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Abstract

A tree-structured multiplicative gamma process (TMGP) is developed, for inferring the depth of a 

tree-based factor-analysis model. This new model is coupled with the nested Chinese restaurant 

process, to nonparametrically infer the depth and width (structure) of the tree. In addition to 

developing the model, theoretical properties of the TMGP are addressed, and a novel MCMC 

sampler is developed. The structure of the inferred tree is used to learn relationships between high-

dimensional data, and the model is also applied to compressive sensing and interpolation of 

incomplete images.

1. Introduction

Factor models are classical tools for analysis of high-dimensional data, widely utilized in the 

social sciences, statistics and machine learning literature. Such models seek to represent data 

in ℝP, typically for large P, as the superposition of a small number of factor loadings; each 

factor loading is also in ℝP, and the same typically small set of loadings are used to linearly 

represent each data sample. The sample-dependent weights on the loadings are termed factor 

scores. Recent developments include sparse PCA in which the loadings are regularized to be 

sparse, allowing for potentially interpretable loadings (Zou et al., 2004; Archambeau & 

Bach, 2009). Another direction of research involves nonlinear extensions, for example via a 

mixture of factor analysis models (MFAs) (Tipping & Bishop, 1999). In this setting each 

mixture component is a linear factor model, and cumulatively all mixture components yield 

a nonlinear mapping from data to factor scores. MFAs may be understood as a Gaussian 

mixture model with a low-rank assumption for the covariance matrix of each Gaussian 

(Roweis & Ghahramani, 1999). There are two model-selection challenges for an MFA: 

inferring the number of mixture components, and the number of factor loadings per mixture 

component (the number of loadings need not be the same for each mixture component). To 

address this problem, Bayesian priors (Griffiths & Ghahramani, 2006; Paisley & Carin, 

2009; Knowles & Ghahramani, 2007; Bhattacharya & Dunson, 2010) have been utilized, 
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allowing the number of factor loadings and mixture components to be inferred from the data 

(Rasmussen, 1999; Teh et al., 2006). For example, in (Chen et al., 2010) beta-Bernoulli 

priors were utilized to infer the number of factors, and a Dirichlet process was used to 

perform mixture modeling; this framework simultaneously learns the number of mixture 

components and the number of factor loadings in each mixture component. Using this 

approach (Chen et al., 2010) reported state-of-the-art results for a compressive sensing 

application. However, the method in (Chen et al., 2010) does not share factor loadings 

between mixture components, missing an opportunity to enhance statistical strength, and 

improve learning of relationships between the data.

In this paper we extend the mixture model setting to learn a multi-scale tree-structured 

hierarchy, with each factor loading defined by a node of the tree. Nodes and hence factor 

loadings may be shared among different mixture components (tree branches) and each tree 

branch is modeled as a probabilistic sparse PCA. The depth of each branch is inferred from 

the data, defining the number of factor loadings for a given mixture component. Further, the 

number of mixture components is also inferred, corresponding to the number of branches in 

the tree. The multi-scale nature of the learned factor loadings (tree) is of interest for model 

interpretation, allowing the viewing of data at multiple scales.

Learning a tree-structured hierarchy of observed variables is an appealing but challenging 

approach for exploring latent structure. In (Jenatton et al., 2010) a set of dictionary elements 

embedded in a prespecified tree-structured hierarchy was developed, and the model was 

successfully applied to represent both natural images and documents. However, such 

hierarchical structure is often unobserved, and it is desirable that it be inferred from data. 

The combinatoric nature of selecting from among possible tree structures makes typical 

model-selection techniques impractical (e.g., cross validation). In the conclusion to (Jenatton 

et al., 2010), the authors noted that the next major challenge is to infer dictionary-learning 

trees in a nonparametric Bayesian setting, to avoid the assumptions that they were required 

to make with regard to the structure of the tree; this paper seeks to address this research 

challenge, presenting a new nonparametric Bayesian model for learning tree-based 

hierarchical factor models.

