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Abstract

Sleep apnea (SA) causes long-lasting changes in neuronal circuitry, which persist even in patients successfully treated for the
acute effects of the disease. Evidence obtained from the intermittent hypoxia (IH) experimental model of SA has shown
neuronal death, impairment in learning and memory and reactive gliosis that may account for cognitive and structural
alterations observed in human patients. However, little is known about the mechanism controlling these deleterious effects
that may be useful as therapeutic targets in SA. The Receptor for Advanced Glycation End products (RAGE) and its
downstream effector Nuclear Factor Kappa B (NF-kB) have been related to neuronal death and astroglial conversion to the
pro-inflammatory neurodegenerative phenotype. RAGE expression and its ligand S100B were shown to be increased in
experimental models of SA. We here used dissociated mixed hippocampal cell cultures and male Wistar rats exposed to IH
cycles and observed that NF-kB is activated in glial cells and neurons after IH. To disclose the relative contribution of the
S100B/RAGE/NF-kB pathway to neuronal damage and reactive gliosis after IH we performed sequential loss of function
studies using RAGE or S100B neutralizing antibodies, a herpes simplex virus (HSV)-derived amplicon vector that induces the
expression of RAGEDcyto (dominant negative RAGE) and a chemical blocker of NF-kB. Our results show that NF-kB
activation peaks 3 days after IH exposure, and that RAGE or NF-kB blockage during this critical period significantly improves
neuronal survival and reduces reactive gliosis. Both in vitro and in vivo, S100B blockage altered reactive gliosis but did not
have significant effects on neuronal survival. We conclude that both RAGE and downstream NF-kB signaling are centrally
involved in the neuronal alterations found in SA models, and that blockage of these pathways is a tempting strategy for
preventing neuronal degeneration and reactive gliosis in SA.

Citation: Angelo MF, Aguirre A, Avilés Reyes RX, Villarreal A, Lukin J, et al. (2014) The Proinflammatory RAGE/NF-kB Pathway Is Involved in Neuronal Damage and
Reactive Gliosis in a Model of Sleep Apnea by Intermittent Hypoxia. PLoS ONE 9(9): e107901. doi:10.1371/journal.pone.0107901

Editor: Shilpa J. Buch, University of Nebraska Medical Center, United States of America

Received March 13, 2014; Accepted August 17, 2014; Published September 29, 2014

Copyright: � 2014 Angelo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. In complete agreement with the PLOS ONE
data availability policies, all data will be completely available without restriction upon request. To obtain the raw data, interested researchers should contact me
(Dr. A.J.Ramos, corresponding author) by mail, telephone, fax or through the web site of the Institute (www.ibcn.fmed.uba.ar). Alternatively, interested researchers
can also contact any of the other senior co-authors (Dr. Barker, MNI, Montreal, Canada phil.barker@mcgill.ca; Dr. Jerusalinsky, University of Buenos Aires, Argentina
djerusal@gmail.com; Dr. Epstein, Lyonn, France alberto.epstein@univ-lyon1.fr).

Funding: Funding provided by CONICET PIP 1728 (Consejo Nacional de Investigaciones Cientificas y Tecnicas-Argentina)(AJR, DJ) www.conicet.gov.ar, ANPCYT
PICT 2008-1590 and PICT 2012-1424 (Agencia Nacional de Promocion Cientifica y Tecnica, Argentina) (AJR) (www.agencia.mincyt.gov.ar), UBACYT (Universidad de
Buenos Aires)(AJR) (www.uba.ar), LIA-DEVENIR CNRS/UCBL-CONICET/UBA (France-Argentina)(DJ, AE), IBRO-FRSQ-INMHA Alberto Aguayo fellowship
(Canada)(RXAR). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: jramos@fmed.uba.ar

Introduction

Sleep apnea (SA) is a highly prevalent pathology in adult

humans. SA patients suffer a repeated and transient reduction in

oxygen tension, termed intermittent hypoxia (IH). The central

nervous system (CNS) is vulnerable to these hypoxic conditions,

and neurocognitive manifestations of SA include not only daytime

sleepiness, but also alterations in personality and impairment of

concentration, perception, memory, communication and learning

[1–5]. Continuous positive airway pressure therapy (CPAP)

reduces daytime sleepiness and the cardiovascular complications

of SA [6]. However, even in patients under CPAP, executive

dysfunction often persists, possibly as a consequence of structural

and functional alterations in brain neurocircuitry [7–9]. Further-

more, imaging studies have shown persistent structural alterations

in the hippocampus of SA patients [10].

Regarding experimental settings, neuronal alterations and

reactive gliosis have also been demonstrated in different paradigms

that model the SA-induced IH [11,12]. The cognitive impairments

found in animal studies are structurally related to changes in
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hippocampal and cortical areas [13–18]. The precise mechanisms

that lead to neuronal alterations are not fully understood, but

production of reactive oxygen species (ROS) during the reox-

ygenation period (reviewed in [19]), glutamate-induced excitotox-

icity [20] and inflammation [21,22] have all been implicated in the

development of the neuronal pathology.

Reactive astrogliosis is a general response of astrocytes to

different types of injury; this reaction may reduce neuronal

survival due to the secretion of pro-inflammatory cytokines, ROS

and nitric oxide (NO). The subsequent formation of the glial scar

also impedes neuronal reconnection (reviewed in [23,24]).

However, there are abundant data showing that reactive astrocytes

are beneficial for the recovery of CNS function. For example,

reactive astrocytes can produce energy substrates and trophic

factors for neurons and oligodendrocytes, act as free radicals and

glutamate scavengers, actively restore the blood-brain barrier,

promote neovascularization, restore CNS ionic homeostasis,

promote remyelination and stimulate neurogenesis from neural

stem cells (reviewed in [25–27]). It is now known that reactive

astrogliosis is a complex phenomenon leading to either pro-

survival or pro-inflammatory neurodegenerative responses, involv-

ing the activation of different sets of genes [28]. Thus, an

interesting target for facilitating neuroprotection in the injured

brain would be to control the extent of the glial pro-inflammatory

neurodegenerative response.

