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Abstract

Fsr is one of the most frequently-used indices of genetic differentiation among groups. Though
Fgr takes values between 0 and 1, authors going back to Wright have noted that under many
circumstances, Fgr is constrained to be less than 1. Recently, we showed that at a genetic locus
with an unspecified number of alleles, Fgr for two subpopulations is strictly bounded from above
by functions of both the frequency of the most frequent allele (M) and the homozygosity of the
total population (Hy). In the two-subpopulation case, Fsr can equal one only when the frequency
of the most frequent allele and the total homozygosity are 1/2. Here, we extend this work by
deriving strict bounds on Fgr for two subpopulations when the number of alleles at the locus is
specified to be I. We show that restricting to | alleles produces the same upper bound on Fgr over
much of the allowable domain for M and H, and we derive more restrictive bounds in the
windows M € [1/1, 1/(1 - 1)) and Ht € [1/1, 1/(12 - 1)). These results extend our understanding of
the behavior of Fgr in relation to other population-genetic statistics.

1. Introduction

Genetic differentiation among groups is a phenomenon of central importance in population
genetics, informing inferences about selection, migration, and demography. Fgr, one of
Wright’s (Wright, 1951) fixation indices, is perhaps the most frequently used measurement
of genetic differentiation among groups. One reason for the popularity of Fgr is its
theoretical richness. For example, Fsr can be interpreted as an index of the reduction in
heterozygosity that accompanies population structure (Nei, 1987), as a proportion of
variance in allelic types accounted for by population structure (Holsinger and Weir, 2009),
or as an index comparing mean coalescence times within subpopulations to mean
coalescence times within the whole population (Slatkin, 1991).

Though Fgr has interpretations in terms of several major frameworks in population genetics,
there has been a strong temptation to view Fgr as a simple measurement of the degree of
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genetic differentiation among groups, with increasing values indicating increased
differentiation. Indeed, Wright himself provided heuristic guidelines as to what ranges of
Fsr values may be considered as representing “moderately great” or “very great”
differentiation (Wright, 1978, p. 85), lending credence to the idea that Fgr can be interpreted
without reference to allelic diversity at the locus or other properties of the allele frequencies
used in its computation.

However, as many investigators have noted—with Wright first among them (Wright, 1978,
p. 82)—Fgr measures a very specific form of genetic differentiation. Namely, Fsr measures
the extent to which different subpopulations have progressed toward fixation on different
alleles. When there are exactly two subpopulations and exactly two alleles with positive
frequency, Fsr is maximized when the two subpopulations have fixed on different alleles
and, as a result, share no alleles in common.

One of the challenges of interpreting Fgr is that Fgr is dependent on the within-
subpopulation diversity and other properties of the allele frequencies at the loci for which it
is calculated (Charlesworth, 1998; Nagylaki, 1998; Hedrick, 1999, 2005; Long and Kittles,
2003; Ryman and Leimar, 2008; Jost, 2008; Long, 2009; Meirmans and Hedrick, 2011;
Maruki et al., 2012). Recently, we considered the relationship of Fgr to both the frequency
of the most frequent allele, M, and the homozygosity of the total population, Ht (Jakobsson
et al., 2013). These two statistics capture important aspects of the allele frequencies and
diversity of a locus, and their relationship to each other is well understood (Rosenberg and
Jakobsson, 2008; Reddy and Rosenberg, 2012). We calculated the upper bound on Fgras a
function of M and as a function of Hy when the number of alleles is left unspecified.

Here, we extend these results by deriving and reporting bounds on Fsr when the number of
alleles is specified to be a fixed value |. The extension reported here parallels the specified-I
extension by Reddy and Rosenberg (2012) to the unspecified-1 work of Rosenberg and
Jakobsson (2008) on the relationship between homozygosity and the frequency of the most
frequent allele.

We begin by describing the framework we adopt for conceptualizing Fsr. Next, we derive
strict bounds when the number of alleles is specified, first as a function of the frequency of
the most frequent allele and then as a function of total homozygosity.

Consider a polymorphic locus with up to | alleles (I = 2) in a population with K
subpopulations of equal size. The frequency of allele i in subpopulation k is py. All allele
frequencies are non-negative, and within each subpopulation, the allele frequencies sum to

1
1. That is, py = 0 for all kand i, and for each k, Zizlpkz:l . The mean allele frequency

across subpopulations for allele i is pi:Zlepki/K. We assume that the allele frequencies
are the parametric values for the subpopulations under study. We do not consider estimation
of the allele frequencies from samples, nor do we consider the evolutionary sources of the
allele frequencies in each subpopulation.
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We define the frequency M of the most frequent allele as the highest mean allele frequency
across subpopulations. That is, M = max {p1, p2, ..., pi}. It is possible that more than one
allele has mean frequency M.

The homozygosity within subpopulation k is the sum of the squares of the allele frequencies

I
within subpopulation k, Hk::Zizlpii. The mean homozygosity across subpopulations is

1 K
Ho=—> H.
Kk:l
In contrast, the total homozygosity is the sum of the squares of the mean allele frequencies

across subpopulations,
I 2
25:12%
~\ K '

I

HT:Z;—;?:

=1 7
With | alleles, both Hgand Hr lie in [1/1, 1]. Note that the homozygosities within each
subpopopulation are expectations for the proportion of homozygotes in the subpopulation
under Hardy-Weinberg equilibrium, and Hr is the expected fraction of homozygotes in the
whole population if the total population were at Hardy-Weinberg equilibrium with no
structure.

Nei (1973) considered a version of Wright’s Fgr termed Ggr. From here forward, we work
with this formulation, calling it F,

We restrict our attention to the case of K = 2. Table 1 presents a summary of the notation
used for the two-subpopulation case.

3. Bounds on F as a function of M

Our goal is to identify bounds on F in terms of the frequency of the most frequent allele M
and the homozygosity of the total population Hy when the number of alleles | is specified.
When | is specified, we do not require that all | alleles have positive frequency in the total
population; we merely forbid the presence of more than | alleles with positive frequency.
For both M and H+, we first identify circumstances in which the bounds obtained by
Jakobsson et al. (2013) for unspecified | hold strictly and circumstances in which new strict
bounds are required.

3.1. Bounds on F in terms of M when | is left unspecified

We previously found that when there are two subpopulations of equal size and an
unspecified number of alleles at the locus, F can only reach values near 1 when the
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frequency of the most frequent allele and total homozygosity are near 1/2 (Jakobsson et al.,
2013). Specifically, in terms of the frequency of the most frequent allele, M, we have

[0,Q(M)] 0<M<1
! {[O’q(M)] 1ol @

1 —2M([(2M)7"] - 1)(2 - [(2M)""]2M)

O Tean e - e T2y @
a(a1)=2 - IM. @

3.2. Circumstances in which the unspecified-l bounds for F in terms of M apply strictly

When the number of alleles is unspecified—and therefore permitted to be arbitrarily large—
F is bounded by the functions of M given in Eq. (2). Under what conditions do these bounds
apply when the number of alleles is specified?

First, we note that the domain of M is restricted by I; M € [1/1, 1]. Because the sum of the
allele frequencies is 1 and M is the largest of these frequencies, M must be at least as great
as the mean of the | frequencies, or 1/1.

Second, for any M allowed given the number of alleles I, the lower bound on F is always 0.
To see this, pick a set of allele frequencies with a desired largest allele frequency M. Set the
allele frequencies in both subpopulations to be equal to these values. In this case, Hg= Hr,
and Eqg. (1) shows that F = 0.

Third, we previously showed that for M € [1/2, 1], it is possible to achieve the upper bound
on F given in Eq. (4) with | = 2 alleles (Jakobsson et al., 2013, Eq. 7). Because our
framework allows us to set some of the | allele frequencies to be 0 in both subpopulations,
we can achieve the previously obtained upper bound on F with | > 2 alleles by setting | — 2
of the allele frequencies to zero in both subpopulations and then following the procedure of
Jakobsson et al. (2013) for the remaining two alleles. That is, we set the allele frequencies of
the two subpopulations to differ as much as possible, choosing either (p11, p21) = (1,2 M -

1) or (P11, P21) =(2M -1, 1).

Similarly, when | > 2 and M € [1/1, 1/2), we previously showed that the upper bound on F
given in Eq. (3) can be achieved when for each subpopulation, there are exactly [(2 M)™1]
alleles that have positive frequency in the subpopulation, all of which have frequencies of 0
in the other subpopulation (Jakobsson et al., 2013, Eq. 9). When there are two
subpopulations, it is possible to have [(2 M)~1] distinct alleles in each subpopulation if

I>2[2M)]. ©
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Because M > 1/, the maximum value that [(2 M)~1] can take with | alleles is [1/2]. When |
is even, [1/2] = 1/2, implying that the condition in Eq. (5) is met. Thus, when the number of
alleles | is even, the upper bound on F from Eqg. (3) applies for M € [1/1, 1/2). However,
when | is odd, 2 [1/2] =1 + 1 > |, and the condition is not always met. Indeed, the condition
in Eq. (5) is only met when M = 1/(I — 1), and it is not met when M € [1/1, 1/(] - 1)).

Combining these conclusions, we can state that for even I, the bounds on F given in Eq. (2)
apply strictly for all allowed values of M € [1/1, 1]. When | is odd, the bounds on F from Eq.
(2) apply strictly for M € [1/(1 — 1), 1]. For odd | and M € [1/1, 1/(I - 1)), the lower bound
on F is 0, and the upper bound on F from Eq. (3) cannot be achieved; this upper bound can
therefore be tightened.

3.3. Bounds on F in terms of M when | is specified

We begin by stating our main results for the bounds on F in terms of M € (0, 1) when the
number of alleles, 1, is specified to be an integer greater than or equal to 2. We then
complete the proof, leaving many of the details for the appendices.

