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Abstract

We compare results of the community efforts in modeling protein structures in the tenth CASP

experiment, with those in earlier CASPs, particularly in CASP5, a decade ago. There is a

substantial improvement in template based model accuracy as reflected in more successful

modeling of regions of structure not easily derived from a single experimental structure template,

most likely reflecting intensive work within the modeling community in developing methods that

make use of multiple templates, as well as the increased number of experimental structures

available. Deriving structural information not obvious from a template is the most demanding as

well as one of the most useful tasks that modeling can perform. Thus this is gratifying progress.

By contrast, overall backbone accuracy of models appears little changed in the last decade. This

puzzling result is explained by two factors – increased database size in some ways makes it harder

to choose the best available templates, and the increased intrinsic difficulty of CASP targets, as

experimental work has progressed to larger and more unusual structures. There is no detectable

recent improvement in template free modeling, but again, this may reflect the changing nature of

CASP targets.
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INTRODUCTION

With the completion of 10 rounds of CASP, it is appropriate to consider what progress has

been made. In the first decade of CASPs (experiments 1 through 5) there was a very

substantial improvement in model quality, in all respects(1, 2). Here we focus on the second

decade of CASP, examining current performance relative to CASP5. We perform the same

set of now standard analyses as in previous papers in this series(2–5).
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RESULTS

Target difficulty

Comparison of performance across targets within a CASP or between CASPs requires

consideration of the relative target difficulty. As in previous papers(2–5), we consider the

difficulty in terms of two factors: first, the extent to which the most similar existing

experimental structure may be superimposed on a modeling target, providing a template for

comparative modeling; and second, the sequence identity between the target and the best

template over the superimposed residues. Figure 1 shows the difficulty of targets in all

CASPs. Targets are divided into domains using the procedure described in Methods.

CASP10 domains span a wide range of structure and sequence similarity, as did those in

earlier CASPs. Labeled targets are discussed later. The inset shows average target

difficulties. Here it is apparent that the full set of CASP10 targets (‘10a’) is of similar

average difficulty to that in CASP9, and substantially easier than that in CASP5. CASP10

human/server targets(6) (‘10h’), on the other hand, are of similar difficulty to that of the full

CASP5 set, by these measures.

Improvement over a best template

Historically, in template based modeling there was very limited ability to model parts of a

structure not present in a template. Already in CASP5 we had seen progress in this regard.

Figure 2 shows the fraction of residues that are not covered by the best structural template

but are correctly modeled in the best model (by the criterion of Cα errors less than 3.8 Å) in

CASPs 5, 9 and 10, as a function of target difficulty. (A single parameter difficulty index is

used, based on a linear combination of the coverage and sequence identity used in figure 1

(see Methods)). Only the targets in which at least 15 residues could not be aligned to the

best template are considered. There has been significant progress in this area since CASP5:

For the relatively easy targets coverage of non-best template residues has increased from

~25% to ~40%, and in the mid-range of difficulty from ~23% to ~35%. The average

improvement over the full difficulty range is 5%. Also somewhat larger is the scatter of the

values for CASPs 9 and 10 compared with CASP5, clearly visible on the plot. In CASP10,

there are 13 targets where predictors were able to model more than 40% of residues not

covered by the best templates, while in CASP5 there are only 4 such cases. As discussed

later, recent CASPs contain a number of targets that are more difficult to model accurately

in ways not captured by the standard scale, and these pull down the apparent overall

performance. A balanced comparison with CASP5 is very difficult, but it appears that the

real improvement since then is substantially more than the averages and trend lines suggest.

As also discussed later, the improvement is further disguised by the increased difficulty of

picking the best template in recent CASPs.

Overall model accuracy

Figure 3 shows the trend in overall backbone accuracy for the best models submitted for

each target as a function of target difficulty and using the GDT_TS measure(7). GDT_TS of

100 would correspond to exact agreement between the Cα co-ordinates of a model and the

corresponding experimental structure. In practice, GDT_TS of 90 reflects an essentially

perfect model, as at that GDT_TS level model deviations are comparable to experimental
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error and deviations due to varying experimental conditions. Random structures typically

return a GDT_TS between 20 and 30. As previously noted, progress between CASP1 and 5

is dramatic. Progress by this measure since CASP 5 is not apparent. Although several recent

CASPs have trend lines above that of CASP5, the CASP10 line is essentially the same as

CASP5.