The nested Chinese restaurant process (nCRP) (Blei et al., 2004) has been proposed as a 

generative probabilistic model for inferring a latent tree-structured hierarchy with an 

unbounded width, inferring semantic topics from a document corpus. Further, (Blei et al., 

2010) extended this model to let the branch depth also be inferred from the data; this was 

done through modeling the discrete distribution over topics of each document using a stick-

breaking process. In (Wang & Blei, 2009) the authors integrate the nCRP with factor 

analysis to model both continous data and discrete data, with factor loadings embedded in a 

tree as well; however, the depth of each branch was fixed in advance and as a result the 

number of factor loadings per branch cannot be inferred based on data.

A tree structure learned by nCRP has also been applied successfully in the computer-vision 

community, for example to discover latent hierarchies of images or high-level semantic 

information (Li et al., 2010; Bart et al., 2008). However, such models operate only on a 

discrete representation of data, in terms of a pre-defined codebook of features extracted from 
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images. In contrast, the proposed model can learn the codebook (dictionary) at the same 

time it builds the tree-structured hierarchy for the continuous data. Further, the data are not 

mapped to a single codebook, but are represented as a linear combination of the factor 

loadings of the nodes of a tree branch. The stick-breaking process of (Blei et al., 2010) may 

not be applied readily to this problem. Other priors over an infinite tree have been proposed, 

but based on a different modeling philosophy; for example, the tree-structured stick-

breaking prior (Adams et al., 2010) has been constructed to partition the data to nodes of a 

tree. The model proposed in (Rai & Daumé, 2008) is similar to our work in spirit, but the 

tree is restricted to be binary and requires a pseudo-time hazard process to model the depth 

of the tree.

To address the open problems elucidated above, this paper makes two principal 

contributions:

• A tree-structured multiplicative gamma process is developed; coupled with the 

nCRP, it manifests factor loadings embedded in a tree-structured hierarchy with 

unbounded depth and width. A convergence guarantee is also provided for the 

proposed model.

• We propose an efficient collapsed Gibbs sampler to explore the combinatorial tree-

structured hierarchy space, automatically inferring the appropriate data-adapted 

depth of each branch.

2. Background

2.1. Nested Chinese restaurant process

The nested Chinese restaurant process (nCRP) (Blei et al., 2004; 2010) is a generative 

probabilistic model that defines a prior distribution over a tree-structured hierarchy with 

infinite many branches. We denote the infinite set of branches as , with the 

superscript defining the kth branch; each branch  is a set of an infinite number of 

nodes, and the subscript means the lth layer of the branch. We use |bk| to denote the size of 

set bk, defining the number of associated nodes. For observed variable , where N is 

the total number of data, a branch bk ∈ T is assigned to it according to a distribution 

specified below. Here we use  to represent the set of nodes chosen by sample i at 

each layer l of the branch. Finally, we use l(n) to denote the layer that node n lives in, and 

c(n) denotes the set of children nodes of node n.

Now assume that data sample i is at a particular parent node n; integer index bc(n),i defines 

the child of node n that sample i transitions to. In the nCRP the probability of which child 

node sample i transitions to is dictated by the behavior of the previous i − 1 samples (the 

data are distributed within the tree sequentially). Specifically, the probability that sample i 

transits to child bc(n),i = k is  if k is a newly visited node, and 

 otherwise. Integer mn denotes the number of the previous i 

− 1 samples that employ node n, mn,k denotes the number of these that employ child k, and α 
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is a parameter controlling the probability of spawning a new node/branch; a different α may 

be used for each layer of the tree. Note that the nCRP statistical relationship is defined 

recursively for an infinite number of nodes , which we simply denote as bi ~ 

nCRP(α).

2.2. Multiplicative gamma process

Consider a factor model of form yi = Dzi + εi, εi ~ N (εi∣0, Λ−1), where D = {dpn, 1 ≤ p ≤ P, 1 

≤ n ≤ K} and yi ∈ ℝP, zi ∈ ℝK. The multiplicative gamma process (MGP) (Bhattacharya & 

Dunson, 2010) is defined on each dpn as

where δl, l = 1, … ,∞ are independent. The τn is a globally shared shrinkage parameter for 

factor loadings dn, and ϕpn is a local shrinkage parameter for dpn. The Πl∈p(n) δl are 

stochastically increasing under the restriction a2 > 1, which favors more shrinkage as n 

increases.