The cellular and molecular elements contributing to the

inflammation are those involved in the activation of the innate

immune response. The Receptor for Advanced Glycation End

products (RAGE) is a Pattern Recognition Receptor (PRR) that

participates in the innate immune response. Activation of this

process can be achieved by interaction of PRR with Damage

Associated Molecular Pattern (DAMP) proteins, and usually leads

to pro-inflammatory responses mediated by the NF-kB transcrip-

tion factor. RAGE activation by glial S100B, a DAMP released by

astrocytes after injury, leads either to neuronal survival or death,

depending on the level of NF-kB transcriptional activity [29] and

activates astrocytes, ultimately promoting a pro-inflammatory

response [30,31].

In IH experimental models, RAGE is expressed in hippocampal

and cortical areas related to the cognitive disorders expressed in

SA patients [11,22]. S100B levels have also been found increased

in SA patients [32,33]. In an attempt to understand the

participation of RAGE signaling and NF-kB role on neuronal

survival and reactive gliosis after IH, we here report the results of

loss of function studies in vitro and in vivo performed by blocking

different steps of the S100B/RAGE/NF-kB pathway. By using

RAGE blocking antibodies, chemical blockers of NF-kB activation

and by developing a HSV-derived amplicon vector that induces

the expression of a defective RAGE (RAGEDcyto), we have been

able to show that attenuation of the RAGE/NF-kB signaling leads

to an improved neuronal survival and to a reduced reactive gliosis

after IH exposure.

Materials and Methods

Materials
Antibodies were obtained from Sigma (mouse monoclonal anti-

S100B); Dako [rabbit polyclonal anti gliofibrillary acidic protein

(GFAP)]; Millipore [mouse monoclonal anti microtubule associ-

ated protein (MAP-2); mouse monoclonal anti-neuronal nuclei

(NeuN), mouse monoclonal anti-RAGE, mouse monoclonal anti-

GFP, mouse monoclonal anti-nuclear localization signal of p65

NF-kB subunit (p65NLS), rabbit polyclonal anti-p65 NF-kB

subunit]; Pierce (mouse monoclonal anti bIII-Tubulin) and ICN

Biomedicals (rabbit polyclonal anti-b-galactosidase). Secondary

biotinylated antibodies, streptavidin complex (Extravidin) used for

immunohistochemistry studies, 4-chloro-5-bromo-3-indolyl-b-ga-

lactoside (X-gal) and other chemicals were purchased from Sigma.

Secondary fluorescent antibodies were obtained from Jackson

ImmunoResearch (Baltimore Pike, West Groove, PA). All other

chemical substances were of analytical grade.

Animals
Adult male Wistar rats (200–250 g) and 3-day old rat pups

obtained from the animal facility of the School of Pharmacy and

Biochemistry (University of Buenos Aires) and adult male

transgenic mice expressing an NF-kB-LacZ reporter gene (30 g)

[34] from the Montreal Neurological Institute and Hospital

(Center for Neuronal Survival, McGill University) were used in

this study. Animals were housed in a controlled environment (12/

12-h light/dark cycle, controlled humidity and temperature, free

access to standard laboratory rat food and water). Animal care and

all procedures done for this experimental protocol were in

accordance with the NIH guidelines for the Care and Use of

Laboratory Animals, and the principles presented in the Guide-

lines for the Use of Animals in Neuroscience Research by the

Society for Neuroscience. Protocols were approved by the

CICUAL Animal Committee of the School of Medicine,

University of Buenos Aires.

Dissociated mixed hippocampal cell cultures
This procedure was performed according to Lee and Parpura

[35] with minor modifications. Hippocampi were obtained after

brain dissection of deeply anaesthetized 3-day old Wistar rats and

incubated for 1 h with papain (20 U/ml) at 37uC in 5% CO2.

Papain was removed and tissue was washed once in DMEM.

Hippocampi were mechanically dissociated with a fire-polished

glass serological pipette until no visible clamps remained. Cells

were plated onto poly-L-lysine-coated multiwell chambers and fed

with DMEM, 1% glutamine, 1% penicillin-streptomycin and 10%

fetal calf serum. Cultures were maintained at 37uC in a humidified

atmosphere with 5% CO2; 50% of the medium was replaced by

fresh medium every 3 days. This protocol was kindly provided by

Dr. Vladimir Parpura (UAB, USA). All experiments were

performed in cultured cells after for 9-11 days.

Exposure to Intermittent Hypoxia
The in vivo IH experiments were performed as described in

Aviles Reyes et al. [11]. Briefly, animals were randomly divided

into four experimental groups and placed into two identical plastic

normobaric chambers (8 L). During the light period, O2 was

reduced from 21% to 10% over 1 min, held at 10% for 5 min,

returned to 21% over 1 min, and held at 21% for 6 min. This

cycle was repeated continuously for 8 h, giving a minimum of five

hypoxic events per hour of sleep, in accordance with the clinical

definition of sleep apnea [6]. Groups exposed to IH were named

IH1, IH3, IH5 and IH10, representing animals that have

undergone exposure to IH for 1, 3, 5 and 10 days. Control

animals were housed for the same period in identical chambers

where the only source of gas was room air. O2 level in each

chamber was monitored continuously with an electrochemical

sensor connected to a digital oxymeter (PumpControl, Buenos

Aires, Argentina) and regulated by timer-controlled valves

connected to room air and to a N2 source equipped with

separated flow mixers.

The in vitro IH exposure was performed as described in Shan

et al. [36]. Briefly, dissociated mixed hippocampal cell cultures

were exposed to IH (cycles of normoxia: 21% O2, 5% CO2,
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balance N2 for 25 min; and hypoxia: 0.1% O2, 5% CO2, balance

N2 for 35 min). Control cultures were kept under normoxia

conditions (21% O2, 5% CO2, balance N2). For the blocking

assays, final concentrations of the blocking agents were: anti-

RAGE 1 mg/ml, anti-S100B 1 mg/ml, BAY117082 2 mM, mouse

IgG control antibody 1 mg/ml, DMSO 0.02% (v/v) (vehicle for

BAY117082).

