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Abstract

FST is one of the most frequently-used indices of genetic differentiation among groups. Though

FST takes values between 0 and 1, authors going back to Wright have noted that under many

circumstances, FST is constrained to be less than 1. Recently, we showed that at a genetic locus

with an unspecified number of alleles, FST for two subpopulations is strictly bounded from above

by functions of both the frequency of the most frequent allele (M) and the homozygosity of the

total population (HT). In the two-subpopulation case, FST can equal one only when the frequency

of the most frequent allele and the total homozygosity are 1/2. Here, we extend this work by

deriving strict bounds on FST for two subpopulations when the number of alleles at the locus is

specified to be I. We show that restricting to I alleles produces the same upper bound on FST over

much of the allowable domain for M and HT, and we derive more restrictive bounds in the

windows M ∈ [1/I, 1/(I − 1)) and HT ∈ [1/I, I/(I2 − 1)). These results extend our understanding of

the behavior of FST in relation to other population-genetic statistics.

1. Introduction

Genetic differentiation among groups is a phenomenon of central importance in population

genetics, informing inferences about selection, migration, and demography. FST, one of

Wright’s (Wright, 1951) fixation indices, is perhaps the most frequently used measurement

of genetic differentiation among groups. One reason for the popularity of FST is its

theoretical richness. For example, FST can be interpreted as an index of the reduction in

heterozygosity that accompanies population structure (Nei, 1987), as a proportion of

variance in allelic types accounted for by population structure (Holsinger and Weir, 2009),

or as an index comparing mean coalescence times within subpopulations to mean

coalescence times within the whole population (Slatkin, 1991).

Though FST has interpretations in terms of several major frameworks in population genetics,

there has been a strong temptation to view FST as a simple measurement of the degree of
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genetic differentiation among groups, with increasing values indicating increased

differentiation. Indeed, Wright himself provided heuristic guidelines as to what ranges of

FST values may be considered as representing “moderately great” or “very great”

differentiation (Wright, 1978, p. 85), lending credence to the idea that FST can be interpreted

without reference to allelic diversity at the locus or other properties of the allele frequencies

used in its computation.

However, as many investigators have noted—with Wright first among them (Wright, 1978,

p. 82)—FST measures a very specific form of genetic differentiation. Namely, FST measures

the extent to which different subpopulations have progressed toward fixation on different

alleles. When there are exactly two subpopulations and exactly two alleles with positive

frequency, FST is maximized when the two subpopulations have fixed on different alleles

and, as a result, share no alleles in common.

One of the challenges of interpreting FST is that FST is dependent on the within-

subpopulation diversity and other properties of the allele frequencies at the loci for which it

is calculated (Charlesworth, 1998; Nagylaki, 1998; Hedrick, 1999, 2005; Long and Kittles,

2003; Ryman and Leimar, 2008; Jost, 2008; Long, 2009; Meirmans and Hedrick, 2011;

Maruki et al., 2012). Recently, we considered the relationship of FST to both the frequency

of the most frequent allele, M, and the homozygosity of the total population, HT (Jakobsson

et al., 2013). These two statistics capture important aspects of the allele frequencies and

diversity of a locus, and their relationship to each other is well understood (Rosenberg and

Jakobsson, 2008; Reddy and Rosenberg, 2012). We calculated the upper bound on FST as a

function of M and as a function of HT when the number of alleles is left unspecified.

Here, we extend these results by deriving and reporting bounds on FST when the number of

alleles is specified to be a fixed value I. The extension reported here parallels the specified-I

extension by Reddy and Rosenberg (2012) to the unspecified-I work of Rosenberg and

Jakobsson (2008) on the relationship between homozygosity and the frequency of the most

frequent allele.

We begin by describing the framework we adopt for conceptualizing FST. Next, we derive

strict bounds when the number of alleles is specified, first as a function of the frequency of

the most frequent allele and then as a function of total homozygosity.

2. Model

Consider a polymorphic locus with up to I alleles (I ≥ 2) in a population with K

subpopulations of equal size. The frequency of allele i in subpopulation k is pki. All allele

frequencies are non-negative, and within each subpopulation, the allele frequencies sum to

1. That is, pki ≥ 0 for all k and i, and for each k,  . The mean allele frequency

across subpopulations for allele i is . We assume that the allele frequencies

are the parametric values for the subpopulations under study. We do not consider estimation

of the allele frequencies from samples, nor do we consider the evolutionary sources of the

allele frequencies in each subpopulation.
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We define the frequency M of the most frequent allele as the highest mean allele frequency

across subpopulations. That is, M = max {p̅1, p̅2, …, p̅I}. It is possible that more than one

allele has mean frequency M.

The homozygosity within subpopulation k is the sum of the squares of the allele frequencies

within subpopulation k, . The mean homozygosity across subpopulations is

In contrast, the total homozygosity is the sum of the squares of the mean allele frequencies

across subpopulations,

With I alleles, both HS and HT lie in [1/I, 1]. Note that the homozygosities within each

subpopopulation are expectations for the proportion of homozygotes in the subpopulation

under Hardy-Weinberg equilibrium, and HT is the expected fraction of homozygotes in the

whole population if the total population were at Hardy-Weinberg equilibrium with no

structure.

Nei (1973) considered a version of Wright’s FST termed GST. From here forward, we work

with this formulation, calling it F,

(1)

We restrict our attention to the case of K = 2. Table 1 presents a summary of the notation

used for the two-subpopulation case.

3. Bounds on F as a function of M

Our goal is to identify bounds on F in terms of the frequency of the most frequent allele M

and the homozygosity of the total population HT when the number of alleles I is specified.

When I is specified, we do not require that all I alleles have positive frequency in the total

population; we merely forbid the presence of more than I alleles with positive frequency.

For both M and HT, we first identify circumstances in which the bounds obtained by

Jakobsson et al. (2013) for unspecified I hold strictly and circumstances in which new strict

bounds are required.

3.1. Bounds on F in terms of M when I is left unspecified

We previously found that when there are two subpopulations of equal size and an

unspecified number of alleles at the locus, F can only reach values near 1 when the
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frequency of the most frequent allele and total homozygosity are near 1/2 (Jakobsson et al.,

2013). Specifically, in terms of the frequency of the most frequent allele, M, we have

(2)

(3)

(4)

3.2. Circumstances in which the unspecified-I bounds for F in terms of M apply strictly

When the number of alleles is unspecified—and therefore permitted to be arbitrarily large—

F is bounded by the functions of M given in Eq. (2). Under what conditions do these bounds

apply when the number of alleles is specified?

First, we note that the domain of M is restricted by I; M ∈ [1/I, 1]. Because the sum of the

allele frequencies is 1 and M is the largest of these frequencies, M must be at least as great

as the mean of the I frequencies, or 1/I.

Second, for any M allowed given the number of alleles I, the lower bound on F is always 0.

To see this, pick a set of allele frequencies with a desired largest allele frequency M. Set the

allele frequencies in both subpopulations to be equal to these values. In this case, HS = HT,

and Eq. (1) shows that F = 0.

Third, we previously showed that for M ∈ [1/2, 1], it is possible to achieve the upper bound

on F given in Eq. (4) with I = 2 alleles (Jakobsson et al., 2013, Eq. 7). Because our

framework allows us to set some of the I allele frequencies to be 0 in both subpopulations,

we can achieve the previously obtained upper bound on F with I > 2 alleles by setting I − 2

of the allele frequencies to zero in both subpopulations and then following the procedure of

Jakobsson et al. (2013) for the remaining two alleles. That is, we set the allele frequencies of

the two subpopulations to differ as much as possible, choosing either (p11, p21) = (1, 2 M −

1) or (p11, p21) = (2 M − 1, 1).

Similarly, when I > 2 and M ∈ [1/I, 1/2), we previously showed that the upper bound on F

given in Eq. (3) can be achieved when for each subpopulation, there are exactly ⌈(2 M)−1⌉

alleles that have positive frequency in the subpopulation, all of which have frequencies of 0

in the other subpopulation (Jakobsson et al., 2013, Eq. 9). When there are two

subpopulations, it is possible to have ⌈(2 M)−1⌉ distinct alleles in each subpopulation if

(5)
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Because M ≥ 1/I, the maximum value that ⌈(2 M)−1⌉ can take with I alleles is ⌈I/2⌉. When I

is even, ⌈I/2⌉ = I/2, implying that the condition in Eq. (5) is met. Thus, when the number of

alleles I is even, the upper bound on F from Eq. (3) applies for M ∈ [1/I, 1/2). However,

when I is odd, 2 ⌈I/2⌉ = I + 1 > I, and the condition is not always met. Indeed, the condition

in Eq. (5) is only met when M ≥ 1/(I − 1), and it is not met when M ∈ [1/I, 1/(I − 1)).

Combining these conclusions, we can state that for even I, the bounds on F given in Eq. (2)

apply strictly for all allowed values of M ∈ [1/I, 1]. When I is odd, the bounds on F from Eq.

(2) apply strictly for M ∈ [1/(I − 1), 1]. For odd I and M ∈ [1/I, 1/(I − 1)), the lower bound

on F is 0, and the upper bound on F from Eq. (3) cannot be achieved; this upper bound can

therefore be tightened.

3.3. Bounds on F in terms of M when I is specified

We begin by stating our main results for the bounds on F in terms of M ∈ (0, 1) when the

number of alleles, I, is specified to be an integer greater than or equal to 2. We then

complete the proof, leaving many of the details for the appendices.