Although each draw of δl from a gamma distribution is not guaranteed to be greater than 

one, in practice for normalized data δl is inferred to be great than one when a2 > 1, for 

moderately large l (l ≥ 3 in all our experiments). However, an MGP based on a left-truncated 

gamma distribution may be easily derived: , (δl−1) ~ Ga(δl−1∣a, 1), where both 

the conjugacy and theoretical properties are retained (Bhattacharya & Dunson, 2010). In the 

following we only focus on the non-truncated version of MGP.

3. Proposed Model

3.1. Model and prior specification

To learn an infinite tree-structured hierarchical model means to infer both the number of tree 

branches and depth of each branch. To address the first problem we adopt the nCRP prior. 

As opposed to other priors on infinite trees (Mauldin et al., 1992; Rai & Daumé, 2008), the 

nCRP has the flexibility of allowing an unbounded number of children nodes for each parent 

node, rather than only allowing two children; this enhances model flexibility, removing 

redundant inner nodes (Adams et al., 2010). Let bi represent the branch that data yi chooses, 

according to the nested Chinese restaurant process (nCRP): bi ~ nCRP(α) where α = {α1, 

α2, …, α∞}, allowing different α for each layer of the tree.

Assuming a Gaussian noise/residual model, observed data yi ∈ ℝP are assumed drawn

(1)

where Λ = diag{λ1, … , λP} is a diagonal precision matrix. The set of N data samples are 

denoted Y = {y1, … , yN}. Factor loading dn is associated with node n in the tree, and xni ∈ 
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ℝ is the associated weight (factor score) on this factor loading for data yi; vector mbi ∈ ℝP is 

the mean on branch bi. The diagonal Λ ∈ ℝP×P allows the residual precision to vary across 

the P components of the data, and we place a gamma prior Ga(a0, b0) on each diagonal 

element. Note that we could make Λ be branch specific. We impose the following priors on 

the factor loadings, scores and means: , , xni ~ 

N (xni∣0, 1). We restrict xni to be drawn from a unit-variance standard Gaussian because of 

the arbitrary sharing of scale between xni and , as discussed in (Roweis & Ghahramani, 

1999). Upon marginalizing out the factor scores, we have

(2)

with  where  denotes the transpose of column vector dn. Note 

that for any two tree branches (mixture components) bi and bj, the covariance matrices Ωbi 

and Ωbj are partly shared (via the shared nodes).

Notice that data associated with each branch bk ∈ T is modeled via a factor model, and the 

rank of each factor model is |bk|. However, |bk| is unbounded, as each branch is drawn from 

nCRP. Thus an extra condition is needed for (2) to be well defined. Toward this end, we 

extend the multiplicative gamma process to a tree-structured multiplicative gamma process 

(TMGP): denote p(n) as the set of ancestors of node n (those nodes above node n) and for 

each node n in the infinite tree, we define the TMGP for dpn’s precision parameter

(3)

denoted simply as γp ~ TMGP(c1, c2). As for MGP, the TMGP is also conjugate to the 

precision parameter in a normal density function, allowing an efficient sampling scheme, as 

discussed below. Note that for indices n corresponding to nodes that are deeper in the tree, 

the parameter γpn increases. Thus with TMGP each tree branch is modeled as a probabilistic 

sparse PCA, or sparse FA if diagonal covariance matrix is employed. Note that for usual 

shrinkage priors on the loadings they exhibit the phenomenon of factor splitting, in which 

none of the columns dn, n ∈ b have all loading elements dpn close to zero even when l(n) is 

large. The TMGP avoids this problem by shrinking increasingly in columns dn for which 

l(n) is large. More specifically, this choice of shrinkage prior on the infinite number of factor 

loadings and means allows Ωbk to converge almost surely for every infinite branch bk ∈ T, as 

stated in the following theorem; a sketch of the proof can be found in the supplemental 

material.

Theorem 1—For all bk ∈ T, the covariance matrix  converges 

almost surely.