Surgery and Infusion Procedures
Rats were anaesthetized with ketamine/xylazine (90/10 mg/kg

ip) and 22G guide cannulae were implanted in the CA1 region of

the dorsal right hippocampus, at stereotaxic coordinates A24.3,

L-3.0, V21.4 of the atlas by Paxinos and Watson [37], following

the protocol described by Slipczuk et al. [38]. The cannulae were

fixed to the skull and immobilized with dental acrylic. Animals

were allowed to recover from surgery for three days. Cannulated

rats received daily infusions of 1 ml 15 min before IH exposure.

The neutralizing anti-RAGE and anti-S100B antibodies or control

IgG were diluted to working concentration (0.5 mg/mL) with sterile

PBS. The NF-kB blocker sulfasalazine was diluted to a working

solution (1.25 mM) with sterile PBS from a DMSO-based stock

solution. Infection with the HSV-derived amplicon was achieved

by a unique intra-hippocampal injection of the defective virus

expressing the desired construct. Animals were exposed to IH two

days later to allow maximal construct expression.

Fixation
Animals were deeply anaesthetized with ketamine/xylazine (90/

10 mg/kg, ip) and were perfused through the left ventricle, initially

with saline solution containing 5000 UI of heparin and subse-

quently with a fixative solution containing 4% w/v paraformal-

dehyde in 0.1 M phosphate buffer, pH 7.2. Following delivery of

300 mL of fixative solution through a peristaltic pump, brains

were removed and kept in cold fixative solution for 2 h. Brains

were then washed three times in cold 0.1 M phosphate buffer

pH 7.4 containing 5% (w/v) sucrose, left in washing solution for

18 h at 4uC and then washed in 0.1 M phosphate buffer pH 7.4

containing 30% w/v sucrose as cryoprotective. Then, brains were

rapidly frozen at 280uC for 3 h and stored at 220uC. Coronal 50-

mm-thick brain sections were cut using a cryostat. Sections were

cryoprotected by immersion in a solution containing 30% (v/v)

ethylene glycol and 20% (v/v) glycerol in 0.1 M phosphate buffer

pH 7.4 at 220uC. Cultured cells were fixed as previously

described in Villarreal et al [29]. Briefly, cells were washed with

cold phosphate-buffered saline (PBS) and fixed with 4% parafor-

maldehyde plus 4% sucrose in PBS pH 7.2 for 15 min at 18–

25uC.

Immunohistochemistry and immunofluorescence
Brain sections of animals from all experimental groups were

simultaneously processed in the free floating state as previously

described [11]. All antibodies were diluted in a solution with

phosphate-buffered saline (PBS), 1% Triton X-100 and 3%

normal goat serum. Development of peroxidase activity was

carried out with 0.035% w/v 3,39 diaminobenzidine plus 2.5% w/

v nickel ammonium sulfate and 0.1% v/v H2O2 dissolved in

acetate buffer 0.1 M pH 6.0. Controls for the immunohistochem-

istry procedure were routinely performed by omitting the primary

antibody; control sections did not develop any immunohistochem-

ical labeling. Double fluorescent immunostaining studies were

performed essentially in the same way, but the endogenous

peroxidase inhibition was omitted and isotypic specific secondary

antibodies (Jackson ImmunoResearch, West Grove, PA, USA)

labeled with FITC or Rhodamine RRX were used in a 1:800

dilution. Nuclear counterstaining was done with Hoechst 33342

(2 mg/ml). For immunocytochemistry, fixed cell cultures were

washed three times with cold PBS and permeabilized with 0.1%

Triton X-100. The procedure was then followed as stated for tissue

sections using the indicated dilutions of the primary antibodies:

GFAP 1:5000, bIII-Tubulin 1:5000, p65NLS 1:1000. Digital

photographs were taken in an Olympus IX-81 microscope

equipped with a DP71 camera (Olympus, Tokyo, Japan) or in a

Zeiss Axiophot (Carl Zeiss, Oberkochen, Germany) microscope

equipped with a digital camera (Olympus Q5). Confocal images

were taken in an Olympus FV-1000 confocal microscope.

Thiobarbituric Acid Reactive Substances (TBARS) assay
Immediately after IH exposure, rats were deeply anaesthetized

and sacrificed by decapitation. Hippocampi were dissected and

homogenized in cold buffer containing K2HPO4/KH2PO4

30 mM, KCl 120 mM, pH 7.4 and 10% (v/v) butylated

hydroxytoluene (BHT) 4% in ethanol was added as antioxidant.

Primary cell cultures were lysed within the same buffer immedi-

ately after finishing IH exposure. A 100 ml aliquot of hippocampal

or cell homogenate was added to 200 ml of 0.1 N HCl, 30 ml 10%

(w/v) phosphotungstic acid and 100 ml of 0.7% (w/v) 2-

thiobarbituric acid. The mixture was heated in boiling water for

60 min. TBARS were extracted in 1 mL of n-butanol. After a

brief centrifugation, the fluorescence of the butanolic layer was

measured in a Hitachi F-3010 spectrophotometer at 515 nm

(excitation) and 553 nm (emission). A calibration curve was

prepared using 1,1,3,3-tetramethoxypropane as standard. Results

were expressed as pmol of TBARS per mg of protein and

normalized to the control TBARS level [39].