Theorem 1. Suppose that F is defined as in Eq. (1), M is the frequency of the most frequent

allele at a locus, and I is the number of alleles at the locus. I is an integer, and I ≥ 2. If I is

even, then

(6)

and if I is odd, then

(7)

where

(8)

(9)

Proof. We have already argued that the bounds on F in terms of M are the same as in the

case of unspecified I when I is even or when I is odd and M ≥ 1/(I −1). It remains to prove

that if I is odd and M ∈ [1/I, 1/(I − 1)), then F ≤ M/(2 − I M). The proof has four steps.

A. We show that for M ∈ [1/I, 1/(I − 1)), when F is at its maximum in terms of M, no

more than one allele has positive frequency in both subpopulations (Appendix A).

B. We show that when M ∈ [1/I, 1/(I − 1)), each subpopulation has positive frequency

for at least (I +1)/2 alleles. In conjunction with the result of step (A) and the fact
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that I is odd, this result implies that when F is maximized, each subpopulation has

positive frequency for exactly (I +1)/2 alleles and exactly one allele has positive

frequency in both subpopulations. We also show that the allele with positive

frequency in both subpopulations is not the most frequent allele unless all alleles

have the same frequency (Appendix B). Steps (A) and (B) allow us to write the

allele frequencies in each subpopulation as shown in Table 2.

C. (A) and (B) reduce the I = 3 case to a single-variable optimization problem, which

we solve directly to find that for I = 3 and M ∈ [1/3, 1/2), the maximum value of F

is M/(2 − 3 M) (Appendix C).

D. For odd I ≥ 5, we show that when F is maximized, at least (I − 3)/2 alleles have

frequency 2 M in subpopulation 1 and frequency 0 in subpopulation 2. Similarly, at

least (I − 3)/2 of the remaining alleles have frequency 0 in subpopulation 1 and

frequency 2 M in subpopulation 2. We then obtain the arrangement of allele

frequencies shown in Table 3, from which we can directly solve the case of I ≥ 5 as

a two-variable optimization problem in p1I and p2I. Doing so reveals that setting p1I

= p2I = 1 − M (I − 1) and setting other allele frequencies as shown in Table 3

maximizes F as a function of M. For odd I ≥ 5 and M ∈ [1/I, 1/(I − 1)), the

maximum value of F that results is M/(2 − IM) (Appendix D). This completes the

proof.

Figure 1 shows the upper bound on F as a function of M for specified I. The figure shows

that limiting to a specified number of alleles I has important effects on the allowable domain

of M. In addition, when I is odd, the maximum value of F for M ∈ [1/I, 1/(I − 1)) is lower

than when I is unspecified, particularly when I is small. If I is odd and M = 1/I, then F ≤ 1/I.

Thus, the bottom-left extrema of the black regions fall on the line F = M. The total area of

the black regions in Figure 1 between the arbitary-I and fixed-I upper bounds, representing

parts of the space accessible when I is unspecified but no longer accessible when I is

specified, is approximately 0.002971 (Appendix E). The total area of all shaded regions,

representing the mean maximal value of F over the unit interval for M in the unspecified-I

case, is approximately 0.358538 (Jakobsson et al., 2013).

4. Bounds on F as a function of HT

To find bounds on F in terms of HT when I is specified, we follow an argument that is

similar in structure to the one we used to find bounds on F in terms of M. We begin by

identifying the cases in which the arbitrary-I bounds are not strict when I is specified. Once

these cases are identified, we make arguments to reduce the number of variables before

proceeding to direct optimization.

4.1. Bounds on F in terms of HT when I is left unspecified

We previously showed that when there are two subpopulations of the same size and an

unspecified number of alleles at the locus, F is constrained by the homozygosity of the total

population at the locus (Jakobsson et al., 2013). Specifically, in terms of the homozygosity

of the total population, HT, where
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(10)

(11)

(12)

4.2. Circumstances in which the unspecified-I bounds for F in terms of HT apply strictly

Just as with M, the domain of HT is restricted by the number of alleles, HT ∈ [1/I, 1] (Reddy

and Rosenberg, 2012, Lemma 4). As stated above, the lower bound on F is 0 for any choice

of allele frequencies for the total population and thus for any HT.

For HT ≥ 1/2, we have shown elsewhere that the upper bound on F given in Eq. (12) can be

achieved with I ≥ 2 by setting  and p1i

= p2i = 0 for all i > 2 (Jakobsson et al., 2013).

For HT < 1/2, comparison of Eq. (A.3) and Eq. (11) shows that F achieves its upper bound in

terms of HT when . For even I, we can achieve the upper bound on F when

HT = 1/I by setting I/2 alleles to have frequency 2/I in subpopulation 1 and setting the other

I/2 alleles to have frequency 2/I in subpopulation 2. In this case, HT = 1/I, ,

and F = 1/(I − 1) = HT/(1 − HT), which is the arbitrary-I upper bound for HT ∈ (0, 1/2).

Further, Theorem 1ii of Rosenberg and Jakobsson (2008) guarantees that we can specify a

set of ⌈H−1⌉ alleles to have homozygosity H. Because

, setting I/2 alleles to give H1 = 2 HT in

subpopulation 1, setting I/2 alleles to have homozygosity H2 = 2 HT in subpopulation 2, and

setting no alleles to have positive frequency in both subpopulations simultaneously will

achieve the upper bound on F from Eq. (11) for all HT ∈ [1/I, 1/2).

For odd I, the upper bound on F from Eq. (11) can be achieved when HT = I/(I2 − 1) by

setting (I+1)/2 alleles to have frequency 2/(I + 1) in one subpopulation and setting the other

(I − 1)/2 alleles to have frequency 2/(I − 1) in the other subpopulation. In this case, HT =

I/(I2 − 1), , and F = I/(I2 − I − 1) = HT /(1 − HT), which is the upper bound

from Eq. (11). Further, the upper bound on F can be achieved for HT ∈ [I/(I2−1), 1/(I − 1))

by setting H1 = 2/(I − 1) using (I − 1)/2 alleles and setting H2 = 4 HT − 2/(I − 1) using (I +

1)/2 alleles, with no alleles simultaneously having positive frequency in both

subpopulations. For HT ∈ [I/(I2 − 1), 1/(I − 1)), H2 ∈ [2/(I + 1), 2/(I − 1)). This range of H2

values requires  alleles, which is exactly the number of alleles we can set to

have positive values in subpopulation 2.
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For odd I and HT ∈ [1/(I − 1), 1/2), we can use only I − 1 of the alleles and the approach

outlined above for even numbers of alleles to achieve the upper bound in Eq. (11). That is,

for odd I and HT ∈ [1/(I − 1), 1/2), we can obtain H1 = 2 HT using (I − 1)/2 alleles and H2 =

2 HT using (I − 1)/2 other alleles, so that only I − 1 of the I available alleles have nonzero

frequency (each in exactly one subpopulation).

Combining these results, we can confirm that for HT ∈ [1/I, 1), the bounds on F in terms of

HT from Eq. (10) apply strictly when I is specified except when I is odd and HT ∈ [1/I, I/(I2

− 1)), in which case the strict upper bound on F remains to be determined. To find the upper

bound on F in this region, we follow an argument similar to the one we used for M, reducing

the number of variables as much as possible before attempting the optimization.

4.3. Bounds on F in terms of HT when I is specified

We state our main results for the bounds on F in terms of HT when the number of alleles, I,

is specified to be an integer greater than or equal to 2. We then outline the proof, again

leaving many of the details to the appendices.

Theorem 2. Suppose that F is defined as in Eq. (1), HT is the homozygosity of the total

population at a locus, and I is the number of alleles at the locus. I is an integer, and I ≥ 2. If

I is even, then

(13)

and if I is odd, then

(14)

where

(15)

(16)

(17)
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(18)

Proof. We have already shown that the bounds on F in terms of HT are the same in the

specified-I case as in the unspecified-I case of Jakobsson et al. (2013) when I is even or

when I is odd and HT ≥ I/(I2 − 1). It remains to show that when I is odd and HT ∈ [1/I, I/(I2 −

1)), the upper bound on F is as shown in Theorem 2, Eqs. (15) and (16). The proof has four

steps.

A. We proved in Appendix A that for all possible sets of population-level allele

frequencies with M ≤ 1/2, the maximum F is achieved when no more than one

allele has positive frequency in both subpopulations. If HT ∈ [1/I, I/(I2 − 1)) for I ≥

3, then M < 1/2, so we can again exclude possible solutions in which more than one

allele has positive frequency in both subpopulations.

B. We prove in Appendix F that when HT ∈ [1/I, I/(I2 − 1)) and F is maximized in

terms of HT, each subpopulation must have positive frequency for exactly (I + 1)/2

alleles, counting the allele for which both subpopulations are allowed to have

positive frequency, which we label allele I. This gives us the arrangement in Table

2, but because we are not currently considering M, we replace the 2 M in the first

row and column with p11.

C. We show that the arrangement of allele frequencies can be updated to the one in

Table 4. That is, we show that if F is maximized in terms of HT, I is odd, and HT ∈

[1/I, I/(I2 − 1)), then (I − 1)/2 alleles have a shared positive frequency in

subpopulation 1 and frequency 0 in subpopulation 2 and another (I − 1)/2 alleles

have a (possibly distinct) shared positive frequency in subpopulation 2 and

frequency 0 in subpopulation 1. We write these shared frequencies in terms of the

frequencies of allele I in the two subpopulations, where allele I is the allele that has

positive frequency in both subpopulations. The subpopulation allele frequencies of

allele I are p1I and p2I. We further show that the value of p2I that maximizes F

while keeping HT fixed can be written as a function of p1I. We call this maximizing

value . Using  and the arrangement in Table 4, .