Theorem 1. Suppose that F is defined asin Eq. (1), M is the frequency of the most frequent
allele at alocus, and | isthe number of allelesat thelocus. | isaninteger,and | = 2. If | is
even, then

[0,Q(M)] 2 <M<
e { [0,q(M)] L <nm<i, ©

and if | is odd, then

2—IM —1
Fed [0,QM)] A <M<t O
[0,q(M)] 5 <M<,

[07 M } %SJ\,[<L

where

_1—2M([(2M) ] - 1)(2 - [(2M)"1]2M)

Q) L2M([(20) T~ (2 - [(2M) "J2br)
q(]\f):lglM- ©)

Proof. We have already argued that the bounds on F in terms of M are the same as in the
case of unspecified | when | is even or when | is odd and M = 1/(I —1). It remains to prove
that if | is odd and M € [1/1, 1/(] — 1)), then F < M/(2 — | M). The proof has four steps.

A. We show that for M < [1/1, 1/(I — 1)), when F is at its maximum in terms of M, no
more than one allele has positive frequency in both subpopulations (Appendix A).

B. We show that when M < [1/1, 1/(l — 1)), each subpopulation has positive frequency
for at least (I +1)/2 alleles. In conjunction with the result of step (A) and the fact
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that | is odd, this result implies that when F is maximized, each subpopulation has
positive frequency for exactly (I +1)/2 alleles and exactly one allele has positive
frequency in both subpopulations. We also show that the allele with positive
frequency in both subpopulations is not the most frequent allele unless all alleles
have the same frequency (Appendix B). Steps (A) and (B) allow us to write the
allele frequencies in each subpopulation as shown in Table 2.

C. (A)and (B) reduce the | = 3 case to a single-variable optimization problem, which
we solve directly to find that for | =3 and M € [1/3, 1/2), the maximum value of F
is M/(2 - 3 M) (Appendix C).

D. Forodd | =5, we show that when F is maximized, at least (I — 3)/2 alleles have
frequency 2 M in subpopulation 1 and frequency 0 in subpopulation 2. Similarly, at
least (1 — 3)/2 of the remaining alleles have frequency 0 in subpopulation 1 and
frequency 2 M in subpopulation 2. We then obtain the arrangement of allele
frequencies shown in Table 3, from which we can directly solve the case of | =25 as
a two-variable optimization problem in py; and py;. Doing so reveals that setting py,
=py =1 - M(l - 1) and setting other allele frequencies as shown in Table 3
maximizes F as a function of M. For odd | =5 and M € [1/I, 1/(l - 1)), the
maximum value of F that results is M/(2 — IM) (Appendix D). This completes the
proof.

Figure 1 shows the upper bound on F as a function of M for specified I. The figure shows
that limiting to a specified number of alleles | has important effects on the allowable domain
of M. In addition, when | is odd, the maximum value of F for M € [1/I, 1/(1 — 1)) is lower
than when | is unspecified, particularly when | is small. If | is odd and M = 1/, then F < 1/I.
Thus, the bottom-left extrema of the black regions fall on the line F = M. The total area of
the black regions in Figure 1 between the arbitary-I and fixed-I upper bounds, representing
parts of the space accessible when | is unspecified but no longer accessible when | is
specified, is approximately 0.002971 (Appendix E). The total area of all shaded regions,
representing the mean maximal value of F over the unit interval for M in the unspecified-I
case, is approximately 0.358538 (Jakobsson et al., 2013).

4. Bounds on F as a function of Ht

To find bounds on F in terms of Hy when | is specified, we follow an argument that is
similar in structure to the one we used to find bounds on F in terms of M. We begin by
identifying the cases in which the arbitrary-I bounds are not strict when | is specified. Once
these cases are identified, we make arguments to reduce the number of variables before
proceeding to direct optimization.

4.1. Bounds on F in terms of Hy when | is left unspecified

We previously showed that when there are two subpopulations of the same size and an
unspecified number of alleles at the locus, F is constrained by the homozygosity of the total
population at the locus (Jakobsson et al., 2013). Specifically, in terms of the homozygosity
of the total population, Hy, where

Theor Popul Biol. Author manuscript; available in PMC 2015 November 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Edge and Rosenberg

Page 7

[0,R(H,)] 0<H,<3}
Fe{ [0.r(#,)] s<m.<1, 49
R(Hp)=1—F
1—- 2H, —1
"= AT =T @

4.2. Circumstances in which the unspecified-I bounds for F in terms of Ht apply strictly

Just as with M, the domain of Hr is restricted by the number of alleles, Hy € [1/1, 1] (Reddy
and Rosenberg, 2012, Lemma 4). As stated above, the lower bound on F is 0 for any choice
of allele frequencies for the total population and thus for any Hr.

For Ht = 1/2, we have shown elsewhere that the upper bound on F given in Eq. (12) can be

achieved with | > 2 by setting (P11, P12, P21, p22)=(1,0, \/2HT -1,1- \/2HT —1)and py;
=ppi =0 forall i > 2 (Jakobsson et al., 2013).

For Ht < 1/2, comparison of Eq. (A.3) and Eq. (11) shows that F achieves its upper bound in

1
terms of Hy when Zizlpupzi:O. For even |, we can achieve the upper bound on F when
Hyt = 1/1 by setting 1/2 alleles to have frequency 2/ in subpopulation 1 and setting the other

1/2 alleles to have frequency 2/1 in subpopulation 2. In this case, Hy = 1/1, Z;lplipmzo,
and F = 1/(1 - 1) = H{/(1 — Hy), which is the arbitrary-l upper bound for Hy € (0, 1/2).
Further, Theorem 1ii of Rosenberg and Jakobsson (2008) guarantees that we can specify a
set of [H™1] alleles to have homozygosity H. Because

HT=(1/4)(H1+H2)+(1/2)Z;1P1¢p2¢, setting 1/2 alleles to give Hy = 2 Hr in
subpopulation 1, setting 1/2 alleles to have homozygosity H, = 2 Ht in subpopulation 2, and
setting no alleles to have positive frequency in both subpopulations simultaneously will
achieve the upper bound on F from Eq. (11) for all Hy € [1/1, 1/2).

For odd I, the upper bound on F from Eq. (11) can be achieved when Hy = 1/(12 - 1) by
setting (1+1)/2 alleles to have frequency 2/(1 + 1) in one subpopulation and setting the other
(I = 1)/2 alleles to have frequency 2/(1 — 1) in the other subpopulation. In this case, Ht =

1/(12 - 1), Z;lpupzizo, and F=1/(12 = | = 1) = H7 /(1 - Hy), which is the upper bound
from Eq. (11). Further, the upper bound on F can be achieved for Hy € [I/(12-1), 1/(1 - 1))
by setting Hy = 2/(I = 1) using (I — 1)/2 alleles and setting H, =4 Hy - 2/(I — 1) using (I +
1)/2 alleles, with no alleles simultaneously having positive frequency in both
subpopulations. For Hy € [I/(12 - 1), 1/(1 = 1)), Hy € [2/(1 + 1), 2/(1 - 1)). This range of H,
values requires (H;l] =(I+1)/2 alleles, which is exactly the number of alleles we can set to
have positive values in subpopulation 2.

Theor Popul Biol. Author manuscript; available in PMC 2015 November 01.
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For odd | and Hy € [1/(1 - 1), 1/2), we can use only | — 1 of the alleles and the approach
outlined above for even numbers of alleles to achieve the upper bound in Eq. (11). That is,
for odd | and Ht € [1/(I — 1), 1/2), we can obtain Hy = 2 Hy using (I — 1)/2 alleles and H, =
2 Hy using (I — 1)/2 other alleles, so that only | — 1 of the | available alleles have nonzero
frequency (each in exactly one subpopulation).

Combining these results, we can confirm that for Hy € [1/1, 1), the bounds on F in terms of
H+ from Eq. (10) apply strictly when | is specified except when | is odd and Ht € [1/1, 1/(12
— 1)), in which case the strict upper bound on F remains to be determined. To find the upper
bound on F in this region, we follow an argument similar to the one we used for M, reducing
the number of variables as much as possible before attempting the optimization.

4.3. Bounds on F in terms of Ht when | is specified

We state our main results for the bounds on F in terms of Ht when the number of alleles, I,
is specified to be an integer greater than or equal to 2. We then outline the proof, again
leaving many of the details to the appendices.

Theorem 2. Suppose that F is defined asin Eq. (1), Hy is the homozygosity of the total
population at a locus, and | isthe number of alleles at the locus. | isan integer, and | = 2. If
| iseven, then

[0, R(H,)] H, <%
Fe{ [0, 7(H,)] H, f (13)

DO =]
IAINA

and if | is odd, then

[0,U(H,)] }<H, <z =1

e PR oy
F e [O,U(HT)] ]5?,;%7[ 1 _H <”z_1 (14)
[0,R(H,)] py < H <3
[0,7(H,)] 5 < H,<1,
where
0o (1./([~1)(IHT—1>2
T I
_ (15)
U(H,)= i

T

CI[(I+1)H, — 1]
u(Hy)= (I+1)(1 — H,)

(16)

H,
R(Hp)=7—F an
T
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1-2H, -1
"= A =T @

Proof. We have already shown that the bounds on F in terms of Hy are the same in the
specified-I case as in the unspecified-I case of Jakobsson et al. (2013) when | is even or
when | is odd and Hy > 1/(12 - 1). It remains to show that when | is odd and Hy € [1/1, 1/(12 -
1)), the upper bound on F is as shown in Theorem 2, Egs. (15) and (16). The proof has four
steps.

A. We proved in Appendix A that for all possible sets of population-level allele
frequencies with M < 1/2, the maximum F is achieved when no more than one
allele has positive frequency in both subpopulations. If Hy € [1/1, 1/(12 - 1)) for | =
3, then M < 1/2, so we can again exclude possible solutions in which more than one
allele has positive frequency in both subpopulations.

B. We prove in Appendix F that when Hy € [1/1, /(12 - 1)) and F is maximized in
terms of Hy, each subpopulation must have positive frequency for exactly (I + 1)/2
alleles, counting the allele for which both subpopulations are allowed to have
positive frequency, which we label allele 1. This gives us the arrangement in Table
2, but because we are not currently considering M, we replace the 2 M in the first
row and column with pq1.