RT-PCR
RT-PCR was performed as previously described in Ramos et al

[40]. Brains from IH exposed animals were dissected, hippocam-

pal tissue extracted and mRNA was isolated using the RNAeasy

Mini kit, according to the manufacturer’s instructions (Qiagen,

Hilden, Germany). cDNA was generated using the Omniscript RT

kit (Qiagen) with random hexamers (Roche Products), and PCR

was performed using specific primers for IkBa (forward 59-

GCAATCATCCACGAAGAGAAGCC-39, reverse 59-TTACC-

CTGTTGACATCAGCCCC -39), XIAP (forward 59-TGGTCA-

GAACACAGGAGACACTTTC-39, reverse 59- CACTTCAC-

TTTATCGCCTTCACC-39) or BclXL (forward 59- AGTAA-

ACTGG GGTCGCATCGTG-39, reverse 59- GTAGTGG-

TTCTCCTGGTAGCAATGG-39). Detailed PCR protocols are

available from authors under request. PCR products were run in a

1.5% agarose gel and photographed in a Bio-Rad (Hercules, CA)

VersaDoc 4000 imaging system. Each RT-PCR experiment was

run with negative controls, in which Omniscript reactions were

performed in the absence of reverse transcriptase; the negative

controls consistently failed to generate a PCR product. Quanti-

tative analysis of gel images was done with the ImageJ software.

b-Galactosidase assays
Fixed brain sections were assayed for b-galactosidase activity as

previously described in Bhakar et al. [34]. Briefly, sections were

incubated at 37uC in 80 mM dibasic sodium phosphate, 20 mM

monobasic sodium phosphate, 2 mM MgCl2, 0.2% Nonidet P-40,

1 mg/ml sodium deoxycholate, 5 mM potassium ferricyanide,

5 mM potassium ferrocyanide, and 800 mg/ml 4-chloro-5-bromo-

3-indolyl-b-galactoside for 4–16 hr. Samples were then washed in

PBS and post-fixed in 4% paraformaldehyde in PBS.

RAGE/NF-kB Pathway in Sleep Apnea
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Viral vector production
Amplicon plasmids. Plasmids were constructed carrying

either RAGEwt, RAGE-Dcyto or pcDNA3 backbone (control).

The pcDNA3-RAGEwt and pcDNA3-RAGEDcyto plasmids

(kindly provided by H. Huttunen, Neuroscience Center, Univer-

sity of Helsinski) were digested with KpnI, blunt-ended and

digested with XbaI. The RAGE containing sequences were cloned

into the NheI-blunt and XbaI ended sites of amplicon plasmid pA-

EUA2 [41] to generate the RAGE-expressing amplicon plasmids.

It is noteworthy that all amplicon plasmids also express GFP

reporter gene from an independent transcription unit.

Amplicon vectors. Amplicon vector stocks were prepared as

already described, using the amplicon plasmids, and the highly

neuroattenuated HSV-1LaLDJ virus as helper [41,42]. Briefly, 7b

cells, which are Vero cells expressing HSV-1 ICP4 and ICP27

proteins [43], were independently transfected with 5 mg of each

amplicon plasmid using Lipofectamine Plus (Invitrogen). One day

later, transfected cells were superinfected at a multiplicity of

infection of 0.3 plaque forming unit (PFU) per cell, with HSV-

1LaLDJ as helper virus. When cytopathic effect was maximal, cells

were collected by centrifugation, disrupted by three freeze/thaw

cycles to release vector stocks, and re-centrifuged at 1000 g for

10 min to pellet the cell debris. Helper and vector particles in the

supernatants were then titrated as already described [41,44]. Cells

expressing fluorescent GFP were scored directly under an inverted

fluorescence microscope (Olympus, Tokyo, Japan). Titers of the

different amplicon vector stocks ranged from 16106 to 46107

transducing units (TU) per ml.

Morphometric analysis
In order to ensure objectivity all measurements were performed

on coded slices. GFAP immunostained area and feature assess-

ment of astroglial cells, morphometric parameters of bIII-Tubulin

stained neurites, features of NeuN stained neuronal cells counts

and p65NLS stained cells were performed using the NIH ImageJ

software. For immunohistochemistry, images taken with the

microscope were captured with the digital camera, transformed

to 8-bits gray scale, normalized and an interactive threshold

selection was carried out. Once the threshold was determined it

was kept fixed for the entire experiment. For the analysis of

neuronal alterations and NeuN staining, counting was done

interactively discriminating the type of labeling observed in the

neuronal nuclei. Quantification of NeuN+ neurons was performed

by dividing the population into two categories: normal staining

(intense NeuN+ nucleus plus light cytoplasm) and abnormal

staining (spongiform nuclear NeuN+ staining or cells showing

NeuN+ cytoplasmic staining with nuclear NeuN negligible

staining) as previously described [11] In all cases (neuronal or

glial markers), approximately 10–15 fields per tissue section per

treatment per anatomical area (hippocampus, cortex) and marker

were analyzed. Sections coming from six to eight animals per

treatment were analyzed. For the in vitro morphology studies, glial

cells were divided into three populations: Filamentous astrocytes

(with long prolongations and small perinuclear soma), polygonal

astrocytes (big soma without prolongations) and intermediate

astrocytes (combination of both morphologies). For length

quantification of the beta-3-tubulin immunoreactive neuronal

projections, the NeuronJ plug-in of the ImageJ software (National

Institutes of Health) was used. The mean total neurite length per

neuron was calculated for each microscopic field and referred to

the control values to render a relative measurement.

Statistical analysis
Experiments and measurement were done 3–4 times showing

identical results. Data were normalized and presented as pooled

data in the graphs. Statistical comparisons were analyzed with

one-way ANOVA and Student-Newman-Keuls post-test, or two-

way ANOVA and Bonferroni post-test (as described in each case)

using GraphPad Software (GraphPad Software Inc., San Diego,

CA, USA).

Results

In vitro IH exposure parallels the increase in ROS,
neuronal alterations and reactive gliosis observed in vivo

Experimental models of SA using the IH paradigm have

demonstrated that increased oxidative stress is a crucial compo-

nent of the SA pathophysiology, and that antioxidants are useful to

prevent neuronal alterations [22,36]. In the experimental para-

digm of in vivo IH exposure, which reproduces the oxygen

saturation in haemoglobin levels found in patients [11], we

observed that TBARS level is significantly increased after 3 days of

IH exposure (Figure 1A). When this parameter was studied in

dissociated mixed hippocampal cell cultures, we found that 8

cycles of IH exposure were able to reproduce the magnitude of the

TBARS increase observed in vivo (Figure 1B).