Thus, maximizing F in terms of HT is equivalent to minimizing the product ,

a function of a single variable, p1I (Appendix G).

D. We give the details of the minimization of  in Appendix H. Completing the

optimization reveals that the range with which we are concerned, HT ∈ [1/I, I/(I2 −

1)), must be split into two segments, [1/I, (I2 + I − 1)/(I3 + I2 − I − 1)) and [(I2 + I −

1)/(I3 + I2 − I − 1), I/(I2 − 1)). For HT ∈ [1/I, (I2 + I − 1)/(I3 + I2 − I − 1)), the

maximum F is achieved by setting

(19)

This gives the inequality F ≤ U (HT), with U (HT) as in Eq. (15).
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For HT ∈ [(I2 + I − 1)/(I3 + I2 − I − 1), I/(I2 − 1)), the maximum F is achieved by setting

(20)

and

(21)

or by switching these assignments and setting p1I to equal the expression on the right side of

Eq. (21) and setting p2I to equal the expression on the right side of Eq. (20). This gives the

inequality F ≤ u(HT), with u(HT) as in Eq. (16). This completes the proof of Theorem 2.

Figure 2 shows the upper bound on F as a function of HT for specified I. As in the case of M,

limiting to a specified number of alleles I has important effects on the domain of HT. When I

is odd, the maximum value of F for HT ∈ [1/I, I/(I2 − 1)) is lower than when I is unspecified.

Analogously to the case of M, if I is odd and HT = 1/I, then F ≤ 1/I, which implies that the

bottom-left extrema of the black regions in Figure 2 fall on the line F = HT. However, unlike

in the case of M, in which a single function describes the upper bound on F in the interval M

∈ [1/I, 1/(I −1)), we can see that for odd I, the interval HT ∈ [1/I, 1/(I − 1)) is split into three

components, one where U (HT) is the upper bound, a second where u(HT) is the upper

bound, and a third where R(HT) is the upper bound.

5. Discussion

We have extended the work of Jakobsson et al. (2013) by finding strict bounds on FST in

terms of the frequency of the most frequent allele M and the homozygosity of the total

population HT when the number of alleles I is specified. Specifying the number of alleles I

restricts the domain of both the frequency of the most frequent allele and the homozygosity

of the total population to the interval [1/I, 1) rather than the whole unit interval. In addition

to this domain restriction, the upper bound on FST changes when the number of alleles is

odd in a portion of the interval near its left endpoint. In particular, compared with the

unspecified-I case, the upper bound on FST in terms of M changes for odd I and M ∈ [1/I,

1/(I − 1)), and the upper bound on FST in terms of HT changes for odd I and HT ∈ [1/I, I/(I2

− 1)). In the case of M, the width of the interval in which the upper bound changes is given

by 1/[I(I − 1)], and the proportion of the domain on M for which the bound changes is 1/(I

−1)2. In the case of HT, the upper bound changes for an interval of width 1/(I3 − I), which is

1/[(I − 1)2(I + 1)] as a proportion of the domain on HT. Thus, for M and especially for HT,

the proportion of the space for which the upper bound on F changes when the number of

alleles is specified becomes smaller as the number of alleles grows.

Our extension to the work of Jakobsson et al. (2013) is analogous to the extension of the

results of Rosenberg and Jakobsson (2008) by Reddy and Rosenberg (2012). Rosenberg and

Jakobsson (2008) determined the bounds on homozygosity in terms of the frequency of the

most frequent allele when the number of alleles is left unspecified. Reddy and Rosenberg
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(2012) found that the bounds on the frequency of the most frequent allele in terms of the

homozygosity of a single population are more constrained when the number of alleles is

specified than when the number of alleles is left unspecified, especially for small numbers of

alleles. Similarly, we find that the extent to which the bounds on FST in terms of the

frequency of the most frequent allele and the homozygosity of the total population change

decreases when the number of alleles increases. However, in contrast to Reddy and

Rosenberg’s (2012) results, we find that the bounds on FST in terms of the frequency of the

most frequent allele and the homozygosity of the total population only change shape relative

to the case of an unspecified number of alleles when the number of alleles at the locus is

odd.

One feature of the approach we have taken here and in other contexts (Rosenberg and

Jakobsson, 2008; VanLiere and Rosenberg, 2008; Reddy and Rosenberg, 2012; Jakobsson et

al., 2013) is that we have worked with parametric allele frequencies, considering population-

genetic statistics as functions of sets of non-negative numbers constrained to sum to one

rather than as outcomes of evolutionary processes. It has been pointed out that ultimately,

the performance of population-genetic statistics in contexts of biological interest is what

determines their usefulness. In particular, Rousset (2013) notes that “model-free”

approaches like ours fail to identify the biological conditions under which FST calculations

will produce biased results with respect to biological goals such as, for example, examining

differences in coalescence times for different sets of lineages. We agree that studying the

performance of FST and other proposed measures of population differentiation (Hedrick,

2005; Jost, 2008) under specific evolutionary models is necessary for fully articulating the

effects of the mathematical properties of population-genetic statistics that we identify

(Whitlock, 2011; Alcala et al., 2014). We would add another potential concern: we discuss

the dependence of the parameter FST on properties of the allele frequencies, but estimators

of FST also have properties that depend on locus allele frequencies, as demonstrated, for

example, by Bhatia et al. (2013), who discussed the behavior of various estimators of FST in

the presence of rare variants. At the same time, we hasten to note that the benefit of our

parametric mathematical approach is that the results we identify hold under all possible

population models that employ the statistics we study and define them in the same way. As

such, our results are a starting point for studying the properties of population-genetic

statistics in interesting biological scenarios and can help in the identification of biological

contexts in which the mathematical properties we identify may be important. Further, they

are available as a guide even when data analysts use FST to comment on applications and

theoretical possibilities that fall outside the rich set of theoretically-motivated interpretations

of FST.
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Appendix A At maximum F, no more than one allele has positive frequency

in both subpopulations

As a first step in finding the upper bound on F for odd I and M ∈ [1/I, 1/(I − 1)), we prove

that for any set of population-level allele frequencies with M ≤ 1/2, the maximum value of F

is achieved when no more than one allele simultaneously has positive frequency in both

subpopulations.

Assume that there exist two alleles that both have positive frequency in both subpopulations.

Call the alleles 1 and 2, and call the frequencies of alleles 1 and 2 in subpopulation 1 a and

b. Call the frequencies of alleles 1 and 2 in subpopulation 2 c and d, as shown in Table A.5.

Note that a + b ≤ 1 and c + d ≤ 1. Without loss of generality, assume that

(A.1)

(A.2)

That is, assume that we have labeled the alleles and subpopulations such that allele 1 has a

mean frequency at least as great as allele 2 and such that allele 1 has frequency in

subpopulation 1 at least as great as its frequency in subpopulation 2. The sums a + c and b +

d are guaranteed to be less than or equal to 1 because M ≤ 1/2.

To maximize F, we use an expression from Jakobsson et al. (2013, Eq. 30). Noting that in

the case of two subpopulations, , we can write

(A.3)

Because HT is a function of the mean (or total population) allele frequencies at the locus, an

arrangement of the allele frequencies that keeps the mean allele frequencies the same for

every allele but decreases  will increase F. We will show that whenever there are

two alleles with positive frequency in both subpopulations and mean allele frequencies less

than or equal to 1/2, we can reduce  but keep HT (and M) the same by replacing

the allele frequencies at alleles 1 and 2 so that no more than one allele has positive

frequency in both subpopulations.

To prove this claim, consider two cases. First, if b ≥ c, we rearrange frequencies in the way

shown in the left side of Table A.6. We add c to a and d and subtract it from b. We are

allowed to add c to a while still producing valid allele frequencies because a + c ≤ 1.

Similarly, we can add c to d because c + d ≤ 1, and we can subtract c from b because b ≥ c,

so b − c ≥ 0. Making these changes does not change the mean allele frequency for any allele,

so HT does not change, nor does M. Thus, if ac + bd > (b − c)(d+c), then 

decreases as a result of the rearrangement, and F will increase. The inequality ac + bd > (b −
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c)(d + c) is equivalent to the inequality a + c > b −d. This inequality is guaranteed to be true

because we assumed in Eq. (A.1) that a + c ≥ b + d and because d is positive. Thus, when b

≥ c, rearranging as in the left side of Table A.6 increases F.

Taking the second case of b < c, we rearrange in the way shown in the right side of Table A.

6, adding b to a and d and subtracting it from c. Following reasoning similar to that used in

the case of b ≥ c, we find that F increases if ac + bd > (a + b)(c − b). This inequality is

equivalent to d + b > c − a. We assumed in Eq. (A.2) that a ≥ c, so because d + b > 0 and c −

a ≤ 0, d + b > c − a. Thus, combining with the b ≥ c case, whenever M ≤ 1/2 and the two

subpopulations have positive allele frequencies for more than one allele, F can be increased

without changing M or HT by rearranging the subpopulation allele frequencies so that no

more than one allele has positive frequency in both subpopulations.

This result allows us to eliminate candidates for maximum F in terms of M or HT in which

more than one allele simultaneously has positive frequency in both subpopulations.

Table A.5

Notation for a case with two or more shared alleles.