C. We show that the arrangement of allele frequencies can be updated to the one in
Table 4. That is, we show that if F is maximized in terms of Hy, | is odd, and Hy €
[1/1,1/(12 = 1)), then (1 — 1)/2 alleles have a shared positive frequency in
subpopulation 1 and frequency 0 in subpopulation 2 and another (I — 1)/2 alleles
have a (possibly distinct) shared positive frequency in subpopulation 2 and
frequency 0 in subpopulation 1. We write these shared frequencies in terms of the
frequencies of allele | in the two subpopulations, where allele 1 is the allele that has
positive frequency in both subpopulations. The subpopulation allele frequencies of
allele | are pq; and py;. We further show that the value of pp; that maximizes F
while keeping Hr fixed can be written as a function of py;. We call this maximizing

value p; . Using p; and the arrangement in Table 4, F=(H,. — p,,p;,)/(1 — H).

Thus, maximizing F in terms of Hy is equivalent to minimizing the product p, ,p; ,
a function of a single variable, py; (Appendix G).

D. we give the details of the minimization of p,,p; in Appendix H. Completing the
optimization reveals that the range with which we are concerned, Hy € [1/1, 1/(12 -
1)), must be split into two segments, [1/1, 12+ 1 = 1)/(13+ 12 =1 = 1)) and [(12 + | -
D3 +12=1-1), /(12 - 1)). For Hy € [1/1, (I + 1 = 1)/(13 + 12 = | - 1)), the
maximum F is achieved by setting

1— /-1 (H, -1) 9

Py =Py = T

This gives the inequality F < U (Ht), with U (Hy) as in Eq. (15).
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1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Edge and Rosenberg

Page 10

For Hr € [(12+ 1 = 1)/(13 + 12 = | = 1), 1/(12 - 1)), the maximum F is achieved by setting

1 /1 I(I+1)+H (I - 1) (I+1)?
- T+1

(20)

pll

and

L+ /1 = I(I4 1)+ H (I — 1)(I+1)°
- T+1

(21)

234

or by switching these assignments and setting py; to equal the expression on the right side of
Eq. (21) and setting py) to equal the expression on the right side of Eq. (20). This gives the
inequality F < u(Hy), with u(Hy) as in Eqg. (16). This completes the proof of Theorem 2.

Figure 2 shows the upper bound on F as a function of H for specified I. As in the case of M,
limiting to a specified number of alleles | has important effects on the domain of Hy. When |
is odd, the maximum value of F for Hr € [1/1, 1/(12 - 1)) is lower than when | is unspecified.
Analogously to the case of M, if | is odd and Ht = 1/I, then F < 1/I, which implies that the
bottom-left extrema of the black regions in Figure 2 fall on the line F = Ht. However, unlike
in the case of M, in which a single function describes the upper bound on F in the interval M
€ [1/1, 1/(1 -1)), we can see that for odd I, the interval Hy € [1/1, 1/(1 - 1)) is split into three
components, one where U (H7) is the upper bound, a second where u(Hy) is the upper
bound, and a third where R(H~) is the upper bound.

5. Discussion

We have extended the work of Jakobsson et al. (2013) by finding strict bounds on Fgr in
terms of the frequency of the most frequent allele M and the homozygosity of the total
population Ht when the number of alleles | is specified. Specifying the number of alleles |
restricts the domain of both the frequency of the most frequent allele and the homozygosity
of the total population to the interval [1/I, 1) rather than the whole unit interval. In addition
to this domain restriction, the upper bound on Fgr changes when the number of alleles is
odd in a portion of the interval near its left endpoint. In particular, compared with the
unspecified-I case, the upper bound on Fgr in terms of M changes for odd | and M € [1/1,
1/(1 - 1)), and the upper bound on Fgr in terms of Hy changes for odd | and Hy € [1/1, 1/(12
- 1)). In the case of M, the width of the interval in which the upper bound changes is given
by 1/[1(1 - 1)], and the proportion of the domain on M for which the bound changes is 1/(I
-1)2. In the case of Hy, the upper bound changes for an interval of width 1/(13 - 1), which is
1/[(1 - 1)%(1 + 1)] as a proportion of the domain on Hr. Thus, for M and especially for Hr,
the proportion of the space for which the upper bound on F changes when the number of
alleles is specified becomes smaller as the number of alleles grows.

Our extension to the work of Jakobsson et al. (2013) is analogous to the extension of the
results of Rosenberg and Jakobsson (2008) by Reddy and Rosenberg (2012). Rosenberg and
Jakobsson (2008) determined the bounds on homozygosity in terms of the frequency of the
most frequent allele when the number of alleles is left unspecified. Reddy and Rosenberg
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(2012) found that the bounds on the frequency of the most frequent allele in terms of the
homozygosity of a single population are more constrained when the number of alleles is
specified than when the number of alleles is left unspecified, especially for small numbers of
alleles. Similarly, we find that the extent to which the bounds on Fgr in terms of the
frequency of the most frequent allele and the homozygosity of the total population change
decreases when the number of alleles increases. However, in contrast to Reddy and
Rosenberg’s (2012) results, we find that the bounds on Fgr in terms of the frequency of the
most frequent allele and the homozygosity of the total population only change shape relative
to the case of an unspecified number of alleles when the number of alleles at the locus is
odd.

One feature of the approach we have taken here and in other contexts (Rosenberg and
Jakobsson, 2008; VanL.iere and Rosenberg, 2008; Reddy and Rosenberg, 2012; Jakobsson et
al., 2013) is that we have worked with parametric allele frequencies, considering population-
genetic statistics as functions of sets of non-negative numbers constrained to sum to one
rather than as outcomes of evolutionary processes. It has been pointed out that ultimately,
the performance of population-genetic statistics in contexts of biological interest is what
determines their usefulness. In particular, Rousset (2013) notes that “model-free”
approaches like ours fail to identify the biological conditions under which Fgr calculations
will produce biased results with respect to biological goals such as, for example, examining
differences in coalescence times for different sets of lineages. We agree that studying the
performance of Fgrand other proposed measures of population differentiation (Hedrick,
2005; Jost, 2008) under specific evolutionary models is necessary for fully articulating the
effects of the mathematical properties of population-genetic statistics that we identify
(Whitlock, 2011; Alcala et al., 2014). We would add another potential concern: we discuss
the dependence of the parameter Fsr on properties of the allele frequencies, but estimators
of Fgr also have properties that depend on locus allele frequencies, as demonstrated, for
example, by Bhatia et al. (2013), who discussed the behavior of various estimators of Fgr in
the presence of rare variants. At the same time, we hasten to note that the benefit of our
parametric mathematical approach is that the results we identify hold under all possible
population models that employ the statistics we study and define them in the same way. As
such, our results are a starting point for studying the properties of population-genetic
statistics in interesting biological scenarios and can help in the identification of biological
contexts in which the mathematical properties we identify may be important. Further, they
are available as a guide even when data analysts use Fsy to comment on applications and
theoretical possibilities that fall outside the rich set of theoretically-motivated interpretations
of Fsr.
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Appendix A At maximum F, no more than one allele has positive frequency
in both subpopulations
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As a first step in finding the upper bound on F for odd | and M < [1/1, 1/(I — 1)), we prove
that for any set of population-level allele frequencies with M < 1/2, the maximum value of F
is achieved when no more than one allele simultaneously has positive frequency in both
subpopulations.

Assume that there exist two alleles that both have positive frequency in both subpopulations.
Call the alleles 1 and 2, and call the frequencies of alleles 1 and 2 in subpopulation 1 a and
b. Call the frequencies of alleles 1 and 2 in subpopulation 2 ¢ and d, as shown in Table A.5.
Note that a+ b < 1 and ¢ + d < 1. Without loss of generality, assume that

1 >a+c2>b+d (A1)

a>c (A2

That is, assume that we have labeled the alleles and subpopulations such that allele 1 has a
mean frequency at least as great as allele 2 and such that allele 1 has frequency in
subpopulation 1 at least as great as its frequency in subpopulation 2. The sumsa+ cand b +
d are guaranteed to be less than or equal to 1 because M < 1/2.

To maximize F, we use an expression from Jakobsson et al. (2013, Eq. 30). Noting that in

1
the case of two subpopulations, Hs=2H, — Zizlpupm, we can write

_HT - Z{ﬂpupm

F= .
T, (A3)

Because Hr is a function of the mean (or total population) allele frequencies at the locus, an
arrangement of the allele frequencies that keeps the mean allele frequencies the same for

I
every allele but decreases Zizlpumi will increase F. We will show that whenever there are
two alleles with positive frequency in both subpopulations and mean allele frequencies less

1
than or equal to 1/2, we can reduce Zizlpupm but keep Hy (and M) the same by replacing
the allele frequencies at alleles 1 and 2 so that no more than one allele has positive
frequency in both subpopulations.

To prove this claim, consider two cases. First, if b > c, we rearrange frequencies in the way
shown in the left side of Table A.6. We add c to aand d and subtract it from b. We are
allowed to add c to a while still producing valid allele frequencies because a+ c < 1.
Similarly, we can add c to d because ¢ + d < 1, and we can subtract ¢ from b because b > c,
so b — ¢ = 0. Making these changes does not change the mean allele frequency for any allele,

I
so Ht does not change, nor does M. Thus, if ac + bd > (b - c)(d+c), then Zizlpupzi
decreases as a result of the rearrangement, and F will increase. The inequality ac + bd > (b -
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c)(d + ¢) is equivalent to the inequality a + ¢ > b —d. This inequality is guaranteed to be true
because we assumed in Eq. (A.1) that a+ c=> b + d and because d is positive. Thus, when b
> ¢, rearranging as in the left side of Table A.6 increases F.