Animals exposed to IH have shown signs of neurodegeneration,

as evidenced by relocalization of NeuN neuronal nucleus marker

and shorter neuronal projections, as well as by a significant

reactive gliosis [11]. Exposure of dissociated mixed hippocampal

cell cultures to 8 cycles of IH induced a similar reduction in neurite

extension (Figure 1C, D). IH also induced a reduction in the

number of polygonal astrocytes, together with an increase in the

abundance of cells in the fibrillar phenotype, a phenomenon

known as stellation and considered to be the in vitro correlation of

reactive gliosis (Figure 1E, F).

IH exposure activates the NF-kB pathway
We have previously shown increased RAGE expression and

overexpression of the RAGE ligand S100B in animals exposed to

IH [11]. Since RAGE canonically activates NF-kB mediated

downstream signalling, our next question was whether NF-kB was

activated after IH exposure. For that purpose animals were

exposed to the IH paradigm for 3 or 5 days and then RT-PCR

assays for several NF-kB target genes were performed in samples

obtained from hippocampal tissue. As shown in Figure 2A, IkB,

Bcl-XL and XIAP, all of them NF-kB target genes, were increased

after IH exposure. To verify if the increase in these target mRNAs

correlates with increased NF-kB transcriptional activity, transgenic

mice expressing an NF-kB-LacZ reporter gene were exposed to

IH, and LacZ expression was detected in tissue sections by

histochemistry. As shown in Figure 2B, hippocampal NF-kB

-induced transcriptional activity was significantly increased in IH

exposed animals and presented a peak at IH3. In agreement with

these results, astrocytes and neurons from the hippocampal mixed

cultures also showed increased nuclear p65NLS immunoreactivity

after IH exposure (Figure 2C, 2D), thus indicating activation of

the NF-kB signalling.

S100B blockage reduces reactive gliosis after IH exposure
S100B has been recently recognized as a DAMP released by

astrocytes after acute or chronic brain injury, and it is a known

RAGE ligand. S100B levels are increased in SA patients [32,33]

and its expression is induced in experimental models of SA

[11,12]. To study S100B role in the neuronal and glial alterations

observed after IH, we blocked S100B using neutralizing antibodies

RAGE/NF-kB Pathway in Sleep Apnea
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in dissociated mixed hippocampal cell cultures and in animals

exposed to IH.

As shown in figure 3A, S100B blockage abolished the astrocytic

stellation induced by 8 cycles of IH in mixed hippocampal cell

culture but significantly increased stellation in normoxic condi-

tions. S100B neutralizing antibodies failed to significantly prevent

the reduction of neurite length induced by IH in vitro (Figure 3B).

In agreement with this result, S100B neutralizing antibodies

administrated intra-hippocampally were unable to prevent the

neuronal degeneration induced by 3 days of exposure to IH in

animals (Figure 3C). This S100B blockage was, however, able to

partially reduce astroglial hypertrophy in animals exposed to IH

(Figure 3D). Similarly, as it was previously shown in vitro, S100B

blockage in normoxic conditions induced reactive gliosis in

animals from the normoxic group (Figure 3D).

Figure 1. IH-exposed dissociated mixed hippocampal cell culture reproduces several features of in vivo IH exposure. A: Relative
TBARS content in the hippocampus of animals exposed to normoxia (Nox) or to IH for 3, 5 or 10 days (IH3, IH5, IH10). B: Relative TBARS content in the
dissociated mixed hippocampal cell culture exposed to normoxia (Nox) or to 2, 5, or 8 cycles of IH (IH2c, IH5c, IH8c). C: Beta-3-tubulin immunostained
hippocampal neurons in the dissociated mixed hippocampal culture exposed to normoxia (Nox) or 8 cycles of IH (IH8c), bar = 20 mm. D: Quantitative
analysis of the relative neurite length in the hippocampal neurons in the mixed culture exposed to normoxia (Nox) or 8 cycles of IH (IH8c). E: GFAP
immunostained astrocytes in the dissociated mixed hippocampal culture exposed to normoxia (Nox) or 8 cycles of IH (IH8c), bar = 23 mm. F:
Quantitative analysis of astroglial stellation followed by the phenotypic change in the GFAP-immunoreactive astrocytes after 2, 5, or 8 cycles of IH
(IH2c, IH5c, IH8c). Data on the graphs are shown as means 6SEM; significance vs. control group was represented as indicated: * p,0.05; **p,0.01;
*** p,0.001 after one way ANOVA and Student Newman Keuls post-test.
doi:10.1371/journal.pone.0107901.g001
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RAGE blockage reduces neuronal alterations and reactive
gliosis after IH exposure

RAGE is a pattern recognition receptor that can be activated by

DAMP proteins released after brain injury, including glial S100B.

RAGE engagement by its ligands leads to increased NF-kB

activity and innate immunity activation. In order to study whether

RAGE activity is required for the neuronal and glial alterations

observed after IH exposure, two different approaches were

implemented for the loss of function studies; RAGE blocking

antibodies were used to neutralize endogenous RAGE and a HSV-

derived amplicon vector expressing a dominant negative RAGE

(RAGEDcyto) unable to bind intracellular adaptor proteins was

used to compete by sequestering endogenous RAGE ligands. For

the gain of function studies, an HSV-derived amplicon bearing a

full length RAGE (RAGEwt), was used.

As shown above, exposure to IH significantly reduced neurite

length in hippocampal cultured neurons from mixed culture. This

detrimental effect was prevented by incubation with anti-RAGE

neutralizing antibodies (Figure 4A). Similarly, IH exposure

induced astrocyte stellation, and RAGE blockage efficiently

prevented this effect as well (Figure 4B). Astrocytes infected with

the HSV-derived amplicon expressing RAGEDcyto, but not with

the amplicon bearing the control construct, were also resistant to

IH-induced stellation (Figure 4C).