Our model can be thought as an innovative tree-structured extension of infinite Gaussian 

mixture model (iGMM) (Rasmussen, 1999), with means and low-rank covariance matrices 

shared by mixture components via a tree topology. Specifically, we can rewrite the model as
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(4)

where Ωbk is defined in (2), wbk is the mixture weight of this tree-structured iGMM drawn 

from the tree-structured stick-breaking process introduced in (Wang & Blei, 2009). We will 

discuss the usage of this specific formulation in Section 5, where analytic compressive 

sensing(CS) inversion is performed.

4. Posterior inference

4.1. Truncate tree branch depth to finite

For computational purposes, we would like to approximate the infinite set of nodes on each 

branch bk ∈ T of the tree (which correspond to an infinite set of factor loadings) to a finite 

set . Denote the truncated tree  and |T̂(L)| as 

the number of truncated branches in the tree. As justification, we show theoretical bounds on 

the depth truncation approximation error between bk and bk (Lk). In the following discussion 

we discard the branch-specific superscript k for notational simplicity. Let 

 represent the truncated version of Ωb; the following theorem 

states that the prior probability of Ωb(L) being arbitrarily close to Ωb increases exponentially 

fast to one as L tends to infinity, generalizing Theorem 2.4 in (Bhattacharya & Dunson, 

2010) to a tree-structured hierarchal setting and the proof can be found therein.

Theorem 2—If c2 > 1, then ∀ε > 0, ∀b ∈ T,

where  and , and d∞(A, B) = max1≤r,s≤p |ar,s − br,s| is the sup-norm 

metric for P × P matrices A = (ars), B = (brs).

4.2. Collapsed Gibbs sampler with fixed truncation

We propose an efficient collapsed Gibbs sampler with fixed truncation level for 

simultaneously exploring the parameter space and the large latent tree-structured hierarchy. 

The Gibbs sampler can be divided into two parts:

4.2.1. Given  sample other parameters—With known branch assignments, the 

inference reduces to a conventional sampler for factor models. Factor loading dn, factor 

score xni, branch mean mb and precision matrix Λ defined in equation (1) can be sampled 

from their corresponding conditional distribution which we do not reproduce here. Due to 

the conjugacy of the TMGP parameters defined in (3), they can be sampled directly from 

their conditional distribution p(·∣−) given all other parameters (Bhattacharya & Dunson, 

2010). Denote Cn as the set of children nodes of n and |Cn| as the size of that set we have:
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(5)

where ν = 3 as parameterized in our previous setting, and ĉ1 = c1, ĉn = c2 for n > 1, and 

, for all children nodes c ∈ Cn. Finally, nCRP hyperparameter α and 

hyperparameters a0, b0 on diagonal precision matrix Λ are updated using standard 

Metropolis-Hastings steps within the Gibbs sampler (Blei et al., 2010).

4.2.2. Sample  given other parameters—Denote all the hyperparameters as θ, 

for sample i the conditional distribution of choosing bL ∈ T̂ (L) is:

(6)

where b−i denotes the tree branch assignments for all data other than sample i. This 

expression is an outcome of Bayes’ rule, where p(bi = bL∣b−i) is the prior of choosing bi 

given the choices of all other data, p(yi∣{dl, ml}l∈bi, bi) is the data likelihood of the data yi 

given a particular tree branch assignment bi as formulated in (2), where the latent factors in 

(1) are integrated out for faster mixing of the sampler.

Note that to evaluate (2) we need the precision matrix and the determinant for every branch 

bL ∈ T̂ (L), and for a tree with |T̂(L)| branches the computational cost is approximately O(P|

T̂ (L)|2) if advanced techniques are employed (Roweis & Ghahramani, 1999) but still 

quadratic in |T̂ (L)|, which is computationally prohibitive as |T̂ (L)| grows exponentially fast 

to the branch truncation level L. Note that since the branch depth is modeled as the intrinsic 

latent dimension of observed variables, this issue will be critical when handling complex 

data, e.g., when P is large. In the following we propose an efficient Gibbs sampler by 

exploring the tree structure that scales as O(P|T̂ (L)|).