Taking the second case of b < ¢, we rearrange in the way shown in the right side of Table A.
6, adding b to a and d and subtracting it from c. Following reasoning similar to that used in
the case of b = ¢, we find that F increases if ac + bd > (a + b)(c — b). This inequality is
equivalent to d + b > ¢ — a. We assumed in Eq. (A.2) thata= ¢, so because d+b>0and c -
a<0,d+b>c-a Thus, combining with the b = c case, whenever M < 1/2 and the two
subpopulations have positive allele frequencies for more than one allele, F can be increased
without changing M or Ht by rearranging the subpopulation allele frequencies so that no
more than one allele has positive frequency in both subpopulations.

This result allows us to eliminate candidates for maximum F in terms of M or Ht in which
more than one allele simultaneously has positive frequency in both subpopulations.

Table A5

Notation for a case with two or more shared alleles.

Allele

Subpopulation 1 2
1 a

2 c d

Mean
atc  b+d
2 2
Product ac bd

Table A.6

A scheme for rearranging two shared alleles to get one shared allele and larger F.

bzc b<c
Subpopulation  Allele 1 Allele 2 Allele 1 Allele 2
1 atc b-c a+b 0
2 0 d+c c-b d+b
Mean atc  bid atc  btd
2 T2 2 T2
Product 0 (b-c)(d+c) (a+b)(c-h) 0
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Appendix B. At maximum F in terms of M, exactly one allele has positive
frequency in both subpopulations, and it is not the most frequent
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Assume that the single shared allele that is allowed to have positive frequency in both
subpopulations is allele 1. We can deduce three important facts from the results of Appendix
A.

First, when | is odd and M € [1/1, 1/(1 - 1)), both subpopulations must have positive
frequency for allele I. To prove this, assume without loss of generality that the number of
alleles with positive frequency in subpopulation 2 is less than or equal to the number of
alleles with positive frequency in subpopulation 1. If one subpopulation has an allele
frequency of 0 for allele I, then subpopulation 2 can have positive frequency for at most (I -
1)/2 alleles. The most frequent allele in subpopulation 2 must then have an allele frequency
of at least 2/(1 — 1), which implies that the mean allele frequency for that allele must be at
least 1/(1 = 1). This means that M = 1/(I — 1), which is outside the range with which we are
concerned.

Second, taking the shared allele into account, it follows that each subpopulation must have
positive frequency for exactly (I + 1)/2 alleles.

Third, if allele | is the allele for which both subpopulations are allowed to have positive
frequency, then allele | is not the most frequent allele unless all alleles have the same
frequency and M = 1/1. We prove this claim using a rearrangement strategy similar to the
one we used in Appendix A. Label two alleles allele 1 and allele 2. Call the frequency of
allele 1 in subpopulation 1 a, the frequency of allele 2 in subpopulation 1 b, the frequency of
allele 1 in subpopulation 2 c, and let the frequency of allele 2 in subpopulation 2 be 0, as
shown in the left side of Table B.7. Assumethatb<a+ c<2/(I - 1), witha+c<2/(I - 1)
because M < 1/(1 - 1). Also, assume that excluding a from consideration, b is the largest
allele frequency in subpopulation 1. Excluding allele 1, frequency equal to 1 — a must be
spread over (I — 1)/2 alleles, so b= 2(1 — a)/(I — 1). At the same time, c< 2/(1 — 1) — a. This
guarantees that b = ¢ for the cases we are considering, because 2(1 - a)/(1 - 1) = 2/(1 - 1) -
awhenever | > 3.

Because b = ¢, we can rearrange the allele frequencies as shown in the right side of Table B.
7, adding c to a, subtracting ¢ from b, and switching the two alleles’ frequencies in
subpopulation 2. This rearrangement does not change any of the mean allele frequencies and
thus does not change M. The rearrangement will increase F if ac > (b — c)c. But this
inequality is equivalent to b < a + ¢, which is what we assumed initially, so F does increase.
Thus, as long as the mean allele frequencies are not the same for every allele, the most
frequent allele will have positive frequency in only one subpopulation when F is maximized
conditional on M. (If the mean frequencies are the same for every allele, then every mean
allele frequency is equal to M, including the mean frequency of the shared allele.)

Thus, we can update the arrangement shown in Table 1 to the one shown in Table 2. For the
remainder of the proof of Theorem 1, we assume that the shared allele that is allowed to
have positive frequency in both subpopulations is allele I, and we assume without loss of
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generality that the most frequent allele is allele 1, which has positive frequency in
subpopulation 1. We have reduced the number of variables from 2| - 3to | - 2.

Table B.7

The allele for which both subpopulations have positive frequency is not the most frequent
allele unless all mean allele frequencies are equal.

Start Rearrangement

Subpopulation  Allelel Allele2 Allelel Allele 2

1 a b a+c b-c
2 c 0 0 c
Mean atc b atc b
2 2 2 2
Product ac 0 0 (b-c)c

Appendix C. Upper bound on F in terms of M for | =3 and M € [1/3, 1/2)

The results of Appendix A and Appendix B allow us to solve directly the | = 3 case in terms
of M as a single-variable optimization problem. When considering the | = 3 case, the
structure specified in Table 2 gives the layout shown in Table C.8. Because M is fixed, only
one allele frequency in subpopulation 2 is free to vary. Plugging the allele frequencies
shown in Table C.8 into Eq. (A.3) gives

_ 2 —92M a2
M () (PRER) — (1 2M)py

F 2 1—po3y2 1-2M+pa3 2
1= M? - (=5%2) - (=)

(S

Obtaining the upper bound

Because M is the largest mean allele frequency allowed, pp3 € [1 — 2M, 4M - 1]. The
constraint po3 = 1 — 2M is found by noting that the mean frequency of allele 1, or M, must be
greater than or equal to the mean frequency of allele 2, or (1 — pp3)/2. The constraint py3 <
4M - 1 arises from a similar argument comparing the frequencies of alleles 1 and 3.

To maximize F, we must consider po3 =1 — 2M, pp3 = 4M - 1, and any maxima of Eq. (C.1)
with respect to p,3 as candidate values for pp3. Taking the derivative of Eg. (C.1) with
respect to pp3 and simplifying gives

OF  —2(1 — 2M)p3;+4pa3 — 2(8M3 — 8M?+2M +1)
= 2 - (C2
Opa2s [1—4M?2 — p2,4+2M (1+pa3)]

The denominator of 0F/dpy3 is non-negative and in fact is strictly positive for the values we

consider, as it can only equal O when p,,—A7 4+ /—3M12+2M1+1, a condition that
generates values of py3 outside of [0, 1] when M € [1/3, 1/2). The numerator is a concave-

Theor Popul Biol. Author manuscript; available in PMC 2015 November 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Edge and Rosenberg

Page 16

down quadratic function in pp3. Thus, if the roots are real, then 0F/py3 is positive between its
roots. dF/p,3 equals zero when
1+ 2M V4M? — 6M+3

q= . (C3
P23 190 (€3)

The larger of these two solutions is always greater than 1 because M € [1/3, 1/2). Because
0F/p,3 is positive between its roots, the smaller solution represents a local minimum of F.
As we seek to maximize F for pp3 € [1 - 2M, 4M - 1], we can ignore both of these solutions
as candidates. The maximum value of F will occur when py3 is either as large or as small as
possible; that is, when either pp3 =1 - 2M or pp3 =4M - 1.

When po3 =1 - 2M,

Fnlin(p23):m7

(C4)

and when py3 =4M - 1,

TM? — 5M+1
Fmax(p‘ < ):7
2) M(2 - 3M)

Subtracting the right side of Eq. (C.5) from the right side of Eq. (C.4) gives

—6M?24+5M — 1

Faifterence=Frmin(pas) — FﬁmX(ms)ZW' (C6)

Table C.8

11
Maximizing F when | =3and M €[, 5).

32
Allele
Subpopulation 1 2 3
1 2M 0 1-2M
2 0 1-pa3 P23

M M
e 1—pys 1—2M-+pys

2 2

When the right side of Eq. (C.6) is non-negative, choosing py3 = 1 — 2M maximizes F. Both
the numerator and denominator of the right side of Eq. (C.6) are concave-down quadratics in
M and take positive values between their roots. The denominator is positive for M € (0, 2/3),
and the numerator is non-negative for M € [1/3, 1/2]. Thus, for M € [1/3, 1/2], the right side
of Eg. (C.6) is non-negative, and setting pp3 = 1 — 2M maximizes F. We can now state strict
bounds on F in terms of M when | = 3:
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(0,52 ] 1< M<d
F 2—317) 3 2
© { (0,51 1<per s @

The bound for 1/2 < M < 1 comes from Eq. (4).

Appendix D. Upper bound on F in terms of M for odd | =5 and M € [1/1, 1/(] -

1)

To maximize F for odd | 25 and M < [1/1, 1/(I — 1)), we return to the situation of | — 2
variables described in Table 2. We will reduce the number of variables to 2 and then solve
the optimization problem directly.

To reduce the number of variables, we make use of an expression for F from Jakobsson et
al. (2013, Eq. 8),

2 — 251 pripai

F=—1+2 ,
4—1 =S p3 - 25 o

(.1

Obtaining the upper bound

We assume that the allele for which both subpopulations are allowed to have positive
frequency is allele 1. Plugging in the allele frequency structure from Table 2 and defining

-1 4 -1 4 .
Hy=)  _ piiand H3=) __ P3i lets us write

2- 2p11p21

F=—14+2 .
4—Hf — Hy —p? —p% —2p,,p,,

(©.2)

Eqg. (D.2) makes clear that conditional on py; and pyp;, F is maximized when f7y and f7; are
maximized. 77} and f7; are sums of squares of non-negative numbers that add up to a fixed
sum and that are each bounded above by a constant—2M in this case. Lemma 3 of
Rosenberg and Jakobsson (2008) guarantees that such sums of squares are maximized by
setting as many of the numbers as possible to be equal to the upper bound. In this case, that
means setting as many alleles as possible to have frequency 2M. Within each subpopulation,
when M € [1/1, 1/(1 - 1)), at least (I — 3)/2 alleles can be set to have frequency 2M. To see
this, note that the allele frequencies in a subpopulation must sum to 1, so the number of
alleles that can be set to frequency 2M is given by, in the case of subpopulation 1, [(1 -
p1)/(2M)]. 1t follows that

2
F_pUJ>F_2MJ> l-r5| _I-3 03
2M | T 2M | T A 2 Y

The first step is true because py; < 2M, the second step because (1 — 2M)/(2M) is decreasing
in M for M < 1/2 (and thus for M < 1/(1 — 1) when | = 3), and the third step because I is an
odd integer, so (I — 3)/2 is an integer.
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When we set (I — 3)/2 alleles in each subpopulation to have frequency 2M, we can update
the arrangement in Table 2 to the one in Table 3. Plugging these allele frequencies into Eq.
(D.1) gives a new expression for F,

2- 2p11p21

F=—142 ,
14— 2Hs - 2p11p21

(D.4)

where 2Hq is given by

2H =4(I—3)M?*+[1 — (I — 3)M —p,,)*+[1 — (I — 3)M — p,,]*+p* +p2,. (D5)

With M fixed, all that remains is to pick py; and py; to maximize F. As in the three-allele
case, we search for the largest values of F produced by choosing py; and py) to either be their
maximum or minimum values or to be any local maxima occurring within their allowed
ranges. We consider pq first.