We then analyzed if the RAGE blockage was also able to reduce

neuronal alterations and reactive gliosis induced by IH exposure in
vivo. For that purpose, animals were cannulated unilaterally and

RAGE blocking antibodies, or the unrelated control IgG, were

infused before exposing animals to the IH cycles. This procedure

was repeated every day, 15 min before initiating IH exposure. In

agreement with our previous results, IH exposure reduced

neuronal survival, an effect that was evidenced by atypical

localization of NeuN and shorter neurite projections on animals

that received control antibodies (Figure 5A and [11]). The infusion

of RAGE blocking antibodies reduced the number of abnormal

neuronal nuclei (i.e. those showing absence of NeuN staining in

the nucleus and relocalization to the cytoplasm) in animals

exposed to IH, but surprisingly, RAGE blockage was detrimental

in normoxic conditions (Figure 5A). On the other hand, IH

exposure also induced a profuse reactive gliosis as previously

described [11] and infusion of RAGE blocking antibodies

efficiently prevented reactive gliosis induced by IH, but caused

reactive gliosis per se in normoxic conditions (Figure 5B). Infection

with the amplicon bearing the sequence of RAGEDcyto also

reduced the neuronal loss induced by IH exposure, while

RAGEwt overexpression increased neuronal alterations in IH

exposed animals (Figure 5C).

Inhibition of NF-kB transcriptional activity improves
neuronal survival and reduces reactive gliosis after IH
exposure

NF-kB transcriptional activity response was reported to be

increased in the periphery in SA patients [45–47]. The generic

downstream response after RAGE engagement with its ligands is a

higher NF-kB transcriptional activity. Since we have shown that

increased RAGE expression and activity render in reactive gliosis

and neuronal alterations after IH, our next question was whether

NF-kB was required for those effects. For that purpose, and to

further dissect the molecular pathways involved in the observed

neuroglial effects, we blocked NF-kB activity in vitro and in vivo
after exposure to IH.

Dissociated mixed hippocampal cell cultures were treated with

the NF-kB chemical blocker BAY117082, and then exposed to the

IH cycles. As shown in Figure 6A, astrocytic stellation induced by

IH exposure was abolished by BAY117082 treatment. However,

blockage of NF-kB showed a tendency to increase stellation in

normoxic cultures (Figure 6A). Animals which were exposed to IH

and received the chemical NF-kB blocker sulfasalazine showed an

increase in neuronal survival, compared to those receiving vehicle

(Figure 6B). Interestingly, blockage of NF-kB induced a reduction

in neuronal survival in normoxic conditions (Figure 6B). The

effectiveness of the NF-kB blockage by sulfazalazine was evaluated

by studying nuclear localization of NF-kB p65 subunit. Sulfaza-

lazine treatment abolished the increased p65 nuclear localization

induced by IH exposure in vivo (Figure 6C).

Discussion

Experimental studies on rodents using IH exposure to mimic

human SA are accepted models for analyzing the neurobiological

basis of the cognitive alterations observed in human SA patients

[13,48]. These models are supported by the fact that structural

alterations have been observed in brains of IH-exposed animals, as

well as in diagnostic brain imaging in humans that suffer SA (see

for review [10]). Clinical and experimental evidence points

towards a predominant role of hippocampus in the cognitive

impairments observed in SA patients [10].

The dissection of molecular cascades and cellular events in SA

has been quite complex due to the absence of cellular in vitro
models useful for testing the participation of intracellular

mediators in SA. Such models would also be useful for testing

neuroprotective drugs before going into animal models. In this

work we have used the dissociated mixed hippocampal culture as

described by Parpura et al. [49] combined with the IH exposure

paradigm described by Shan et al. [36], and demonstrated that

eight cycles of IH in vitro produce a similar increase in oxidative

stress, as determined by TBARS abundance, to that observed in

animals exposed to experimental IH.

Figure 2. IH exposure activates NF-kB in vitro and in vivo. A: Animals were exposed to 3 or 5 days of IH and mRNA was isolated from
hippocampal tissue, reverse transcribed and subjected to PCR using primers directed against IkB, Bcl-XL, XIAP and actin. Optical density of the bands
was quantified with the ImageJ gel analyzer and related to the intensity of the actin bands. B: NF-kB reporter mice expressing an NF-kB reporter
minigene showed increased NF-kB activity after 3 days of exposure to IH (IH3) in the hippocampal CA-1 region (left); quantitative evaluation of X-gal
staining (right). NF-kB reporter minigene contains three tandem HIV-derived kB binding element repeats, placed proximal to a minimal promoter
derived from SV40, an E. coli b-galactosidase cDNA with a mammalial Kozak consensus, an SV40 T-antigen-derived nuclear localization signal, and a
polyA tract [34]. C: Immunocytochemistry for the p65 nuclear localization signal (p65NLS) in astrocytes of dissociated mixed hipocampal cell cultures,
bar = 20 mm (left), quantitative analysis (right) shows the percentage of GFAP+ cultured cells showing p65NLS nuclear staining after 8 cycles of IH
exposure (IH8c) or normoxia (Nox). D: Immunocytochemistry for the p65 nuclear localization signal (p65NLS) in neurons of the dissociated mixed
hipocampal cell culture, bar = 20 mm (left), quantitative analysis (right) shows the percentage of MAP2+ cells showing p65NLS nuclear staining after 8
cycles of IH exposure (IH8c) or normoxia (Nox). Data on the graphs are shown as means 6SEM; significance vs. control group was represented as
indicated: * p,0.05; **p,0.01; *** p,0.001 after one way ANOVA and Student Newman Keuls post-test.
doi:10.1371/journal.pone.0107901.g002
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Figure 3. S100B blockage reduced astroglial stellation in vitro and reactive gliosis in vivo. A: GFAP immunostained astrocytes in
dissociated mixed hippocampal cell cultures after 8 cycles of IH exposure (IH8c) in the absence or presence of S100B blocking antibodies (1 mg/ml),
bar = 23 mm (left). Percentage of filamentous astrocytes was evaluated in the same cultures using the ImageJ cell counter plugin and referred to the
total number of GFAP+ cells (right). B: Relative neurite length per neuron in the dissociated mixed hippocampal cell culture after 8 cycles of IH
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Over the last years it has been reported that acute necrotic

injuries, but also chronic mild injuries to the brain parenchyma,

induce the release of DAMP proteins capable of activating innate

immunity. Once in the extracellular milieu DAMPs interact with

pattern recognition receptors (PRR) like RAGE and receptors of

the toll-like family (TLR) to induce different responses, though

most of them share the common NF-kB downstream pathway.