Allele

Subpopulation 1 2 …

1 a b …

2 c d …

Mean …

Product ac bd …

Table A.6

A scheme for rearranging two shared alleles to get one shared allele and larger F.

b ≥ c b < c

Subpopulation Allele 1 Allele 2 Allele 1 Allele 2

1 a + c b − c a + b 0

2 0 d + c c − b d + b

Mean

Product 0 (b − c)(d + c) (a + b)(c − b) 0
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Appendix B. At maximum F in terms of M, exactly one allele has positive

frequency in both subpopulations, and it is not the most frequent

Assume that the single shared allele that is allowed to have positive frequency in both

subpopulations is allele I. We can deduce three important facts from the results of Appendix

A.

First, when I is odd and M ∈ [1/I, 1/(I − 1)), both subpopulations must have positive

frequency for allele I. To prove this, assume without loss of generality that the number of

alleles with positive frequency in subpopulation 2 is less than or equal to the number of

alleles with positive frequency in subpopulation 1. If one subpopulation has an allele

frequency of 0 for allele I, then subpopulation 2 can have positive frequency for at most (I −

1)/2 alleles. The most frequent allele in subpopulation 2 must then have an allele frequency

of at least 2/(I − 1), which implies that the mean allele frequency for that allele must be at

least 1/(I − 1). This means that M ≥ 1/(I − 1), which is outside the range with which we are

concerned.

Second, taking the shared allele into account, it follows that each subpopulation must have

positive frequency for exactly (I + 1)/2 alleles.

Third, if allele I is the allele for which both subpopulations are allowed to have positive

frequency, then allele I is not the most frequent allele unless all alleles have the same

frequency and M = 1/I. We prove this claim using a rearrangement strategy similar to the

one we used in Appendix A. Label two alleles allele 1 and allele 2. Call the frequency of

allele 1 in subpopulation 1 a, the frequency of allele 2 in subpopulation 1 b, the frequency of

allele 1 in subpopulation 2 c, and let the frequency of allele 2 in subpopulation 2 be 0, as

shown in the left side of Table B.7. Assume that b < a + c ≤ 2/(I − 1), with a + c ≤ 2/(I − 1)

because M ≤ 1/(I − 1). Also, assume that excluding a from consideration, b is the largest

allele frequency in subpopulation 1. Excluding allele 1, frequency equal to 1 − a must be

spread over (I − 1)/2 alleles, so b ≥ 2(1 − a)/(I − 1). At the same time, c ≤ 2/(I − 1) − a. This

guarantees that b ≥ c for the cases we are considering, because 2(1 − a)/(I − 1) ≥ 2/(I − 1) −

a whenever I ≥ 3.

Because b ≥ c, we can rearrange the allele frequencies as shown in the right side of Table B.

7, adding c to a, subtracting c from b, and switching the two alleles’ frequencies in

subpopulation 2. This rearrangement does not change any of the mean allele frequencies and

thus does not change M. The rearrangement will increase F if ac > (b − c)c. But this

inequality is equivalent to b < a + c, which is what we assumed initially, so F does increase.

Thus, as long as the mean allele frequencies are not the same for every allele, the most

frequent allele will have positive frequency in only one subpopulation when F is maximized

conditional on M. (If the mean frequencies are the same for every allele, then every mean

allele frequency is equal to M, including the mean frequency of the shared allele.)

Thus, we can update the arrangement shown in Table 1 to the one shown in Table 2. For the

remainder of the proof of Theorem 1, we assume that the shared allele that is allowed to

have positive frequency in both subpopulations is allele I, and we assume without loss of
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generality that the most frequent allele is allele 1, which has positive frequency in

subpopulation 1. We have reduced the number of variables from 2I − 3 to I − 2.

Table B.7

The allele for which both subpopulations have positive frequency is not the most frequent

allele unless all mean allele frequencies are equal.

Start Rearrangement

Subpopulation Allele 1 Allele 2 Allele 1 Allele 2

1 a b a + c b − c

2 c 0 0 c

Mean

Product ac 0 0 (b − c)c

Appendix C. Upper bound on F in terms of M for I = 3 and M ∈ [1/3, 1/2)

The results of Appendix A and Appendix B allow us to solve directly the I = 3 case in terms

of M as a single-variable optimization problem. When considering the I = 3 case, the

structure specified in Table 2 gives the layout shown in Table C.8. Because M is fixed, only

one allele frequency in subpopulation 2 is free to vary. Plugging the allele frequencies

shown in Table C.8 into Eq. (A.3) gives

(C.1)

Obtaining the upper bound

Because M is the largest mean allele frequency allowed, p23 ∈ [1 − 2M, 4M − 1]. The

constraint p23 ≥ 1 − 2M is found by noting that the mean frequency of allele 1, or M, must be

greater than or equal to the mean frequency of allele 2, or (1 − p23)/2. The constraint p23 ≤

4M − 1 arises from a similar argument comparing the frequencies of alleles 1 and 3.

To maximize F, we must consider p23 = 1 − 2M, p23 = 4M − 1, and any maxima of Eq. (C.1)

with respect to p23 as candidate values for p23. Taking the derivative of Eq. (C.1) with

respect to p23 and simplifying gives

(C.2)

The denominator of ∂F/∂p23 is non-negative and in fact is strictly positive for the values we

consider, as it can only equal 0 when , a condition that

generates values of p23 outside of [0, 1] when M ∈ [1/3, 1/2). The numerator is a concave-
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down quadratic function in p23. Thus, if the roots are real, then ∂F/p23 is positive between its

roots. ∂F/p23 equals zero when

(C.3)

The larger of these two solutions is always greater than 1 because M ∈ [1/3, 1/2). Because

∂F/p23 is positive between its roots, the smaller solution represents a local minimum of F.

As we seek to maximize F for p23 ∈ [1 − 2M, 4M − 1], we can ignore both of these solutions

as candidates. The maximum value of F will occur when p23 is either as large or as small as

possible; that is, when either p23 = 1 − 2M or p23 = 4M − 1.

When p23 = 1 − 2M,

(C.4)

and when p23 = 4M − 1,

(C.5)

Subtracting the right side of Eq. (C.5) from the right side of Eq. (C.4) gives

(C.6)

Table C.8

Maximizing F when I = 3 and M ∈ .

Allele

Subpopulation 1 2 3

1 2M 0 1 − 2M

2 0 1 − p23 p23

Mean M

When the right side of Eq. (C.6) is non-negative, choosing p23 = 1 − 2M maximizes F. Both

the numerator and denominator of the right side of Eq. (C.6) are concave-down quadratics in

M and take positive values between their roots. The denominator is positive for M ∈ (0, 2/3),

and the numerator is non-negative for M ∈ [1/3, 1/2]. Thus, for M ∈ [1/3, 1/2], the right side

of Eq. (C.6) is non-negative, and setting p23 = 1 − 2M maximizes F. We can now state strict

bounds on F in terms of M when I = 3:
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(C.7)

The bound for 1/2 ≤ M < 1 comes from Eq. (4).

Appendix D. Upper bound on F in terms of M for odd I ≥ 5 and M ∈ [1/I, 1/(I −

1))

To maximize F for odd I ≥ 5 and M ∈ [1/I, 1/(I − 1)), we return to the situation of I − 2

variables described in Table 2. We will reduce the number of variables to 2 and then solve

the optimization problem directly.

To reduce the number of variables, we make use of an expression for F from Jakobsson et

al. (2013, Eq. 8),

(D.1)

Obtaining the upper bound

We assume that the allele for which both subpopulations are allowed to have positive

frequency is allele I. Plugging in the allele frequency structure from Table 2 and defining

 and  lets us write

(D.2)

Eq. (D.2) makes clear that conditional on p1I and p2I, F is maximized when  and  are

maximized.  and  are sums of squares of non-negative numbers that add up to a fixed

sum and that are each bounded above by a constant—2M in this case. Lemma 3 of

Rosenberg and Jakobsson (2008) guarantees that such sums of squares are maximized by

setting as many of the numbers as possible to be equal to the upper bound. In this case, that

means setting as many alleles as possible to have frequency 2M. Within each subpopulation,

when M ∈ [1/I, 1/(I − 1)), at least (I − 3)/2 alleles can be set to have frequency 2M. To see

this, note that the allele frequencies in a subpopulation must sum to 1, so the number of

alleles that can be set to frequency 2M is given by, in the case of subpopulation 1, ⌊(1 −

p1I)/(2M)⌋. It follows that

(D.3)

The first step is true because p1I ≤ 2M, the second step because (1 − 2M)/(2M) is decreasing

in M for M < 1/2 (and thus for M < 1/(I − 1) when I ≥ 3), and the third step because I is an

odd integer, so (I − 3)/2 is an integer.
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When we set (I − 3)/2 alleles in each subpopulation to have frequency 2M, we can update

the arrangement in Table 2 to the one in Table 3. Plugging these allele frequencies into Eq.

(D.1) gives a new expression for F,

(D.4)

where 2Hs is given by

(D.5)

With M fixed, all that remains is to pick p1I and p2I to maximize F. As in the three-allele

case, we search for the largest values of F produced by choosing p1I and p2I to either be their

maximum or minimum values or to be any local maxima occurring within their allowed

ranges. We consider p1I first.

Taking the derivative of F with respect to p1I and simplifying gives

(D.6)

where

(D.

7)

(D.

8)

S(p1I, p2I, M) is a concave-down quadratic function in p1I, and s(p1I, p2I, M) is non-negative.