Taking the derivative of F with respect to py; and simplifying gives

aF :S(puvpg]a ]\I)
ap,; 8Py, pys M)’

(D.6)

where
S M)=—2p, p°> +4 2[p> —p? +(I-1)(I—-3)M?> 1-3)(1—p. 2M—1 ©
(P11 Doy s M)==2p,, p}, +4p,,+2[p;, —p,, +(I—=1)(I=3) M p,, +(I-3)(1 — p,,) ] N
2 2 2 2 (D.
$(Pyys P M)=[(I -1)(I = 3)M* — 1+p11 —p (1 —py) — Doy tD5;, — (I—=3)M(2-p, _pZI)] " g

S(p11, P21, M) is a concave-down quadratic function in py;, and s(p1;, p2;, M) is hon-negative.
Consequently, the equation dF/py; = 0 has at most two real solutions. If 0F/py; = 0 has two
real solutions, then 0F/py; will take positive values only in the interval between those
solutions. Therefore, the larger solution will be a value of pq; at which F is locally
maximized and the smaller solution will be a value of py; at which F is locally minimized.
(The roots of S the numerator of dF/py;, might not be roots of 0F/py; because s, the
denominator, could equal zero at the same point. However, we show below that we can
exclude the roots of Sas candidate maxima of F for our purposes, regardless of the value of
s.) The values of py; that solve dF/py; =0 are

1= T M)

b=
11 p21

where

.

T(p,,, M)=p2 +[(I-3)M —1]p> +(I-3)M[(I-1)M—2]p?, +[(I-3)M—1]p,, +1. 9
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The larger of these two solutions for py, is greater than 1—and therefore outside our allowed
range for py—because py; € (0, 1). The smaller solution gives a local minimum, and we
seek to maximize F. We can therefore ignore both solutions and simply compare the values
of F given by the minimum and maximum allowed values of py;.

The allele frequencies in subpopulation 1 must sum to one, and besides pqy, (I — 1)/2 alleles
can have positive frequency of up to 2M each. Therefore, py; =21 - M(l — 1). Because allele |
cannot have mean frequency greater than M, py; < 2M - py.

Setting py; =1 - M(I - 1) in Eq. (D.4) gives

(I — 1)2]\'12 — 2(I — 2)(1 —p21)]\1+(1 - p21)2

F_ = - (D11
minteyp) 1—(I—1)°M2—p2 +2M(I — 2+p,,) 1
Similarly, setting py; = 2M - py in Eq. (D.4) gives
141 = 1)2M243p?, — 2M (I — 2+3p,) 012
me) ] (1= 1)PM2 — p2 +2M (I — 2+4p,,)
Taking Fmin(py)) = Fmax(py;) @nd simplifying gives
Fle _ 2]?21[([-1—1)]\1 —-1- pz[]
difference = (D.13)

1—(I—1)°M2 —p2 +2M(I — 2+p,;)

Whenever the right side of Eq. (D.13) is non-negative, choosing py =1 - M(l - 1)
maximizes F. The numerator of the right side of Eq. (D.13) is a concave-down quadratic
function in py; with roots at py; =0 and py; = (I + 1)M — 1. The denominator is a concave-

down quadratic in py; with roots at M+ \/H(I —-2)2- IM)M. The minimum value that
p2; can take for M € [1/1, 1/(1 = 1)) is1 — max(M)(1 -1)=1-(1 - 1)/(1 - 1) =0. The
maximum value that py can take for any allowed py; is 2M — min(py)) =2M - [1 - (1 - 1)M]
= (I + 1)M - 1. Thus, for all allowed values of py|, the numerator of the right side of Eq. (D.
13) is non-negative. If the denominator is positive for allowed values of py), then choosing
p1 =1 - M(I - 1) maximizes F. The denominator is positive between its roots. Thus,

M — J1+(I —2)(2 — IM)M <0 4 (i)

choosing py; =1 — M (I — 1) maximizes F if (i)
M+ 14+ - 2)(2 — IM)M>M(I+1) - 1

Condition (i) is true if:

e (=2~ VI =2 +(1-1) ’(1_2)+\/(1_2) HI-D'\
T—-17 -1
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If this interval contains the values of M for which we seek to maximize F, [1/1, 1/(1 - 1)),
then condition (i) holds. For | > 1, the lower bound of the interval specified by condition (i)

2
is less than 0, as V ({ = 1)">I =2 Because 0 < 1/1 for positive |, condition (i) holds if

1L _U-2)+ VI =2+ -1)?

(D.15)
I—-1 (I—1)?

2 2
This inequality is true when \/(I -2+ = 1) >1, which is true for all | > 2. Because we
are only considering odd | = 5, condition (i) is true.

Moreover, for M € [1/1, 1/(1 - 1)), the truth of condition (i) implies the truth of condition

(ii). Condition (i) can be restated as \/H(I —2)(2- IM)M>M, and condition (ii) can be

restated as \/H(I = 2)2~ IM)M>IM ~ 1 Because M > IM - 1 when M < 1/(1 - 1),
condition (ii) is guaranteed to hold when condition (i) holds and M < 1/(I - 1).

Thus, for odd | and M € [1/1, 1/(I - 1)), choosing p;; =1 - M (I = 1) and other
subpopulation 1 allele frequencies as shown in Table 3 maximizes F as a function of py;.
Further, Eg. (D.4) is symmetric in (py;, p2;), SO analogous steps for py, identify py; =1 -M
(I = 1) as the choice that maximizes F as a function of py. Plugging 1 — M (I - 1) in for both
p1; and py; in Eg. (D.4) and simplifying gives the upper bound on F for odd | =5 and M €
[/, 1/(1 - 1)),

F<

M D.16
—2-—IM’ (0.16)

Appendix E. The reduction in area under the upper bound on F in terms of

M

To calculate the total area of the black regions in the Figure 1 representing parts of the space
accessible when | is unspecified but not accessible when | is specified, we calculate the
integral from 0 to 1/2 of the arbitrary-1 upper bound on F minus the upper bound on F when
| is specified. The integral of the arbitrary-1 upper bound from 0 to 1/2 is

1 (—1+§ln { VI =12 —1)+1

1/2
/0 QMM =5 T-D@-1) -1

1=2

This expression comes from Jakobsson et al. 2013, Eq. 18, with the multiplication by 1/2
coming from the fact that Jakobsson et al. integrated a function of o, =2M from 0 to 1
rather than integrating a function of M from 0 to 1/2. To calculate the integral of the
specified-l upper bound on F, we start by summing the areas under the parts of the
unspecified-I bounds that apply for even | from 4 to co. Modifying a result of Jakobsson et
al. (2013, Eq. Al) and letting k = 1/2 gives
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o 1/(2k—1)
> / Q(M)dM
2/ 1/(2k)

Ly~ (L _ L) +liln 14+ 527 (ke VE+2R2)| [ =14 kg (ke VE+2R2)]
K+l 2k+1 [~ 1t g2 (ot VEF2RD)| 14 (b VR 2R2)|

k=1

To get this expression, we change the bounds of integration for the integral in Jakobsson et
al. (2013, Eq. Al) such that we integrate over the regions corresponding to M € [1/1, 1/(l -
1)) for even | = 4. Because Jakobsson et al. integrated a function of o = 2M, we multiply by
1/2 to get the corresponding integral for M. The first sum simplifies to 1 — 2 In 2, and the
second sum is evaluated numerically.

To complete the integral of the specified-I upper bound on F, we integrate M/(2 — IM),
summing the definite integrals that result when integrating from 1/1 to 1/(1 — 1) and odd | =
3:

0 1/(2k) M
/1/(2k+1) 2— (2k+1)M
00 11/(2k) 9
k_l./l/(2k+1) (2k+1)[2 — (2k+1)M]
1
2%+l
X 2In[2— (2k+1)M] (E3)
_kz::l  (2k+1)°
1/(2k)

dM

dM.

M
2k+1 1/(2k+1)
> 2ln( 2k 1) i

= —z0.120140.
=1 (2k+1)

Notice that the second term can be evaluated exactly, as

B 0o 1 1 1 B 0o (_1)k+1 00 1
- Zz_k_m_(zkﬂ)r_{l_z k ]j{Z(ﬁ

k=1 k=1 (E.4)
ST B 1=(In2 — 1)+(7?/8
(2k)* -
— 1)=n?/8+In2 — 2 =~ —0.073152.

Numerically evaluating the expression that results when the expressions in Eq. (E.2) and Eq.
(E.3) are subtracted from the expression in Eq. (E.1) reveals that the total area of the black
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regions between the arbitary-I and fixed | upper bounds is approximately 0.002971. The
total area of all shaded regions is approximately 0.358538 (Jakobsson et al., 2013).