Following PRR activation, NF-kB transcriptional activity induces

the expression of a plethora of genes related to the control of cell

survival, but several of them are directly involved in the

inflammatory response. While the participation of DAMP/PRR

cascade in acute pathological states like ischemia and traumatic

brain injury has been addressed, the question of whether these

molecules affect neuronal survival in SA remained to be cleared.

RAGE expression has been previously demonstrated to occur in

anatomical areas related to the behavioral alterations observed in

patients and animal models of SA [11,22]. On the other hand,

members of the S100 family have been recognized as DAMP

molecules capable of activating innate immunity [50]. In

particular, S100B, which has a glial origin, behaves as a glial-

specific DAMP being released after brain injury [51]. In SA

patients, S100B levels are increased [32,33,52,53], and we have

previously reported that S100B expression dramatically increased

in the animal model of SA [11]. Extracellular S100B interacts with

RAGE and leads to NF-kB activation [29,30].

We here used NF-kB reporter mice to demonstrate that this

transcription factor is transcriptionally active after IH exposure. In

agreement with this observation, the expression of some NF-kB

dependent genes (IkB, XIAP, Bcl-XL) is increased in the

hippocampus of rats exposed to IH cycles. These results correlate

with data showing that the NF-kB activity is increased in

circulating monocytes, endothelium, liver, heart and lungs in SA

patients [45–47,54] and supports the hypothesis of a pro-

inflammatory status as a crucial pathogenic contributor to SA

[55]. We observed that increased NF-kB activity is also present in

the brain of IH exposed animals and, more importantly, NF-kB

activity seems to be related to the neuronal and glial alterations

observed after IH exposure. By using dissociated mixed hippo-

campal cell culture, a setting that contains all the cellular elements

(glia and neurons) present in the hippocampus, we observed that

NF-kB activity is increased in neurons and glial cells, being the

latter probably responsible for the increased pro-inflammatory

activity.

Reactive gliosis is a key component of the cellular response to

CNS injury and comprises several changes in astrocytes and

microglia. In particular, astrocytes suffer the transition from the

quiescent to the reactive astrocytic state, accompanied by an

increase in intermediate filaments, predominantly GFAP, leading

to an increase in soma size and metabolic processes (reviewed in

[56]). The beneficial or detrimental effects of reactive gliosis are

still a matter of debate, but it is clear enough that the astroglial

conversion to the pro-inflammatory phenotype induces neuronal

degeneration and death [28].

In order to establish the role of the S100B/RAGE/NF-kB

pathway in the reactive gliosis and neuronal alterations observed

in the animal model of SA, we performed in vitro and in vivo loss

of function studies on each member of the cascade.

By using S100B blocking antibodies, we observed that neuronal

survival after IH was not modified by reducing S100B biological

activity. However, reactive gliosis was significantly reduced in the

same paradigm both in vitro and in vivo. This result is in

agreement with the idea that S100B is an autocrine factor that

may induce a conversion of astrocytes to the reactive phenotype

[30,31]. Our results also showed that S100B blockage in normoxic

conditions induces reactive gliosis in absence of injury. This

interesting result is not surprising if we consider that S100B is

constitutively secreted by astrocytes in the healthy brain, probably

acting as an autocrine glial communication molecule. Accordingly,

an S100B basal level is expected to occur in the intact CNS, acting

as an autocrine system connecting astrocytes; thus, a reduction or

suppression of such activity could be interpreted as a stress signal

by the astrocytes.

We then studied the next step in the signaling pathway. RAGE

blockage with neutralizing antibodies prevented the IH-induced

neurite shortening in vitro and the reduced neuronal survival in
vivo. By using the dominant-negative RAGE (RAGEDcyto) we

also found less neuronal loss in vivo after IH exposure.

Concomitantly, full-length RAGE over-expression reduced neu-

ronal survival. These results indicate that RAGE signaling is

necessary to induce neuronal degeneration in this IH paradigm.

An increased activity of RAGE-dependent signaling has been

related to neuronal degeneration and death, with mechanisms

involving reactive oxygen species [57] and NF-kB dependent pro-

apoptotic [29,58] or pro-inflammatory genes [59]. It is tempting to

speculate that this latter possibility has a correlation with the fact

that we have found in this work that reactive gliosis is blunted by

RAGE blockage in vitro and in vivo. Blockage of RAGE signaling

seems to partially prevent astroglial conversion into the pro-

inflammatory phenotype, which induces neurodegeneration [28]