Writing Ωb(0) = Λ and  which is interpreted as the covariance for 

branch b(l) with truncation level l, then for 1 ≤ l ≤ L we have the recursive representation of 

covariance matrix: .

Denote  as the precision matrix of branch b(l) with truncation level l, and 

writing , then based on the recursive representation and Sherman-Morrison-

Woodbury matrix identities we can calculate the matrix inversion and determinant 

recursively by operating on matrix  of dimension 1 for L + 1 times from l = L 

to 0 as explained below:

(7)
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(8)

An important observation from (7) and (8) is that, since matrix  corresponds to the 

precision matrix on branch b(l) with truncation level l, its result can be reused when 

computing matrices  by all branches b(l′) with b(l) ⊂ b(l′). Thus we can make use of 

breadth first search (BFS) of the tree to transform the heavy computations of branch 

specific precision matrices and determinants into operations on each node within one sweep 

of the tree, where the computational cost on each node is simply O(P). Since the number of 

nodes N = O(|T̂ (L)|), the computation cost is reduced from O(P|T̂ (L)|2) to O(P|T̂ (L)|).

4.3. Truncating branches using adaptive Gibbs sampler

The above Gibbs sampler needs a predefined depth truncation level. However, its desirable 

to have a computational strategy for choosing an appropriate level of truncation Lb 

automatically for each b ∈ T. Here we extend the adaptive Gibbs sampler proposed in 

(Bhattacharya & Dunson, 2010) to our setting.

We modify the sampler described above, tuning the number of loadings on each branch 

b(Lb) as the sampler progresses. To be specific, we trigger the adaptation procedure with 

probability p(t) = exp(z0 + z1t) at the tth iteration, with z0, z1 chosen so that adaptation 

occurs around every 10 iterations at the beginning of the chain but decreases in frequency 

exponentially fast. Denote  as the underlying true number of loadings on branch b, and the 

adaptive sampler starts with a conservative guess Lb of . If the adaptation is triggered at 

iteration t, let qδ(t) = {n∣c(n) = ∅, ∥dn∥p < δ} denotes the set of tree leaves with 

corresponding loading’s ℓp. norm less than some pre-specified threshold δ. Intuitively for 

each branches b(Lb) if its leaf bLb ∈ qδ(t) then its loading has a negligible contribution at the 

tth iteration to the covariance, and thus removed. On the other hand, if leaf node bLb = ∉ 

qδ(t) then it suggests that branch bLb may need more parameters to model the data that live 

in it, and as a result bLb is replaced by bLb+1 with a new leaf node bLb+1 introduced with 

parameters draw from prior distribution.

An important aspect of the adaptive Gibbs sampler is that the convergence of the chain is 

guaranteed, as the adaptations are designed to satisfy the diminishing adaptation condition 

in Theorem 5 of (Roberts & Rosenthal, 2007), which we do not reproduce here for brevity.

5. Experiments

In all experiments the hyperparameters of TMGP were set as c1 = 1, c2 = 3, to ensure 

Theorems 1 and 2 hold. In the adaptive sampler we adopted the ℓ2 norm with z1 = −0.5, and 

z2 = −0.001. An important thresholding parameter δ is introduced by TMGP to discard the 

factor loadings that has ℓ2 norm less than δ, and the learned size of the tree is sensitive to δ. 

Relative large δ will lead to better predictive performance while introduce more factor 

loadings, thus the choice of δ is a trade-off between performance and scalability. However, 
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it’s not required to fix the value of δ in advance and we can vary it based on the model 

output (e.g., the number of nodes) during the early stage of MCMC chain. This is because 

the adaptive Gibbs sampler introduced in Section 4.3 has the flexibility of changing the 

value of δ, where the convergence guarantee would still be met as long as the diminishing 

adaptation condition meets.

All quantitative results below were obtained based on multiple posterior samples, and for the 

tree structure we will show only a single (representative) sample from the posterior 

distribution for illustration, as discussed in (Blei et al., 2010). Unless stated otherwise, we 

discarded the first 5000 burn-in samples and collected 500 samples from every 10 iterations 

after burn-in. All the experiments were conducted on a cluster of blade-based servers with 

2.5 GHz clock frequency, eight CPU-cores and 16 Gb shared RAM. As an example, for the 

faces data considered next the MCMC sampler required around 35 seconds per sample.