Appendix F. Exactly (I + 1)/2 alleles have positive frequency in each
subpopulation when F is maximized in terms of HT

In this appendix, we are in the setting of odd | and Hy € [1/1, I/ (12 - 1)). In Appendix A, we
showed that when F is maximized in terms of Ht, no more than one allele simultaneously
has positive frequency in both subpopulations. Here, we prove that when there is no more
than one allele for which both subpopulations have positive frequency, both subpopulations
must have exactly (I + 1)/2 alleles with positive frequency.

Consider the situation depicted in Table F.9, which is modified from Table 4. We seek to
prove that when only one allele is allowed to have positive frequency in both subpopulations
and | is odd, then unless each subpopulation has positive frequency for exactly (I + 1)/2
alleles, Hy = 1/(12 - 1), which places Hy outside the set of possibilities we are considering.
We handle the | = 3 and | = 5 cases separately. After dispensing with the | = 3 case directly,
we prove our claim for | = 5 by first minimizing Ht and showing that if each subpopulation
has positive frequency for exactly (I + 1)/2 alleles, then the minimum achievable value of
Hr is 1/1. Next, we show that when it is not the case that each subpopulation has positive
frequency for exactly (I + 1)/2 alleles, the minimum achievable Ht given that py; and py) are
in the interval [0, 1] is 1/(12 - 1).

We designate the number of alleles that have positive frequency in subpopulation 1 but do
not appear in subpopulation 2 by ¢. We have arranged the allele frequencies in Table F.9 to
minimize Ht conditional on py;, py;, and 4, distributing the mass that remains in each
subpopulation after accounting for allele | evenly over the alleles that remain accessible to
that subpopulation (Reddy and Rosenberg, 2012).

Because the problem is symmetric in py; and py;, we can, without loss of generality,
consider only values of £ € {0, 1, ..., (I — 1)/2}. Note that the number of alleles with
positive frequency in subpopulation 1 is £ + 1 and that the number of alleles with positive
frequency in subpopulation 2 is | — £. Therefore, if among the candidate values of ¢ € {0, 1,
.., (1= 1)/2}, €< (1 - 3)/2 implies HT = 12/(1 - 1), then each subpopulation must have
positive frequency for exactly (I + 1)/2 alleles in order to achieve the Hy values in [1/1, 1/(12
- 1)) that we consider for maximizing F.

When | = 3, Hy € [1/3, 3/8) only if £=1. To see this, note that if =0, then py3 = 1, which
implies p3 = 1/2. M must be at least as large as ps, and when | = 3, M = 1/2 implies Ht = 3/8
(Reddy and Rosenberg, 2012, Theorem 2). Symmetrically, if £ =2, then py3 = 1, which
again implies p3 = 1/2 and Hy = 3/8. We cannot choose ¢ =3
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Table F.9

Allele frequencies for minimizing H conditional on py;, p2, and ¢, where ¢ is the number of
alleles that have positive frequency in subpopulation 1 but frequency 0 in subpopulation 2.

Allele
Subpopulation 1 4 l+1 I-1 |
1 0 0 Py
(1_pu) (1 _pu)
b4 V4
2 0 0 P2
(1 _pQI) (1 _p21)
I—¢(-1 I—-¢-1
Mean P
(1—]?”) (1_pn) (l—pQ,) (1_p21)
20 2 21 —0—1) 2 —0—1)

because at least one allele must have positive frequency in subpopulation 2. The only
remaining choice is ¢ =1, and indeed, choosing £ =1, p11 = p22 = 2/3, p12 = P21 = 0, and p3
= pog = 1/3 gives the minimum possible Hy of 1/3. Thus, when | = 3, Hy € [1/1, 1/(12 - 1))
implies £ = (I - 1)/2.

We proceed to the case of | = 5. The arrangement in Table F.9 gives

_ 1—])1[)2 oy [ ]‘_p2I ]2 (p11+p21>2
HTJ< 57 +(I—-(-1) ST —(—1) + 7 (50

This function is a concave-up quadratic in py; and py. As such, it will have exactly one
critical point, and that point will be the global minimum.

The derivative of Ht with respect to py; is

aHT 1 1
ap :é _Z(l _p11)+p11+p21 - (F2)
11

Setting the derivative to zero gives py = (1 - €py))/(¢ + 1), which minimizes Ht with respect
to py.

The derivative with respect to py is

OH, 1[ -1
op,, 2[I—-(-1

(1 =Py )+Py+Ps | - F3)

Setting this derivative to zero gives py; = [1 - (I = £ - 1)pyJ/(I - £), which minimizes Hy
with respect to pyy.

Solving the system
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Py 77 (F5)
for py; and py gives
20
pH:l - 7 (F-G)
2420 —1
Py=——p " (F.7)

Because we consider py; and py; as allele frequencies, we can only achieve the global
minimum when the expressions in Eq. (F.6) and Eq. (F.7) are in the interval [0, 1]. The
expression in Eq. (F.6) isin [0, 1] only if £ € [0, 1/2], and the expression in Eq. (F.7) is in [0,
1] only if £ < [(1 — 2)/2, | = 1]. These conditions are both met when ¢ € [(I - 2)/2, 1/2].
When | is odd, the only integer in this range is (I — 1)/2. When ¢ = (I — 1)/2, the minimum
Hy achievable by the arrangement in Table F.9 is 1/1, which occurs when py; = pp; = 1/1. We
note that 1/1 is also the minimum possible Hy for any arrangement of | alleles.

Thus, setting the number of alleles with positive frequency in each subpopulationto £+ 1 =
(I + 1)/2 allows the minimum value of Ht to be achieved. It remains to show that if this is
not the case—that is, if £ < (I — 1)/2—then Hy = /(12 - 1).

When ¢ < (I - 1)/2, we must check the minimum values of Hr available on the endpoints of
the allowed intervals for py; and py;, because the global minimum is not available. Because
p1; and py; are allele frequencies, they take values in [0, 1]. Thus, we consider three
possibilities in turn: py; = 1 or py; = 1 (these two possibilities can be handled in one step),
py =0, and py = 0.

When py; =1 or py; = 1, we can use an argument similar to the one we used for the | = 3
case. That is, setting either py; = 1 or pp; = 1 implies p; = 1/2. However, because Hr is the

sum of squares of the mean allele frequencies, /. > p? > 1/4. When | 25, 1/(12 - 1) < 1/4,
so setting either py; = 1 or py; = 1 implies that Hy > 1/(12 - 1). It remains to check the
minimum possible values of Hy when py; = 0 or py = 0.

If p;; = 0, then Hy is minimized by setting py; = 1/(1 — ). Plugging these values into Eq. (F.
1) and simplifying gives Ht = I/[44(1 - £)]. For £ € [0, (I - 3)/2], this function is decreasing
in ¢, so the smallest Hy possible is at ¢ = (I — 3)/2. Plugging in ¢ = (I - 3)/2 gives Hy = 1/(I2
-9)>1/(12-1).
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When py; = 0, we minimize Hy by setting py; = 1/(¢ + 1), and the minimum value of Hris I/
[4(¢+ 1)(I = £-1)]. For £ € [0, (I = 3)/2], this function is decreasing in ¢, so Ht is
minimized when €= (I - 3)/2 and Hy = 1/(12 - 1).

Combining these results shows that when ¢ < (I - 3)/2, the minimum possible value of H is
1/(12 - 1). Because we are concerned with Hy € [1/1, 1/(12 = 1)), we conclude that £ = (I -
1)/2. Setting £ = (I - 1)/2 implies that each subpopulation has positive frequency for exactly
(I + 1)/2 alleles because the number of positive alleles in subpopulation 1 is £ + 1 and the
number of positive alleles in subpopulation 2 is | — £. This is what we sought to prove.

Appendix G. Reducing the maximization of F in terms of HT to a single-

variable optimization

In this appendix, we are in the setting of odd I, Hy € [1/1, 1/(12 - 1)), and only one allele for
which both subpopulations simultaneously have positive frequency. Our goal is to reduce
the maximization of F in terms of H to a single-variable maximization problem. When
allele | is the only allele that has positive frequency in both subpopulations, maximizing F
with respect to Hy is equivalent to minimizing the product pq py; while keeping Hy fixed
(Eqg. A.3). With the allele frequencies arranged as specified in Table 2, replacing 2M with

P11,

1
HT:Z(H1+H2+2pHp2,). (G.1)

Conditional on pq; and py; and the allele-frequency arrangement specified, Hy is minimized
by spreading the available mass in subpopulation 1, given by 1 — pq;, evenly over the
remaining (I — 1)/2 alleles that are allowed to be positive (Reddy and Rosenberg, 2012,
Lemma 3). Applying the same reasoning to H, and plugging into Eq. (G.1) gives the
inequality

I—-1/1—p, \%2 I—-1/1—p,\% /p, +p, \?
H > 17 21 17 21 . 2
2 () () () e

Conditional on py; and HT, equality is achieved when

2= (I—)p,, +2\/H (12 = 1)+2p,, — I(1+p?)
I+1 '

(G3)

Py=

Because the right side of the inequality in (G.2) is a concave-up quadratic in py;, conditional
on Ht and py,, py falls in the closed interval bounded by the two values on the right side of
Eq. (G.3). Because we seek to minimize pypy; with both py; and py; non-negative, we need
to choose py) to be the smallest allowed value given py; and Hy, which is either the smaller
value on the right side of Eq. (G.3) or 0. However, by symmetry, choosing py; = 0 implies
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{2 —2,/H, (12 =1) =1 2+2,/H,(I? - 1) 71}

Pir € L I+1 : I+1 J ‘

(G.4)

The bounds of this interval are only real when Ht > 1/(12 - 1), which is outside the range we
are considering. As a result, we can choose py) to be

. 2= —=p, —2\/H, (12— 1)+2p,, — I(14?)

Par™ I+1 ©9)

in order to maximize F. We label the value of py that maximizes F as p;,. The arrangement
of allele frequencies in this scheme appears in Table 4.

Thus, for odd I and Hy € [1/1, 1/(12 - 1)), maximizing F is equivalent to minimizing

PP, (G.6)

where p; is the function of py; defined in Eg. (G.5).