Consequently, the equation ∂F/p1I = 0 has at most two real solutions. If ∂F/p1I = 0 has two

real solutions, then ∂F/p1I will take positive values only in the interval between those

solutions. Therefore, the larger solution will be a value of p1I at which F is locally

maximized and the smaller solution will be a value of p1I at which F is locally minimized.

(The roots of S, the numerator of ∂F/p1I, might not be roots of ∂F/p1I because s, the

denominator, could equal zero at the same point. However, we show below that we can

exclude the roots of S as candidate maxima of F for our purposes, regardless of the value of

s.) The values of p1I that solve ∂F/p1I = 0 are

(D.9)

where

(D.

10)
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The larger of these two solutions for p1I is greater than 1—and therefore outside our allowed

range for p1I—because p2I ∈ (0, 1). The smaller solution gives a local minimum, and we

seek to maximize F. We can therefore ignore both solutions and simply compare the values

of F given by the minimum and maximum allowed values of p1I.

The allele frequencies in subpopulation 1 must sum to one, and besides p1I, (I − 1)/2 alleles

can have positive frequency of up to 2M each. Therefore, p1I ≥ 1 − M(I − 1). Because allele I

cannot have mean frequency greater than M, p1I ≤ 2M − p2I.

Setting p1I = 1 − M(I − 1) in Eq. (D.4) gives

(D.11)

Similarly, setting p1I = 2M − p2I in Eq. (D.4) gives

(D.12)

Taking Fmin(p1I) − Fmax(p1I) and simplifying gives

(D.13)

Whenever the right side of Eq. (D.13) is non-negative, choosing p1I = 1 − M(I − 1)

maximizes F. The numerator of the right side of Eq. (D.13) is a concave-down quadratic

function in p2I with roots at p2I = 0 and p2I = (I + 1)M − 1. The denominator is a concave-

down quadratic in p2I with roots at . The minimum value that

p2I can take for M ∈ [1/I, 1/(I − 1)) is 1 − max(M)(I − 1) = 1 − (I − 1)/(I − 1) = 0. The

maximum value that p2I can take for any allowed p1I is 2M − min(p1I) = 2M − [1 − (I − 1)M]

= (I + 1)M − 1. Thus, for all allowed values of p2I, the numerator of the right side of Eq. (D.

13) is non-negative. If the denominator is positive for allowed values of p2I, then choosing

p1I = 1 − M(I − 1) maximizes F. The denominator is positive between its roots. Thus,

choosing p2I = 1 − M (I − 1) maximizes F if (i)  and (ii)

Condition (i) is true if:

(D.14)
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If this interval contains the values of M for which we seek to maximize F, [1/I, 1/(I − 1)),

then condition (i) holds. For I > 1, the lower bound of the interval specified by condition (i)

is less than 0, as . Because 0 < 1/I for positive I, condition (i) holds if

(D.15)

This inequality is true when , which is true for all I > 2. Because we

are only considering odd I ≥ 5, condition (i) is true.

Moreover, for M ∈ [1/I, 1/(I − 1)), the truth of condition (i) implies the truth of condition

(ii). Condition (i) can be restated as , and condition (ii) can be

restated as . Because M ≥ IM − 1 when M ≤ 1/(I − 1),

condition (ii) is guaranteed to hold when condition (i) holds and M ≤ 1/(I − 1).

Thus, for odd I and M ∈ [1/I, 1/(I − 1)), choosing p1I = 1 − M (I − 1) and other

subpopulation 1 allele frequencies as shown in Table 3 maximizes F as a function of p1I.

Further, Eq. (D.4) is symmetric in (p1I, p2I), so analogous steps for p2I identify p2I = 1 − M

(I − 1) as the choice that maximizes F as a function of p2I. Plugging 1 − M (I − 1) in for both

p1I and p2I in Eq. (D.4) and simplifying gives the upper bound on F for odd I ≥ 5 and M ∈

[1/I, 1/(I − 1)),

(D.16)

Appendix E. The reduction in area under the upper bound on F in terms of

M

To calculate the total area of the black regions in the Figure 1 representing parts of the space

accessible when I is unspecified but not accessible when I is specified, we calculate the

integral from 0 to 1/2 of the arbitrary-I upper bound on F minus the upper bound on F when

I is specified. The integral of the arbitrary-I upper bound from 0 to 1/2 is

(E.

1)

This expression comes from Jakobsson et al. 2013, Eq. 18, with the multiplication by 1/2

coming from the fact that Jakobsson et al. integrated a function of σ1 = 2M from 0 to 1

rather than integrating a function of M from 0 to 1/2. To calculate the integral of the

specified-I upper bound on F, we start by summing the areas under the parts of the

unspecified-I bounds that apply for even I from 4 to ∞. Modifying a result of Jakobsson et

al. (2013, Eq. A1) and letting k = I/2 gives
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(E.

2)

To get this expression, we change the bounds of integration for the integral in Jakobsson et

al. (2013, Eq. A1) such that we integrate over the regions corresponding to M ∈ [1/I, 1/(I −

1)) for even I ≥ 4. Because Jakobsson et al. integrated a function of σ = 2M, we multiply by

1/2 to get the corresponding integral for M. The first sum simplifies to 1 − 2 ln 2, and the

second sum is evaluated numerically.

To complete the integral of the specified-I upper bound on F, we integrate M/(2 − IM),

summing the definite integrals that result when integrating from 1/I to 1/(I − 1) and odd I ≥

3:

(E.3)

Notice that the second term can be evaluated exactly, as

(E.4)

Numerically evaluating the expression that results when the expressions in Eq. (E.2) and Eq.

(E.3) are subtracted from the expression in Eq. (E.1) reveals that the total area of the black
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regions between the arbitary-I and fixed I upper bounds is approximately 0.002971. The

total area of all shaded regions is approximately 0.358538 (Jakobsson et al., 2013).

Appendix F. Exactly (I + 1)/2 alleles have positive frequency in each

subpopulation when F is maximized in terms of HT

In this appendix, we are in the setting of odd I and HT ∈ [1/I, I/ (I2 − 1)). In Appendix A, we

showed that when F is maximized in terms of HT, no more than one allele simultaneously

has positive frequency in both subpopulations. Here, we prove that when there is no more

than one allele for which both subpopulations have positive frequency, both subpopulations

must have exactly (I + 1)/2 alleles with positive frequency.

Consider the situation depicted in Table F.9, which is modified from Table 4. We seek to

prove that when only one allele is allowed to have positive frequency in both subpopulations

and I is odd, then unless each subpopulation has positive frequency for exactly (I + 1)/2

alleles, HT ≥ I/(I2 − 1), which places HT outside the set of possibilities we are considering.

We handle the I = 3 and I ≥ 5 cases separately. After dispensing with the I = 3 case directly,

we prove our claim for I ≥ 5 by first minimizing HT and showing that if each subpopulation

has positive frequency for exactly (I + 1)/2 alleles, then the minimum achievable value of

HT is 1/I. Next, we show that when it is not the case that each subpopulation has positive

frequency for exactly (I + 1)/2 alleles, the minimum achievable HT given that p1I and p2I are

in the interval [0, 1] is I/(I2 − 1).

We designate the number of alleles that have positive frequency in subpopulation 1 but do

not appear in subpopulation 2 by ℓ. We have arranged the allele frequencies in Table F.9 to

minimize HT conditional on p1I, p2I, and ℓ, distributing the mass that remains in each

subpopulation after accounting for allele I evenly over the alleles that remain accessible to

that subpopulation (Reddy and Rosenberg, 2012).

Because the problem is symmetric in p1I and p2I, we can, without loss of generality,

consider only values of ℓ ∈ {0, 1, …, (I − 1)/2}. Note that the number of alleles with

positive frequency in subpopulation 1 is ℓ + 1 and that the number of alleles with positive

frequency in subpopulation 2 is I − ℓ. Therefore, if among the candidate values of ℓ ∈ {0, 1,

…, (I − 1)/2}, ℓ ≤ (I − 3)/2 implies HT ≥ I2/(I − 1), then each subpopulation must have

positive frequency for exactly (I + 1)/2 alleles in order to achieve the HT values in [1/I, I/(I2

− 1)) that we consider for maximizing F.

When I = 3, HT ∈ [1/3, 3/8) only if ℓ = 1. To see this, note that if ℓ = 0, then p13 = 1, which

implies p̅3 ≥ 1/2. M must be at least as large as p̅3, and when I = 3, M ≥ 1/2 implies HT ≥ 3/8

(Reddy and Rosenberg, 2012, Theorem 2). Symmetrically, if ℓ = 2, then p23 = 1, which

again implies p̅3 ≥ 1/2 and HT ≥ 3/8. We cannot choose ℓ = 3
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Table F.9

Allele frequencies for minimizing HT conditional on p1I, p2I, and ℓ, where ℓ is the number of

alleles that have positive frequency in subpopulation 1 but frequency 0 in subpopulation 2.

Allele

Subpopulation 1 … ℓ ℓ + 1 … I − 1 I

1 … 0 … 0 p1I

2 0 … 0 … p2I

Mean … … p̄I

because at least one allele must have positive frequency in subpopulation 2. The only

remaining choice is ℓ = 1, and indeed, choosing ℓ = 1, p11 = p22 = 2/3, p12 = p21 = 0, and p13

= p23 = 1/3 gives the minimum possible HT of 1/3. Thus, when I = 3, HT ∈ [1/I, I/(I2 − 1))

implies ℓ = (I − 1)/2.