5.1. Face data

We first consider the face dataset studied in (Tenenbaum et al., 2000). It contains a total of 

N = 698 faces, each with P = 4906 pixels; the images are from the same subject, but with 

different pose and illumination. In Figure 1 we present the inferred hierarchical tree. Each 

image is assigned to a branch of the tree, and modeled by a FA model on that branch (one 

factor loading at each node). In Figure 1, the image at tree node n is the average of all data 

 that live in that node, where Nn is the total number of such data. Note that a 

parent may have a single child; if a parent has a single child, this is equivalent to multiple 

factor loadings contributing to the same node (since there is no branch splitting).

The results are presented in a manner such that disagreements in the pose/illumination of 

data on the same node manifests blurriness of the average image at that node. The model 

captures common structure (nodes on the top layers) and idiosyncrasies (bottom nodes and 

leaves) characteristic of the whole dataset. The degree of similarity between two clusters 

(branches) is manifested by the number of nodes they share. By contrast, conventional 

mixture model based clustering methods (Chen et al., 2010; Rasmussen, 1999) cannot 

capture the intrinsic relation among observed variables above, because they are modeled to 

be conditionally independent given cluster assignments. We further studied the proposed 

model in the context of compressive sensing (CS), with comparison to factor analysis (FA) 

and traditional mixture of factor analyzer (MFA) models; the latter has achieved state-of-

the-art performance in a recent study (Chen et al., 2010). We randomly divide the faces data 

into a training subset of 598 images, with a testing subset of 100 images, and the relative CS 

reconstruction error is defined as  where X ∈ ℝ4906×100 is the testing data set and 

X ̂ is the reconstruction. Note that because the underlying model is a low-rank GMM, as 

shown in (4), we may use the same analytic CS inversion as developed in (Chen et al., 

2010). In order to perform a fair comparison, we also use the adaptive Gibbs sampler and 

MGP to infer the number loadings used in the comparison MFA, and for the single (non-

mixture) FA. For the MFA model, the same Dirichlet process model as considered in (Chen 

et al., 2010) is used to infer the number of FA mixture components. We ran the CS analysis 
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10 times, for different partitions of the training and test data, and the average reconstruction 

performance of the models is summarized in Figure 2. We observe that the proposed model 

is better on average, and has tighter variance, than both the MFA (Chen et al., 2010) and FA 

alternatives. These are believed to be state-of-the-art CS recovery results for data that live on 

a low-dimensional subspace of ℝP.

5.2. Cell Line Panel

The HGDP-CEPH Human Genome Diversity Cell Line Panel (Rosenberg et al., 2002) is a 

dataset comprising genotypes at P = 377 autosomal microsatellite loci, sampled from N = 

1056 individuals in 52 populations across the major geographic regions of the world. It is 

useful for inferring human evolutionary history and migration. Each data sample has a label 

that indicates which area it comes from, and there are 26 areas corresponding to 22 

countries.

In this experiment we study the hierarchical clustering of our model through analyzing the 

relationship between the tree-structured hierarchy learned from the data; we relate the results 

to the geographical locations of the data (geography is not used in the analysis itself, only 

for presentation). In Figure 3, the top picture plots the inferred tree structure learned from 

the data, and the middle and bottom two maps illustrate the node-clustering results of the 

countries on the second and third layer of the tree. We assign each area into one node if most 

of its data are mapped to it in the learned tree structure. If two areas/countries share the same 

color, this indicates that they belong to the same node. Consider the middle of Figure 3, 

which corresponds to layer two in the tree. If a country at that layer is uniquely associated 

with one node (e.g., Russian and China), this will also be true at layer 3 (bottom), as they 

will have a unique set of children nodes. If two or more countries share a node at layer 2 

(e.g., Mexico, Brazil and Columbia), they may be distinguished at the third layer (note that 

Brazil separates from these three at layer 3, the bottom in Figure 3). Note that for both the 

second and third tree layers, western countries UK, France and Italy are clustered together 

with Pakistan, consistent with a previous analysis of these data (Rosenberg et al., 2002). We 

found that the samples from a given country were generally strongly associated with a 

particular node, at each scale. For example, 73% of the China samples were associated with 

one node at layer 2. As another example, for Italy 90% were in the same node at layer 2.