Appendix H. Obtaining the upper bound on F in terms of HT by minimizing

plip2l*

In Appendix G, we showed that for Hy € [1/1, /(12 - 1)) and odd |, maximizing F in terms

*
21’

of Hy is equivalent to minimizing a quantity that we label A. A=p_,p
Eq. (G.5). Here, we minimize A.

where p? is given in

Appendix H.1. A geometric view

92— (I—1)p, —2/H,(I2— 1)
[ 11 \/ T

We consider a geometric approach to the problem in order to build intuition. Let us revisit
some material covered differently in Appendix G.

Assume that we start with the arrangement of allele frequencies shown in Table 4 but that

we have not yet defined p; , so where p; appears in Table 4, we have the variable py;. Given
an odd number of alleles | and a homozygosity Ht € [1/1, 1/(12 -1)), py; and py; can only
take certain values. The values that py; can take are in the closed interval bounded by the
two expressions on the right side of Eq. (G.3), as argued in Appendix G. That is,

pzlel

I+1 I+1

At the same time, py; can only take values that lead to real-valued bounds on py,. That is, we

must choose py; such that H,.(I° — 1)+2p,, — I(14+p?,) > 0. Choosing
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1 - 1 ;
i € | 70— VIR = DH = P) 04 @ = DH, - 1) o

satisfies this inequality.

Figure H.3 shows (p1;, pp;) values allowed for | =5 and four specific values of Hy € [1/1,
1/(12 - 1)). For any odd | and Hy € [1/1, 1/(12 = 1)), the region of allowed (py;, p2;) values is
symmetric around the py; = pp line. Given the allele-frequency arrangement in Table 4, the
problem of maximizing F given H € [1/1, 1/(12 -1)) is solved when the product py;py; is
minimized. This product can be visualized as the area of a rectangle with one vertex at the
origin, two sides that stretch along the axes, and an upper-right vertex required to be in the
allowed region of (py, p21)-

Examination of the figure provides an intuition for the claim, proven in Appendix G, that the

product of py; and py is minimized when p,, =p; , where p; is the function of py shown in
Eg. (G.5). To see this, note that this function traces the lower boundary of allowed p,; values
shown in Figure H.3.

We can use Figure H.3 to make some informal predictions, proof of which will appear in the
next section. First, consider a rectangle with a vertex at the origin, two sides that run along

the axes, and another vertex on the curve p,, =p;, that traces the lower bound on allowed
values of py;. Now, imagine another rectangle with an upper-right vertex that is reflected
across the line py; = py. It is clear that these two rectangles must have the same area, and

thus that A=p,,p; is symmetric around the value of py that solves p,,=p} . Therefore,

setting p, ,=p, must produce either a local minimum or a local maximum of A.

Second, notice that when Hr is set to its smallest possible value, 1/1, the allowed region for
(P11, P21) shrinks to the single point py; = py = 1/1. Thus, at this value, F will be maximized
when py; = py;. However, as Hy approaches 1/(12 - 1), it becomes possible to set py; to be
arbitrarily close to 0 and to set py; to be some larger number (or vice versa). Figure H.3
suggests that for some sufficiently large Hr, setting py; (or py;) to be small and setting py;
(or py)) to be larger will produce smaller values of A (and thus larger values of F) than
setting py; = poi- Thus, the geometric approach suggests that for at least some values of Ht

(possibly just Hy = 1/1), setting p,,=p; will maximize F, but for at least some larger values
of Hr, F will be maximized by setting py; and p, to be different values.

Appendix H.2. Completing the minimization

We proceed with the minimization of A, which is equivalent to maximizing F. We start by
finding candidate local optima for A and by ruling out the possibility that A is minimized
when py; is equal to its maximum or minimum allowed value. Next, we use properties of A
and of 0A/0py; to deduce some facts about the critical points of A. Finally, we use these facts
to find the values of py; that maximize F for two different ranges of Hy values in [1/1, 1/(12 -

1)).
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Appendix H.2.1. Identifying candidate minima

The derivative of A with respect to py; is

oA 1 2Ip,, —2
o, I+ o 1 = 2= (I =Dy, = 2\[H(12 = Di2p, — 1 ).
Py I+l [ \/H (I2 = 1)+2p,, — I(1+p2,) J

Setting dA/0py; = 0 and rearranging gives

(H.

—[1-(I-1)p,,] \/HT(I2 — D+2p,, — I(14p2)=p,,(Ip,,—1)~[H,(I*~1)+2p,, I (1+p},)]. 5

Squaring both sides and collecting terms gives a quartic equation in py;. Dividing out (I + 1)
gives

0=p* [—I(I
+1)]
+p° (2
+4T)
+p?I[HT (I
— 1)(T+1)? (H5)
—5—1—TI*+p,,2[T
+1— H,(I+2)(I
- 1)]
— [I+H2(I - 1)°(1
+1)+H, (141 - 217)].

Eqg. (H.5) has four solutions:

pu%[l — U = DUH, ~ 1] (o)

pu=7 11+ T~ D(TH, ~1)] @)

1

gl - V1= I+ D)+ H (I - 1)(I41)°] (1)

p;=

Pu= I+1[1+\/1— (T+1)+H, (- 1)(I+1)7]. H9)

Because we squared both sides of Eq. (H.4), not all of the four solutions in Eq. (H.6-H.9)
are guaranteed to be solutions of 0A/dpy; = 0, but all solutions of dA/0py; = 0 will be
included among Eq. (H.6-H.9).
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Next, we show that we need not consider the bounds of p;; when seeking to minimize A and
that therefore, the only candidates for values of py; that maximize F are the expressions in
Eq. (H.6-H.9). The bounds on py; are given in Eq. (H.2). The product rule for derivatives
lets us rewrite Eq. (H.3) as

0A _Bp;
dp,;, Ip

Py, +P5,,  (H.10)

17

where

opy, 1 It 2Ip,, —2
Op, I+l \/HT(I2 —D+2p,; — I(ler?l)

This expression makes clear that in the limit as py; approaches its upper and lower bounds,
the approach of

VHe(I2 = D+2p,, — I(142,)

to 0 causes dp;, /dp,, to approach either +oo or —co, depending on whether 2Ipy; -2 is
positive or negative. As such, whenever py; > 0, which is true for Hy € [1/1, 1/(12 - 1)) (see
Section 4.2), dA/0py, also approaches +oo or —oo when py; approaches its bounds in Eq. (H.
2). Moreover, 2Ipy; — 2 > 0 when py; > 1/, so 0A/dpq; approaches +oo when py; approaches
its upper bound, and 0A/dp;; approaches —oo when py; approaches its lower bound. This
means that at the upper bound of py;, A is increasing with py;, and at the lower bound of py;,
A'is decreasing with py;, so the minimum of A for

1 1
pyelz(1= \/1+(—’3 - DH, - 1), 7 (1+ \/1+(I3 — I)H,. — I%)]will occur in the open

1 1
interval p,, € (F(1— 1+ - DH, - 1), (14 I+ — DH, - 1))
Consequently, the minimum of A will occur when py, is equal to one (or more) of the
expressions in Eq. (H.6-H.9).

Appendix H.2.2. Properties of the critical points of A=p,,p],

Before considering the candidates listed in Eq. (H.6—-H.9), we note the following properties
of Aand dA/dpy,, which will allow us to deduce some helpful facts:

a. O0AJdpy is negative when py; is at its minimum and positive when py, is at its
maximum. This result is shown in the final paragraph of Appendix H.2.1.

b. Eqg. (G.2) is symmetric in py; and py.

c. 0AJdpy has no more than four critical points, where a saddle point counts for two
critical points. This result holds because Eq. (H.5) is quartic.

Using (i—iii), we can deduce the following:
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A. A must have at least one minimum for

pu € (/D)1= 14(I = DH, — 12), (1/1)(1+ /1413 - DH, — I?)), This
follows from (i). Thus, if 9A/dpy; = 0 has only one solution, then that solution is
guaranteed to correspond to a minimum of A, which, by (ii), will occur where

Py =P,

There cannot be exactly two solutions to dA/dpy; = 0. If there were exactly two
solutions of different types (for example, a maximum of A and a minimum of A),
then the symmetry in (ii) would be violated. There cannot be two minima of A

without a maximum of A or two maxima of A without a minimum of A. If there
were two saddle points, then (i) would be contradicted.

If there are exactly three solutions to 0A/0py; = 0, then there must be a maximum

where p,,=p is flanked by two equal minima that are reflections across py| = py|.
To see this, note that if there are three solutions, then (ii) requires that one of them
have py; = pp; and that it be surrounded by two optima of the same type, one on
each side. The middle solution cannot be a saddle point because symmetry would
be violated. It cannot be a minimum flanked by maxima because (i) would be
violated, and it cannot be a minimum flanked by saddle points because (iii) would
be violated. Thus, it must be a maximum. Because it is a maximum, (i) requires that
the solutions surrounding it are minima, and (ii) requires that the minima are equal.

There cannot be four or more solutions to dA/dpy; = 0. If there are four solutions,
then none can be saddle points of A by (iii). If none are saddle points, then there
must be two maxima of A and two minima of A, but this violates (i). There cannot
be more than four solutions by (iii).

Combining (A-D), the expressions in Eq. (H.6—-H.9) must represent either one minimum of
A or a maximum surrounded by two equal minima of A.

Appendix H.2.3. Maximizing F for odd | and Hy € [1/1, (12 + 1 = 1)/(13 + 12 - | - 1))

The expressions in Eq. (H.8) and Eq. (H.9) are only real when 1-1(1 +1)+H (I =1)(I +1)2 >
0, which is only true when

I’4+1-1
H.>-—-—— - -
TP+ -1-1

Forl>1,

1< 247-1 - I
I IB412—-7-1"12-1'

so for part of the range of Ht values we consider, the expressions in Eg. (H.8) and Eq. (H.9)
are real, but for part of the range, they are not. We thus must consider Hy € [1/1, (12+
=1)/(13+12-1 1)) and Hy € [(12+] =1)/(13+ 12 = | = 1), 1/(12 - 1)) separately.
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For Hy € [1/1, (12 + 1 = 1)/(13 + 12 = | - 1)), only the expressions in Eq. (H.6) and Eq. (H.7)
are possible solutions to 0A/dpy; = 0, because the expressions in Eq. (H.8) and Eq. (H.9) are
not real in this range of Ht values. Invoking A-D lets us conclude that because there are not

three solutions, there must be exactly one solution, it must have p,,=p , and it must be a
minimum of A.