We proceed to the case of I ≥ 5. The arrangement in Table F.9 gives

(F.1)

This function is a concave-up quadratic in p1I and p2I. As such, it will have exactly one

critical point, and that point will be the global minimum.

The derivative of HT with respect to p1I is

(F.2)

Setting the derivative to zero gives p1I = (1 − ℓp2I)/(ℓ + 1), which minimizes HT with respect

to p1I.

The derivative with respect to p2I is

(F.3)

Setting this derivative to zero gives p2I = [1 − (I − ℓ − 1)p1I]/(I − ℓ), which minimizes HT

with respect to p2I.

Solving the system
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(F.4)

(F.5)

for p1I and p2I gives

(F.6)

(F.7)

Because we consider p1I and p2I as allele frequencies, we can only achieve the global

minimum when the expressions in Eq. (F.6) and Eq. (F.7) are in the interval [0, 1]. The

expression in Eq. (F.6) is in [0, 1] only if ℓ ∈ [0, I/2], and the expression in Eq. (F.7) is in [0,

1] only if ℓ ∈ [(I − 2)/2, I − 1]. These conditions are both met when ℓ ∈ [(I − 2)/2, I/2].

When I is odd, the only integer in this range is (I − 1)/2. When ℓ = (I − 1)/2, the minimum

HT achievable by the arrangement in Table F.9 is 1/I, which occurs when p1I = p2I = 1/I. We

note that 1/I is also the minimum possible HT for any arrangement of I alleles.

Thus, setting the number of alleles with positive frequency in each subpopulation to ℓ + 1 =

(I + 1)/2 allows the minimum value of HT to be achieved. It remains to show that if this is

not the case—that is, if ℓ < (I − 1)/2—then HT ≥ I/(I2 − 1).

When ℓ < (I − 1)/2, we must check the minimum values of HT available on the endpoints of

the allowed intervals for p1I and p2I, because the global minimum is not available. Because

p1I and p2I are allele frequencies, they take values in [0, 1]. Thus, we consider three

possibilities in turn: p1I = 1 or p2I = 1 (these two possibilities can be handled in one step),

p1I = 0, and p2I = 0.

When p1I = 1 or p2I = 1, we can use an argument similar to the one we used for the I = 3

case. That is, setting either p1I = 1 or p2I = 1 implies p̅I ≥ 1/2. However, because HT is the

sum of squares of the mean allele frequencies, . When I ≥ 5, I/(I2 − 1) < 1/4,

so setting either p1I = 1 or p2I = 1 implies that HT > I/(I2 − 1). It remains to check the

minimum possible values of HT when p1I = 0 or p2I = 0.

If p1I = 0, then HT is minimized by setting p2I = 1/(I − ℓ). Plugging these values into Eq. (F.

1) and simplifying gives HT = I/[4ℓ(I − ℓ)]. For ℓ ∈ [0, (I − 3)/2], this function is decreasing

in ℓ, so the smallest HT possible is at ℓ = (I − 3)/2. Plugging in ℓ = (I − 3)/2 gives HT = I/(I2

− 9) > I/(I2 − 1).
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When p2I = 0, we minimize HT by setting p1I = 1/(ℓ + 1), and the minimum value of HT is I/

[4(ℓ + 1)(I − ℓ − 1)]. For ℓ ∈ [0, (I − 3)/2], this function is decreasing in ℓ, so HT is

minimized when ℓ = (I − 3)/2 and HT = I/(I2 − 1).

Combining these results shows that when ℓ ≤ (I − 3)/2, the minimum possible value of HT is

I/(I2 − 1). Because we are concerned with HT ∈ [1/I, I/(I2 − 1)), we conclude that ℓ = (I −

1)/2. Setting ℓ = (I − 1)/2 implies that each subpopulation has positive frequency for exactly

(I + 1)/2 alleles because the number of positive alleles in subpopulation 1 is ℓ + 1 and the

number of positive alleles in subpopulation 2 is I − ℓ. This is what we sought to prove.

Appendix G. Reducing the maximization of F in terms of HT to a single-

variable optimization

In this appendix, we are in the setting of odd I, HT ∈ [1/I, I/(I2 − 1)), and only one allele for

which both subpopulations simultaneously have positive frequency. Our goal is to reduce

the maximization of F in terms of HT to a single-variable maximization problem. When

allele I is the only allele that has positive frequency in both subpopulations, maximizing F

with respect to HT is equivalent to minimizing the product p1Ip2I while keeping HT fixed

(Eq. A.3). With the allele frequencies arranged as specified in Table 2, replacing 2M with

p1I,

(G.1)

Conditional on p1I and p2I and the allele-frequency arrangement specified, H1 is minimized

by spreading the available mass in subpopulation 1, given by 1 − p1I, evenly over the

remaining (I − 1)/2 alleles that are allowed to be positive (Reddy and Rosenberg, 2012,

Lemma 3). Applying the same reasoning to H2 and plugging into Eq. (G.1) gives the

inequality

(G.2)

Conditional on p1I and HT, equality is achieved when

(G.3)

Because the right side of the inequality in (G.2) is a concave-up quadratic in p2I, conditional

on HT and p1I, p2I falls in the closed interval bounded by the two values on the right side of

Eq. (G.3). Because we seek to minimize p1Ip2I with both p1I and p2I non-negative, we need

to choose p2I to be the smallest allowed value given p1I and HT, which is either the smaller

value on the right side of Eq. (G.3) or 0. However, by symmetry, choosing p2I = 0 implies
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(G.4)

The bounds of this interval are only real when HT ≥ I/(I2 − 1), which is outside the range we

are considering. As a result, we can choose p2I to be

(G.5)

in order to maximize F. We label the value of p2I that maximizes F as . The arrangement

of allele frequencies in this scheme appears in Table 4.

Thus, for odd I and HT ∈ [1/I, I/(I2 − 1)), maximizing F is equivalent to minimizing

(G.6)

where  is the function of p1I defined in Eq. (G.5).

Appendix H. Obtaining the upper bound on F in terms of HT by minimizing

p1Ip2I*

In Appendix G, we showed that for HT ∈ [1/I, I/(I2 − 1)) and odd I, maximizing F in terms

of HT is equivalent to minimizing a quantity that we label A. , where  is given in

Eq. (G.5). Here, we minimize A.

Appendix H.1. A geometric view

We consider a geometric approach to the problem in order to build intuition. Let us revisit

some material covered differently in Appendix G.

Assume that we start with the arrangement of allele frequencies shown in Table 4 but that

we have not yet defined , so where  appears in Table 4, we have the variable p2I. Given

an odd number of alleles I and a homozygosity HT ∈ [1/I, I/(I2 −1)), p1I and p2I can only

take certain values. The values that p2I can take are in the closed interval bounded by the

two expressions on the right side of Eq. (G.3), as argued in Appendix G. That is,

(H.

1)

At the same time, p1I can only take values that lead to real-valued bounds on p2I. That is, we

must choose p1I such that . Choosing
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(H.2)

satisfies this inequality.

Figure H.3 shows (p1I, p2I) values allowed for I = 5 and four specific values of HT ∈ [1/I,

I/(I2 − 1)). For any odd I and HT ∈ [1/I, I/(I2 − 1)), the region of allowed (p1I, p2I) values is

symmetric around the p1I = p2I line. Given the allele-frequency arrangement in Table 4, the

problem of maximizing F given H ∈ [1/I, I/(I2 −1)) is solved when the product p1Ip2I is

minimized. This product can be visualized as the area of a rectangle with one vertex at the

origin, two sides that stretch along the axes, and an upper-right vertex required to be in the

allowed region of (p1I, p2I).

Examination of the figure provides an intuition for the claim, proven in Appendix G, that the

product of p1I and p2I is minimized when , where  is the function of p1I shown in

Eq. (G.5). To see this, note that this function traces the lower boundary of allowed p2I values

shown in Figure H.3.

We can use Figure H.3 to make some informal predictions, proof of which will appear in the

next section. First, consider a rectangle with a vertex at the origin, two sides that run along

the axes, and another vertex on the curve  that traces the lower bound on allowed

values of p2I. Now, imagine another rectangle with an upper-right vertex that is reflected

across the line p1I = p2I. It is clear that these two rectangles must have the same area, and

thus that  is symmetric around the value of p1I that solves . Therefore,

setting  must produce either a local minimum or a local maximum of A.

Second, notice that when HT is set to its smallest possible value, 1/I, the allowed region for

(p1I, p2I) shrinks to the single point p1I = p2I = 1/I. Thus, at this value, F will be maximized

when p1I = p2I. However, as HT approaches I/(I2 − 1), it becomes possible to set p2I to be

arbitrarily close to 0 and to set p1I to be some larger number (or vice versa). Figure H.3

suggests that for some sufficiently large HT, setting p2I (or p1I) to be small and setting p1I

(or p2I) to be larger will produce smaller values of A (and thus larger values of F) than

setting p1I = p2I. Thus, the geometric approach suggests that for at least some values of HT

(possibly just HT = 1/I), setting  will maximize F, but for at least some larger values

of HT, F will be maximized by setting p1I and  to be different values.

Appendix H.2. Completing the minimization

We proceed with the minimization of A, which is equivalent to maximizing F. We start by

finding candidate local optima for A and by ruling out the possibility that A is minimized

when p1I is equal to its maximum or minimum allowed value. Next, we use properties of A

and of ∂A/∂p1I to deduce some facts about the critical points of A. Finally, we use these facts

to find the values of p1I that maximize F for two different ranges of HT values in [1/I, I/(I2 −

1)).
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Appendix H.2.1. Identifying candidate minima

The derivative of A with respect to p1I is

(H.

