5 b = 1 g = n 0.50 0.09 0.92 0.01

a = 0.5 b = 5 g = n 0.49 0.10 0.91 0.01

a = 0.5 b = 20 g = n 0.46 0.12 0.90 0.01

a = 0.5 b = 50 g = n 0.34 0.19 0.86 0.01

a = 0.5 b = 10 g = 50 0.40 0.03 0.94 0.02

a = 0.5 b = 10 g = n/2 0.46 0.07 0.92 0.01

a = 0.5 b = 10 g = 2n 0.48 0.15 0.89 0.01

a = 0.1 b = 10 g = n 0.48 0.10 0.91 0.01

a = 0.25 b = 10 g = n 0.48 0.10 0.91 0.01

a = 1 b = 10 g = n 0.50 0.10 0.91 0.01

a = 5 b = 10 g = n 0.49 0.10 0.91 0.01

 

http://www.la-press.com


Ni et al

46 Cancer Informatics 2014:13(S2)

which implies that a deletion of CDKN2 A may drive the 
pathogenesis of GBM and hence may be a tumor suppres-
sor gene, which was experimentally confirmed by the copy 
number analysis of CDKN2A in GBM.17,18 Furthermore, 
the methylation of SPON2 and down-regulation of TSPYL4 
and RPL13 identified by our study were also found in pre-
vious work.19–21 Genes that have not been validated in the 
current biomedical literature may represent novel biomark-
ers for GBM and may require further functional validation 
eg, via knockout experiments. Moreover, several studies have 
identified frequent chromosomal copy number aberrations 

in GBM such as chromosome 6 deletion, chromosome 7 
amplification, and chromosome 10 deletions.22–24 Our study 
confirms that chromosome 6 has significantly large number 
of copy number aberrations (as compared to random chance) 
as shown in Figure 6 (P-value 1.95 × 10−10, binomial test with 
H0: P = 1/32 vs Ha: P . 1/32). In addition, we also observe 
a statistically significant number (P-value 1.13  ×  10−11) of 
copy number aberrations in chromosome 16, which have not 
been reported previously in the GBM literature. Given the 
extremely unlikely event of such occurrences (as evidenced by 
the P-values), we feel chromosome 16 could be an important 
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chromosome in the GBM context that can be used for future 
functional validation studies.

Conclusion
In this study, we proposed an integrative Bayesian network 
approach to jointly analyze multiple-platform genomic data 
and patients’ clinical outcomes. We used a known biological 
mechanism and Markov equivalence to reduce the network 
space, and conducted model selection via Bayes factor to 
recover the network structure. We exploited the conjugacy of 
the priors for exact computation, which makes genome-wide 
network analysis feasible. Our simulation studies demon-
strated that our approach is capable of detecting significant 
networks. Applying our method to the whole GBM genome 
identified several genes consistent with the existing litera-
ture, as well as novel genes that need to be experimentally 
validated. Although a benchmark dataset would be helpful to 
evaluate the performance of our approach, to the best of our 
knowledge, we are not aware of any genome-wide dynamic 
CRN dataset, as large scale of knockout experiments would be 
required to create such dataset. In fact, if some dependencies 

are a priori suspected to be more relevant, they can be easily 
incorporated into our prior distributions as previously done by 
Peterson et al.25 and Baladandayuthapani et al.26

We have seen that an increase in the number of platforms 
from two to three leads to a great increase in the dimension 
of the model space, from 25 to 543. Indeed, the dimension of 
the model space increases super-exponentially with increases 
in the number of platforms. Manually ruling out models that 
are inconsistent with known biological mechanisms or are 
Markov equivalent to each other requires much more infor-
mation and effort. Therefore, as constructed, our method of 
integrative analysis will become prohibitive beyond the analy-
sis of three platforms. In some situations, it might be inter-
esting to consider interactions among genes as well as other 
molecular features. Our models can be generalized in prin-
ciple to accommodate these dependencies. Specifically, the 
second conditional distribution in model (2) can be modified as 

[ ] [ ]| , , , , , ~ ( | , )g g g g nN R G Iφ φφ α ψ τ α ψ τ− −+2 2
g g

G G M C Gg g g g g g g g  
to account for gene–gene interactions in the level of mRNA 
gene expression where G[–g] is the gene expression levels of 
genes other than gene g and ψg is the corresponding regres-
sion coefficients. However, this approach may result in a 
more computationally demanding procedure, given the very 
large number of the combinatorial pairs of genes. We plan to 
address these issues in future work. The software used to per-
form the analyses has been posted on the authors’ webpage 
(http://odin.mdacc.tmc.edu/∼vbaladan/Veera_Home_Page/
Software_files/code-zip).
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