Eq. (H.6) gives the solution to p,,=p; . As such, it is the sole solution of dA/0py; = 0 when
Hr e [1/1, (12 + 1 = 1)/(13 + 12 = | - 1)), and for these values of Ht, F is maximized by

setting p,,=p,, =(1/I)(1 — \/(I —1)(IH, — 1)). These values of py; and py; can then be
plugged into a special case of Eq. (A.3), modified to reflect the allele frequency arrangement
in Table 4:

HT — PPy )
1—H,

F= (H.11)

When this is done, the maximum F attained is

<1— (I—l)(IHT—1)>2
(N D

I1-H

T

5l

T

F=

Note that setting py; to equal the expression in Eq. (H.7) does not produce an optimum of A,
as it is a fictitious root of Eq. (H.3). We can therefore exclude it as a candidate when we
seek to minimize A in the next range of Ht values we consider.

Appendix H.2.4. Maximizing F for odd | and Hy € [(1Z + | = 1)/(13 + 12 = | = 1), /(12 - 1))

For the second range of Hy values we must consider, H € [(12 + 1 = 1)/(13 + 12 = | = 1), 1/(12
- 1)), either A has its minimum when py; equals the expression in Eq. (H.6), or it has a local
maximum when py, equals the expression in Eg. (H.6) and minima when py, equals either
the expression in Eq. (H.8) or the expression in Eq. (H.9). This statement follows from
points (I-1V) in subsection Appendix H.2.2, along with the fact that setting py, to equal the

expression in Eq. (H.3) solves the equation p,,=p] .

Because these are the only two possibilities, we can distinguish them simply by comparing
the value of A produced when py, is set to equal the expression in Eq. (H.6) against the value
of A produced when py; equals either of the expressions in Eq. (H.8) or Eq. (H.9). That is, if
it can be shown that the value of A produced by choosing py; to be equal to the expression in
Eq. (H.8) is smaller than the value of A produced by choosing py, to be equal to the
expression in Eq. (H.6), then A will be minimized (and F will be maximized) by setting py
to be equal to the expression in either Eq. (H.8) or Eq. (H.9).

The first step is to find the value of p], when py is as in Eq. (H.8). Plugging this value of py
directly into Eq. (G.5) to find p}, produces an unwieldy expression. Rather than simplifying
it, we can find p;, in the alternative manner suggested in Figure H.4. To use this method, we
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need the equation for the line of slope -1 that intersects the curve p,,=p; when py is as in
Eq. (H.8). As shown in Figure H.4, the intercept of this line is equal to the sum of aand b,

where a s the py; value for which we seek to find the associated value of p},, which we call
b.

On the basis of the symmetry of the problem, we conjecture that if a is the expression in Eq.
(H.8), then b must be the expression in Eq. (H.9). We verify our conjecture by checking that
the line with slope —1 and intercept equal to the sum of the expressions in Eq. (H.8) and Eq.

(H.9), or 2/(1 + 1), intersects p;, twice, where py; is equal to the expressions in Eq. (H.8) and
Eg. (H.9). The equation we need to solve is

2 2 - (I - 1)pu -2 \/HT(IZ - 1)+2p11 - I(l—ﬁ—pi)

_— —p* =
T+1 PuTPu I+1

(H.12)

One solution has pq; as in Eg. (H.8), and the other solution has py; as in Eq. (H.9). Thus,
when py is as in Eq. (H.8), p;, is equal to the expression in Eq. (H.9), and when py; is as in
Eq. (H.9), p;, is equal to the expression in Eq. (H.8).

It remains to compare the values of A generated when py; is as in Eqg. (H.6) and when py is
asin Eqg. (H.8). When py; is as in Eq. (H.6),

WanaH = -y
IZ

In contrast, when py, is as in Eq. (H.8),

I—H, (I—-1)(I+1)

A:
I+1

(H.14)

Setting the right sides of Eq. (H.13) and Eq. (H.14) to be equal to each other gives

I? (I-H,(I-1)(I+1) 2-1—-H.I+H.I? (H.
H, I? - I(1+H,)+1=—— L - z .
\/ T ( + T)+ 2 ( [+1 ]2 15)

Squaring both sides of Eq. (H.15), rearranging, and simplifying gives a quadratic in Hy:

(P4 1)°

H.16
(I+1)? (F.16)

0=HZ2[(I+1)*(I — 1)%] — 2H,[(I — 1)(I*+1 — 1)]
Eg. (H.16) has only one solution, and thus, values of A produced when py; is as in Eq. (H.6)
and as in Eq. (H.8) are equal only when

247 -1

=mpor-1
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This solution is the lower boundary of the interval over which we seek to minimize A.
Because the expressions in Eq. (H.13) and Eqg. (H.14) are only equal at one point, the
expression in Eq. (H.14) is less than the expression in Eq. (H.13) for all Hy > (12 + | — 1)/(13
+12-1-1)ifitislessforany Hr> (12+1-1)/(13+12-1-1). Forall 1 >2,1>(12+ 1 -
1)/(13 + 12 = | = 1). When Hy = 1, which is biologically impossible in our setting but
mathematically valid, the expression in Eq. (H.14) is less than the expression in Eq. (H.13)
when

2
2
(,/(1—112) -1) >—I2+1+1_ (H.18)

I+1

If | > 2, then the expression on the left side of Eq. (H.18) is positive and the expression on
the right is negative, so the inequality holds for all | > 2. Therefore, for Hy € [(12 + 1 - 1)/(I3
+12-1-1),1/(012 - 1)) and all | > 2, the expression in Eq. (H.14) is less than the expression
in Eq. (H.13), and choosing py; as in Eq. (H.8) or Eqg. (H.9) minimizes A. Minimizing A
maximizes F with respect to Ht. The upper bound on F is attained using Eq. (H.11), setting
py) to the expression in Eq. (H.8) and setting py, to the expression in Eq. (H.9), or vice versa.
The upper bound is

_ I+ H, — 1]
-~ (I+)(1-H,)
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Figure 1.
The upper bound on F as a function of the frequency of the most frequent allele M. The

differently colored vertical bands represent (M, F) pairs that become possible as the number
of alleles at the locus increases; the vertical bands stretch horizontally from M =1/l to M =
(1 -1)forl € {2, 3,4, ...}. The regions colored in black that stretch horizontally from M
=1/ to M = 1/(1 - 1) represent (M, F) pairs that are not allowed when the number of alleles
is | but are achievable when the number of alleles increases. In other words, when the
number of alleles is I, the colored regions from M = 1/l to M = 1 represent allowed (M, F)
pairs, as do any black regions to the right of M = 1/(1 —= 1). For M € [1/1, 1/(1 - 1)) and |
even, the upper bound is computed from Eq. (6). For M € [1/I, 1/(1 — 1)) and | odd, the black
region stretches from the curve given in Eq. (7) to the curve given in Eq. (6). The lower
bound on F is O for all values of M.
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Figure 2.
The upper bound on F as a function of the homozygosity of the total population Ht. The

differently colored vertical bands represent (Hr, F) pairs that become possible as the number
of alleles at the locus increases; the vertical bands stretch horizontally from Ht =1/l to Hy =
(I -1)forl € {2, 3,4,...}. The regions colored in black that stretch horizontally from Ht
= 1/I to Hy = 1/(12 - 1) represent (Ht, F) pairs that are not allowed when the number of
alleles is | but are achievable when the number of alleles is larger than I. In other words,
when the number of alleles is I, the colored regions from Hy = 1/ to Hy = 1 represent
allowed (Hr, F) pairs, as do any black regions where Hy = /(12 - 1). For Hy € [1/1, 1/(12 -
1)) and | even, the upper bound is computed from Eqg. (13). For M € [1/I, 1/(l1 — 1)) and odd
I, the black region stretches from the curves given in Eg. (15) and Eg. (16) to the curve
given in Eq. (17). Numerical integration reveals that the total area of the black regions
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between the arbitary-I and fixed-1 upper bounds is ~ 0.002955. The total area of the shaded
regions is 1 — In 2 ~ 0.306853 (Jakobsson et al., 2013). The lower bound on F is O for all
values of Hr.
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Figure H. 3.
The values of py; and py that are possible when there are | = 5 alleles and Hy is equal to the

specific values in [1/1, 1/(12 = 1)) shown in the legend. If a pair of values is possible for (py,
pyy) at a given Hy € [1/1, 1/(12 - 1)), then it is also allowed for larger Hy € [1/1, 1/(12 - 1)).
Thus, the larger regions on the outside encompass the smaller interior regions. When Hy
increases to /(12 - 1), it is possible to set either py; or py to 0. For a given Hy in the relevant
range, the region of allowed (py;, pp|) values is symmetric around py; = pp;, sShown as a black
dashed line on the plot. Because the problem of maximizing F given Hr is solved when the
product py po; is minimized, this visualization allows one to view the problem as that of
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finding the smallest rectangle that has its bottom-left vertex at the origin, two sides running
along the axes, and its top-right vertex in the region of allowed (py;, py;) values allowed
given Ht. An example rectangle—not the one that maximizes Fgr—is shown in grey for Ht
=0.2075.
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-«
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Figure H. 4.
An argument for identifying the value of p that corresponds to a value of py; denoted by a.
To find b, we take advantage of symmetry around the py; = py; line. Suppose we find the

line of slope -1 that intersects the curve p,,=p}, at py; = a (solid line in the Figure). As can
be seen, this line is the line with slope -1 and intercept equal to a + b. If the same line

intersects p,,=p;  in another location, then the value of py) at the second intersection is
equal to b.
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