3)

Setting ∂A/∂p1I = 0 and rearranging gives

(H.

4)

Squaring both sides and collecting terms gives a quartic equation in p1I. Dividing out (I + 1)

gives

(H.5)

Eq. (H.5) has four solutions:

(H.6)

(H.7)

(H.8)

(H.9)

Because we squared both sides of Eq. (H.4), not all of the four solutions in Eq. (H.6–H.9)

are guaranteed to be solutions of ∂A/∂p1I = 0, but all solutions of ∂A/∂p1I = 0 will be

included among Eq. (H.6–H.9).
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Next, we show that we need not consider the bounds of p1I when seeking to minimize A and

that therefore, the only candidates for values of p1I that maximize F are the expressions in

Eq. (H.6–H.9). The bounds on p1I are given in Eq. (H.2). The product rule for derivatives

lets us rewrite Eq. (H.3) as

(H.10)

where

This expression makes clear that in the limit as p1I approaches its upper and lower bounds,

the approach of

to 0 causes  to approach either +∞ or −∞, depending on whether 2Ip1I −2 is

positive or negative. As such, whenever p1I > 0, which is true for HT ∈ [1/I, I/(I2 − 1)) (see

Section 4.2), ∂A/∂p1I also approaches +∞ or −∞ when p1I approaches its bounds in Eq. (H.

2). Moreover, 2Ip1I − 2 > 0 when p1I > 1/I, so ∂A/∂p1I approaches +∞ when p1I approaches

its upper bound, and ∂A/∂p1I approaches −∞ when p1I approaches its lower bound. This

means that at the upper bound of p1I, A is increasing with p1I, and at the lower bound of p1I,

A is decreasing with p1I, so the minimum of A for

 will occur in the open

interval .

Consequently, the minimum of A will occur when p1I is equal to one (or more) of the

expressions in Eq. (H.6–H.9).

Appendix H.2.2. Properties of the critical points of 

Before considering the candidates listed in Eq. (H.6–H.9), we note the following properties

of A and ∂A/∂p1I, which will allow us to deduce some helpful facts:

a. ∂A/∂p1I is negative when p1I is at its minimum and positive when p1I is at its

maximum. This result is shown in the final paragraph of Appendix H.2.1.

b. Eq. (G.2) is symmetric in p1I and p2I.

c. ∂A/∂p1I has no more than four critical points, where a saddle point counts for two

critical points. This result holds because Eq. (H.5) is quartic.

Using (i–iii), we can deduce the following:
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A. A must have at least one minimum for

. This

follows from (i). Thus, if ∂A/∂p1I = 0 has only one solution, then that solution is

guaranteed to correspond to a minimum of A, which, by (ii), will occur where

.

B. There cannot be exactly two solutions to ∂A/∂p1I = 0. If there were exactly two

solutions of different types (for example, a maximum of A and a minimum of A),

then the symmetry in (ii) would be violated. There cannot be two minima of A

without a maximum of A or two maxima of A without a minimum of A. If there

were two saddle points, then (i) would be contradicted.

C. If there are exactly three solutions to ∂A/∂p1I = 0, then there must be a maximum

where  is flanked by two equal minima that are reflections across p1I = p2I.

To see this, note that if there are three solutions, then (ii) requires that one of them

have p1I = p2I and that it be surrounded by two optima of the same type, one on

each side. The middle solution cannot be a saddle point because symmetry would

be violated. It cannot be a minimum flanked by maxima because (i) would be

violated, and it cannot be a minimum flanked by saddle points because (iii) would

be violated. Thus, it must be a maximum. Because it is a maximum, (i) requires that

the solutions surrounding it are minima, and (ii) requires that the minima are equal.

D. There cannot be four or more solutions to ∂A/∂p1I = 0. If there are four solutions,

then none can be saddle points of A by (iii). If none are saddle points, then there

must be two maxima of A and two minima of A, but this violates (i). There cannot

be more than four solutions by (iii).

Combining (A–D), the expressions in Eq. (H.6–H.9) must represent either one minimum of

A or a maximum surrounded by two equal minima of A.

Appendix H.2.3. Maximizing F for odd I and HT ∈ [1/I, (I2 + I − 1)/(I3 + I2 − I − 1))

The expressions in Eq. (H.8) and Eq. (H.9) are only real when 1−I(I +1)+HT (I −1)(I +1)2 ≥

0, which is only true when

For I > 1,

so for part of the range of HT values we consider, the expressions in Eq. (H.8) and Eq. (H.9)

are real, but for part of the range, they are not. We thus must consider HT ∈ [1/I, (I2+I

−1)/(I3+I2−I −1)) and HT ∈ [(I2+I −1)/(I3+ I2 − I − 1), I/(I2 − 1)) separately.
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For HT ∈ [1/I, (I2 + I − 1)/(I3 + I2 − I − 1)), only the expressions in Eq. (H.6) and Eq. (H.7)

are possible solutions to ∂A/∂p1I = 0, because the expressions in Eq. (H.8) and Eq. (H.9) are

not real in this range of HT values. Invoking A–D lets us conclude that because there are not

three solutions, there must be exactly one solution, it must have , and it must be a

minimum of A.

Eq. (H.6) gives the solution to . As such, it is the sole solution of ∂A/∂p1I = 0 when

HT ∈ [1/I, (I2 + I − 1)/(I3 + I2 − I − 1)), and for these values of HT, F is maximized by

setting . These values of p1I and p2I can then be

plugged into a special case of Eq. (A.3), modified to reflect the allele frequency arrangement

in Table 4:

(H.11)

When this is done, the maximum F attained is

Note that setting p1I to equal the expression in Eq. (H.7) does not produce an optimum of A,

as it is a fictitious root of Eq. (H.3). We can therefore exclude it as a candidate when we

seek to minimize A in the next range of HT values we consider.

Appendix H.2.4. Maximizing F for odd I and HT ∈ [(I2 + I − 1)/(I3 + I2 − I − 1), I/(I2 − 1))

For the second range of HT values we must consider, HT ∈ [(I2 + I − 1)/(I3 + I2 − I − 1), I/(I2

− 1)), either A has its minimum when p1I equals the expression in Eq. (H.6), or it has a local

maximum when p1I equals the expression in Eq. (H.6) and minima when p1I equals either

the expression in Eq. (H.8) or the expression in Eq. (H.9). This statement follows from

points (I–IV) in subsection Appendix H.2.2, along with the fact that setting p1I to equal the

expression in Eq. (H.3) solves the equation .

Because these are the only two possibilities, we can distinguish them simply by comparing

the value of A produced when p1I is set to equal the expression in Eq. (H.6) against the value

of A produced when p1I equals either of the expressions in Eq. (H.8) or Eq. (H.9). That is, if

it can be shown that the value of A produced by choosing p1I to be equal to the expression in

Eq. (H.8) is smaller than the value of A produced by choosing p1I to be equal to the

expression in Eq. (H.6), then A will be minimized (and F will be maximized) by setting p1I

to be equal to the expression in either Eq. (H.8) or Eq. (H.9).

The first step is to find the value of  when p1I is as in Eq. (H.8). Plugging this value of p1I

directly into Eq. (G.5) to find  produces an unwieldy expression. Rather than simplifying

it, we can find  in the alternative manner suggested in Figure H.4. To use this method, we
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need the equation for the line of slope −1 that intersects the curve  when p1I is as in

Eq. (H.8). As shown in Figure H.4, the intercept of this line is equal to the sum of a and b,

where a is the p1I value for which we seek to find the associated value of , which we call

b.

On the basis of the symmetry of the problem, we conjecture that if a is the expression in Eq.

(H.8), then b must be the expression in Eq. (H.9). We verify our conjecture by checking that

the line with slope −1 and intercept equal to the sum of the expressions in Eq. (H.8) and Eq.

(H.9), or 2/(I + 1), intersects  twice, where p1I is equal to the expressions in Eq. (H.8) and

Eq. (H.9). The equation we need to solve is

(H.12)

One solution has p1I as in Eq. (H.8), and the other solution has p1I as in Eq. (H.9). Thus,

when p1I is as in Eq. (H.8),  is equal to the expression in Eq. (H.9), and when p1I is as in

Eq. (H.9),  is equal to the expression in Eq. (H.8).

It remains to compare the values of A generated when p1I is as in Eq. (H.6) and when p1I is

as in Eq. (H.8). When p1I is as in Eq. (H.6),

(H.13)

In contrast, when p1I is as in Eq. (H.8),

(H.14)

Setting the right sides of Eq. (H.13) and Eq. (H.14) to be equal to each other gives

(H.

15)

Squaring both sides of Eq. (H.15), rearranging, and simplifying gives a quadratic in HT:

(H.16)

Eq. (H.16) has only one solution, and thus, values of A produced when p1I is as in Eq. (H.6)

and as in Eq. (H.8) are equal only when

(H.17)
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This solution is the lower boundary of the interval over which we seek to minimize A.