5.3. Natural Image Patches

In the last experiment we test our model on interpolating (“inpainting”) missing pixels from 

images, as also considered in (Jenatton et al., 2010) with a specified tree (here the tree 

structure is learned). In (Jenatton et al., 2010) the authors studied the same problem, and 

made comparisons to a “flat” model, which here is a conventional FA. We also make 

comparisons to a “flat” FA model, and also to the same class of MFA models studied above 

in the context of compressive sensing.

We extracted 125; 000 non-overlapping patches of P = 64 pixels (8 × 8 patches), from the 

Berkeley segmentation database of natural images. We divided them into a training set Xtr 

of size 100; 000 and a testing set Xte of size 25; 000. The tree learning based on Xtr uses the 

complete data, and Xte is analyzed in the presence of missing pixels (selected uniformly at 
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random); this is the same task as (Jenatton et al., 2010) considered. When learning the 

model, we ran the adaptive Gibbs sampler 10,000 iterations on Xtr, and retained the 

maximum-likelihood sample (defining the tree structure and associated multi-scale 

dictionary). This model was then fixed, and 5000 Gibbs iterations were then employed when 

analyzing Xte.

An example of a learned dictionary embedded in the tree structure learned from Xtr is shown 

in Figure 4, and the quantitative reconstruction results are reported on Table 1. Note that we 

only plot the top six layers of the tree because of the limited space. As observed from Figure 

4, the dictionary elements embedded at the bottom of the tree structure corresponds to detail 

information of the data set, whose ℓ2 norms are small (around 0:2) and thus contribute less 

to the model. This is consistent with the assumption imposed by TMGP. From Table 1 we 

observe that the improvement of tree-structured model is most significant when there are 

most missing values in Xte, similar results were also reported in (Jenatton et al., 2010).

6. Conclusions

A new model has been developed for inferring the structure of a latent tree, used to encode 

relationships between loadings in a factor model. In addition to developing model 

properties, an efficient MCMC inference engine has been developed. Several encouraging 

experimental results have been presented, significantly generalizing related and motivating 

models that assumed that the tree structure was known (Jenatton et al., 2010).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The full tree structure inferred from faces data where each node is plotted as the average of 

all images that were assigned to that node. Leaves at branches with different depth are 

placed on same horizontal level for purpose of interpretation.
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Figure 2. 
CS reconstruction error for faces data. The curves represent the average over 10 partitions of 

the data, and the error bars denote standard deviation.
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Figure 3. 
Summary of cell-line results. Top: inferred tree structure. Middle: layer-2 association of 

countries with nodes (denoted by colors). Bottom: layer-3 association of countries with 

nodes (denoted by colors). As examples, consider the nodes numbered on the tree (top). On 

layer-2, node 1 is represented as red in the middle map (Central South America and Central 

South Africa). On layer-3, node 2 is represented as purple (Mexico and Columbia); node 3 is 

represented as brown (Central South Africa); node 4 has no corresponding color because 

none of the countries in the map has majority of data clustered to it; and node 5 is 

represented as red (Brazil).
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Figure 4. 
Tree-structured hierarchy(with top six layers) embedded with dictionaries learned from 

100,000 patches of size 16 × 16 pixels.
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Table 1

Quantitative results of the reconstruction tasks on natural image patches. First row: percentage of missing 

pixels. Second and third row: mean square error multiplied by 100

50% 60% 70% 80%

FA 17.6 ± 0.2 22.3 ± 0.1 30.1 ± 0.0 47.7 ± 0.0

MFA 16.1 ± 0.3 22.6 ± 0.2 31.6 ± 0.3 50.2 ± 0.4

Tree 16.6 ± 0.3 21.1 ± 0.2 29.8 ± 0.3 41.3 ± 0.1
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