Intriguingly, S100B or RAGE blockage efficiently reduced

reactive gliosis in IH but only RAGE blockage reduced IH-

induced neuronal degeneration. This fact points out towards the

multiligand capacity of RAGE and the presence of other DAMP

able to bind RAGE in vivo after IH exposure, being HMGB-1 a

candidate for this role. Indeed, HMGB-1 was reported to be

increased in the serum of SA patients and was shown to be

reduced after CPAP treatment [60]. Although RAGE is not

detectable in the adult brain, RAGE blockage in vivo was

detrimental for neuronal survival and induced reactive gliosis in

normoxic conditions. Apparently, a certain level of RAGE basal

signaling is required for neuronal survival and/or for preserving

astrocytes in the quiescent stage. One hypothesis is that RAGE is

undetectable but present in the adult CNS, and that a low basal

RAGE signaling is required in the healthy CNS. In fact RAGE

mRNA has been detected in the intact brain and blood vessels

endothelium [61]. Another possible explanation is that RAGE

blockage in circulating macrophages present in the CNS

capillaries induces the secretion of cytokines that activate

astrocytes and microglia. The requirement of low basal signaling

exposure (IH8c) in the absence or presence of S100B blocking antibodies. C: NeuN immunostaining of hippocampal CA-1 region in cannulated
animals that received S100B neutralizing antibodies and were exposed to three days of IH cycles (IH3), bar = 40 mm (left). Quantitative analysis of the
percentage of neuronal survival (i.e. those neurons showing normal NeuN staining) in sections obtained from these animals (right). D: GFAP
immunostaining of astrocytes in the hippocampal CA-1 region in cannulated animals that received S100B neutralizing antibodies and were exposed
to three days of IH cycles (IH3) or normoxia (Nox), bar = 40 mm (left). Quantitative analysis of the percentage of the area covered by GFAP-
immunoreactive cells (right) is used to evidence increased area occupied by hypertrophied reactive astrocytes. Data on the graphs are shown as
means 6SEM; significance vs. control group was represented as indicated: * p,0.05; **p,0.01; *** p,0.001 after two-way ANOVA and Bonferroni
post-test.
doi:10.1371/journal.pone.0107901.g003
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Figure 4. RAGE is required for the neuronal alterations and astroglial stellation induced by IH exposure in the dissociated mixed
hippocampal cell culture. A: bIII-Tubulin immunostained hippocampal neurons in dissociated mixed hippocampal cell culture after 8 cycles of IH
exposure (IH8c) or normoxia (Nox) in the absence and presence of RAGE blocking antibodies (1 mg/ml), bar = 14 mm (left). Quantitative analysis of
relative neurite length per neuron in a similar experiment (right). B: GFAP immunostained astrocytes in dissociated mixed hippocampal cell culture
after 8 cycles of IH exposure (IH8c) or normoxia (Nox) in the absence or presence of RAGE blocking antibodies, bar = 14 mm (top). Quantitative
analysis of the percentage of filamentous astrocytes (bottom). C: Astrocytes infected with the HSV-derived amplicon driving the expression of
RAGEDcyto and GFP, or control amplicon expressing only GFP, exposed to 8 cycles of IH exposure (IH8c) or normoxia (Nox), bar = 12 mm. Data on the
graphs are shown as means 6SEM; significance vs. control group was represented as indicated: * p,0.05; **p,0.01; *** p,0.001 after two way
ANOVA and Bonferroni post-test.
doi:10.1371/journal.pone.0107901.g004
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to PRR like RAGE and TLR to maintain certain essential

neuronal processes like plasticity is starting to be recognized [62].

RAGE and TLR signaling share the downstream NF-kB

dependent transcriptional activity; the last step of the signaling

pathway investigated in this work. We found that NF-kB blockage

successfully reduced the reactive gliosis induced by IH in vitro, and

prevented neuronal death induced by IH exposure in vivo. NF-kB

blockage efficiently reduced p65 NF-kB nuclear localization

induced by IH exposure. In normoxia, NF-kB blockage was

detrimental and induced reactive gliosis and neuronal degenera-

tion. These results are in agreement with the dual role of NF-kB,

by which over-activation induces neuronal death and a pro-

inflammatory response in astrocytes and microglia [29]; but

certain level of NF-kB activity is required for neuronal survival

[34]. An increased NF-kB activity was reported in SA patients in

different studies performed on the periphery, including circulating

Figure 5. RAGE is required for the neuronal alterations and reactive gliosis induced by IH in vivo. NeuN (A) or GFAP (B)
immunostaining in the hippocampal CA-1 region of animals exposed to IH for three days (IH3) and treated with intrahippocampal
administrations of RAGE blocking antibodies or control IgG, bar = 40 mm. Graphs on the right show the quantitative analysis of the
percentage of neuronal survival and of the area covered by GFAP-immunoreactive cells. C: Confocal images of animals that were infected with the
HSV-derived amplicon driving the expression of RAGE (RAGEwt), RAGEDcyto or empty sequence and were exposed to IH for three days, bar = 15 mm.
Data on the graphs are shown as means 6SEM; significance vs. control group was represented as indicated: * p,0.05; **p,0.01; *** p,0.001 after
two way ANOVA and Bonferroni post-test.
doi:10.1371/journal.pone.0107901.g005
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Figure 6. NF-kB is required for astroglial stellation and neuronal alterations induced by IH. A: Astroglial GFAP immunostaining in the
dissociated mixed hippocampal cell culture after 8 cycles of IH exposure (IH8c) or normoxia (Nox) treated with the NF-kB chemical blocker
BAY117082 (2 mM) or vehicle, bar = 30 mm. The graph shows the quantitative analysis of the percentage of filamentous astrocytes in a similar
experiment. B: NeuN immunostaining in the hippocampal CA-1 region of animals exposed to IH for three days (IH3) and treated with
intrahippocampal administrations of sulfasalazine (SFZ), an NF-kB chemical blocker, or vehicle, bar = 40 mm. The graph shows the quantitative
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monocytes, endothelium, liver, heart and lungs [45–47,54]. Here

we show that NF-kB is also over-activated in the CNS following

IH, but more importantly, that either NF-kB blockage or a

decreased RAGE signaling reduces neuronal degeneration and

reactive gliosis, thus demonstrating that RAGE-NF-kB are

involved in the detrimental effects observed after IH exposure as

a model of SA.

Conclusions

Our results demonstrate that activation of the RAGE/NF-kB

pathway induces neuronal degeneration, while the S100B/

RAGE/NF-kB pathway induces reactive gliosis in the model of

SA by IH exposure. Thus, RAGE or NF-kB blockage facilitates

neuronal survival and reduces reactive gliosis in the experimental

model of SA. However, blockage of these pathways seems to be

detrimental in normoxic conditions. As a whole, our work shows

that control of PRR activity and NFkB transcriptional events are

obvious, but not unique, strategies for the development of

neuroprotective interventions to prevent neuronal death in SA.
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