Because the expressions in Eq. (H.13) and Eq. (H.14) are only equal at one point, the

expression in Eq. (H.14) is less than the expression in Eq. (H.13) for all HT > (I2 + I − 1)/(I3

+ I2 − I − 1) if it is less for any HT > (I2 + I − 1)/(I3 + I2 − I − 1). For all I > 2, 1 > (I2 + I −

1)/(I3 + I2 − I − 1). When HT = 1, which is biologically impossible in our setting but

mathematically valid, the expression in Eq. (H.14) is less than the expression in Eq. (H.13)

when

(H.18)

If I > 2, then the expression on the left side of Eq. (H.18) is positive and the expression on

the right is negative, so the inequality holds for all I > 2. Therefore, for HT ∈ [(I2 + I − 1)/(I3

+ I2 − I − 1), I/(I2 − 1)) and all I > 2, the expression in Eq. (H.14) is less than the expression

in Eq. (H.13), and choosing p1I as in Eq. (H.8) or Eq. (H.9) minimizes A. Minimizing A

maximizes F with respect to HT. The upper bound on F is attained using Eq. (H.11), setting

p1I to the expression in Eq. (H.8) and setting p2I to the expression in Eq. (H.9), or vice versa.

The upper bound is
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Figure 1.
The upper bound on F as a function of the frequency of the most frequent allele M. The

differently colored vertical bands represent (M, F) pairs that become possible as the number

of alleles at the locus increases; the vertical bands stretch horizontally from M = 1/I to M =

1/(I − 1) for I ∈ {2, 3, 4, …}. The regions colored in black that stretch horizontally from M

= 1/I to M = 1/(I − 1) represent (M, F) pairs that are not allowed when the number of alleles

is I but are achievable when the number of alleles increases. In other words, when the

number of alleles is I, the colored regions from M = 1/I to M = 1 represent allowed (M, F)

pairs, as do any black regions to the right of M = 1/(I − 1). For M ∈ [1/I, 1/(I − 1)) and I

even, the upper bound is computed from Eq. (6). For M ∈ [1/I, 1/(I − 1)) and I odd, the black

region stretches from the curve given in Eq. (7) to the curve given in Eq. (6). The lower

bound on F is 0 for all values of M.
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Figure 2.
The upper bound on F as a function of the homozygosity of the total population HT. The

differently colored vertical bands represent (HT, F) pairs that become possible as the number

of alleles at the locus increases; the vertical bands stretch horizontally from HT = 1/I to HT =

1/(I − 1) for I ∈ {2, 3, 4, …}. The regions colored in black that stretch horizontally from HT

= 1/I to HT = I/(I2 − 1) represent (HT, F) pairs that are not allowed when the number of

alleles is I but are achievable when the number of alleles is larger than I. In other words,

when the number of alleles is I, the colored regions from HT = 1/I to HT = 1 represent

allowed (HT, F) pairs, as do any black regions where HT ≥ I/(I2 − 1). For HT ∈ [1/I, I/(I2 −

1)) and I even, the upper bound is computed from Eq. (13). For M ∈ [1/I, 1/(I − 1)) and odd

I, the black region stretches from the curves given in Eq. (15) and Eq. (16) to the curve

given in Eq. (17). Numerical integration reveals that the total area of the black regions
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between the arbitary-I and fixed-I upper bounds is ≈ 0.002955. The total area of the shaded

regions is 1 − ln 2 ≈ 0.306853 (Jakobsson et al., 2013). The lower bound on F is 0 for all

values of HT.
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Figure H. 3.
The values of p1I and p2I that are possible when there are I = 5 alleles and HT is equal to the

specific values in [1/I, I/(I2 − 1)) shown in the legend. If a pair of values is possible for (p1I,

p2I) at a given HT ∈ [1/I, I/(I2 − 1)), then it is also allowed for larger HT ∈ [1/I, I/(I2 − 1)).

Thus, the larger regions on the outside encompass the smaller interior regions. When HT

increases to I/(I2 − 1), it is possible to set either p1I or p2I to 0. For a given HT in the relevant

range, the region of allowed (p1I, p2I) values is symmetric around p1I = p2I, shown as a black

dashed line on the plot. Because the problem of maximizing F given HT is solved when the

product p1Ip2I is minimized, this visualization allows one to view the problem as that of
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finding the smallest rectangle that has its bottom-left vertex at the origin, two sides running

along the axes, and its top-right vertex in the region of allowed (p1I, p2I) values allowed

given HT. An example rectangle—not the one that maximizes FST—is shown in grey for HT

= 0.2075.
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Figure H. 4.

An argument for identifying the value of  that corresponds to a value of p1I denoted by a.

To find b, we take advantage of symmetry around the p1I = p2I line. Suppose we find the

line of slope −1 that intersects the curve  at p1I = a (solid line in the Figure). As can

be seen, this line is the line with slope −1 and intercept equal to a + b. If the same line

intersects  in another location, then the value of p1I at the second intersection is

equal to b.

Edge and Rosenberg Page 40

Theor Popul Biol. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Edge and Rosenberg Page 41

T
ab

le
 1

N
ot

at
io

n 
fo

r 
th

e 
tw

o-
su

bp
op

ul
at

io
n 

ca
se

.

A
lle

le

Su
bp

op
ul

at
io

n
1

2
…

I
Su

m
Su

m
 o

f 
Sq

ua
re

s

1
p 1

1
p 1

2
…

p 1
I

1
H

1

2
p 2

1
p 2

2
…

p 2
I

1
H

2

M
ea

n
p̅ 1

p̅ 2
…

p̅ I
1

H
T

Theor Popul Biol. Author manuscript; available in PMC 2015 November 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Edge and Rosenberg Page 42

T
ab

le
 2

A
lle

le
 f

re
qu

en
ci

es
 in

 e
ac

h 
su

bp
op

ul
at

io
n 

w
he

n 
no

 m
or

e 
th

an
 o

ne
 a

lle
le

 h
as

 p
os

iti
ve

 f
re

qu
en

cy
 s

im
ul

ta
ne

ou
sl

y 
in

 b
ot

h 
su

bp
op

ul
at

io
ns

. (
I 

−
 1

)/
2 

al
le

le
s

ha
ve

 p
os

iti
ve

 f
re

qu
en

ci
es

 in
 s

ub
po

pu
la

tio
n 

1 
bu

t f
re

qu
en

cy
 z

er
o 

in
 s

ub
po

pu
la

tio
n 

2,
 a

nd
 a

no
th

er
 (

I 
−

 1
)/

2 
al

le
le

s 
ha

ve
 p

os
iti

ve
 f

re
qu

en
ci

es
 in

su
bp

op
ul

at
io

n

A
lle

le

Su
bp

op
ul

at
io

n
1

2
…

(I
 −

 1
)/

2
(I

 +
 1

)/
2

…
I 

−
 1

I

1
2M

p 1
2

…
0

…
0

p 1
I

2
0

0
…

0
…

p 2
(I

−
1)

p 2
I

M
ea

n
p̅ 1

p 2̅
…

…
p̅ (

I−
1)

p̅ I

Theor Popul Biol. Author manuscript; available in PMC 2015 November 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Edge and Rosenberg Page 43

T
ab

le
 3

A
lle

le
 f

re
qu

en
ci

es
 in

 e
ac

h 
su

bp
op

ul
at

io
n 

fo
r 

m
ax

im
iz

in
g 

F
 in

 te
rm

s 
of

 M
. U

si
ng

 th
is

 a
rr

an
ge

m
en

t, 
w

e 
ca

n 
m

ax
im

iz
e 

F
 d

ir
ec

tly
 in

 te
rm

s 
of

 p
1I

 a
nd

 p
2I

.

E
xa

ct
ly

 (
I 

−
 3

)/
2 

co
lu

m
ns

 h
av

e 
al

le
le

 f
re

qu
en

ci
es

 a
s 

in
 c

ol
um

n 
1,

 a
nd

 a
no

th
er

 (
I 

−
 3

)/
2 

co
lu

m
ns

 h
av

e 
al

le
le

 f
re

qu
en

ci
es

 a
s 

in
 c

ol
um

n 
(I

 +
 1

)/
2.

A
lle

le

Su
bp

op
ul

at
io

n
1

…
(I

 −
 1

)/
2

(I
 +

 1
)/

2
…

I 
−

 1
I

1
2M

…
0

…
0

p 1
I

2
0

…
0

2M
…

p 2
I

M
ea

n
M

…
M

…
(p

1I
 +

 p
2I

)/
2

Theor Popul Biol. Author manuscript; available in PMC 2015 November 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Edge and Rosenberg Page 44

T
ab

le
 4

A
lle

le
 f

re
qu

en
ci

es
 f

or
 m

ax
im

iz
in

g 
F

 in
 te

rm
s 

of
 H

T
. E

xa
ct

ly
 (

I 
−

 1
)/

2 
co

lu
m

ns
 in

 th
e 

ta
bl

e 
ha

ve
 f

re
qu

en
ci

es
 id

en
tic

al
 to

 th
os

e 
sh

ow
n 

in
 c

ol
um

n 
1,

 a
nd

ex
ac

tly
 (

I 
−

 1
)/

2 
co

lu
m

ns
 h

av
e 

fr
eq

ue
nc

ie
s 

id
en

tic
al

 to
 th

os
e 

sh
ow

n 
in

 c
ol

um
n 

(I
 +

 1
)/

2.

A
lle

le

Su
bp

op
ul

at
io

n
1

…
(I

 +
 1

)/
2

…
I

1
…

0
…

p 1
I

2
0

…
…

M
ea

n
p̅ 1

…
p̅ (

I 
+

 1
)/

2
…

p̅ I

Theor Popul Biol. Author manuscript; available in PMC 2015 November 01.