Given the obvious progress in modeling non-template regions seen in figure 2, this is a very

puzzling result. One observable effect in figure 3 is that there are some CASP10 targets

which fall way below the trend lines, pulling the overall performance down. They include

the four domains of target 739, a large, elongated, intimately trimeric, phage tail spike

protein(8). Targets of this difficulty were seldom found in early CASPs. There are also

targets that fall well above the trend lines in CASP 10, for example 743 and 717-D2,

corresponding to some of those with greatest non-template region success, as seen in figure

2. We have investigated several general factors that may explain the similarity of CASP5

and recent CASP performance. First, the ‘human/server’ subsets of targets are used for

recent CASPs, as opposed to all targets for CASP7 and earlier. Figure S1 shows the same

plot using all targets in all CASPs. Here the CASP10 line is above that of CASP5, but only

by a little. Second, it may be that as CASP has progressed, targets have tended to become

more complex, multi-domain, and multi-chain. Interdomain and interchain interactions

influence structure in a manner not easily modeled. A plot for the single domain targets is

also similar, though (figure S2).

One significant difference between CASP5 and CASP10 targets is structure irregularity, as

measured by radius of gyration, R. Figure 4 shows the radius of gyration of domain targets

from CASPs 5, 9 and 10, as a function of target length. Also shown are the boundaries in

which most PDB structures fall, 2.5Å on either side of a line derived by fitting to the radii of

PDB crystal structures determined at 1.7Å or better resolution. The form of this line (R =

2.77 L0.34, where L is target length) is similar to that found in an earlier study(9). While

almost all targets fall within these boundaries, there are twelve outliers constituting 17% of

all human/server predictor perspective domains in CASP10 (one of the outliers is at a radius

of 60Å, and not shown for clarity) and only four (constituting 6% of all domains) in CASP5.

We also consulted members of the prediction community for possible explanations of the

apparent lack of progress. Several suggested that although by our criteria the average

structural coverage provided by the best available CASP10 templates is similar overall to

that in CASP5, best templates have become more difficult to identify in practice, making

CASP10 targets effectively harder. To investigate this factor, we compared three sets of

templates for targets from CASP10 and CASP5. One set is the one used for the standard

analysis of target difficulty. That is, the template is taken from the PDB structure that has

maximum coverage of the target, as determined by structure superposition using LGA(7).

The second set of templates is derived from the PDB structures with the best PSI-BLAST

score to each target sequence(10), a method in use from roughly CASP2 through CASP4.

The third set has templates derived from the PDB structures with the best HHsearch

score(11), one of the most effective profile-profile type methods. This class of methods came

into general use in CASP5, and although some improvements have been made, probably has

not essentially changed since. Figure 5A shows the comparison of coverage using these
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three template sets, as a function of target difficulty. The following points are clear: First,

LGA derived templates provide essentially the same average coverage in CASP5 (red line)

and in CASP10 (black), at all levels of difficulty. Second, except at the easy target end of

the scale, PSI-BLAST derived templates from CASP5 (dotted red) and CASP10 (dotted

black) provide very substantially lower coverage than the LGA ones (~40 versus ~75 in the

mid-range of difficulty). Third, PSI-BLAST coverage for CASP10 is significantly worse

than for CASP5 (about 8% in the mid-range). Fourth, HHsearch derived templates also

provide substantially lower coverage than LGA ones (~15 difference in the midrange),

although not as low as with PSI-BLAST. Fifth, coverage by CASP10 HHserach templates is

lower than the corresponding CASP5 ones by up to 10%, though this difference disappears

at the more difficult end of the scale.

Figure 5B shows the reduction in average template coverage using PSI-BLAST and

HHsearch compared with the coverage provided by the best available template, for CASP5

and CASP10 (the latter for all and for human/server targets separately). For both methods,

the loss of coverage is quite substantial (between 17 and 25% with PSI-BLAST and 7 and

13% with HHsearch. Further, there is a significant difference between the coverage loss for

different CASP target sets. In particular, for HHsearch, the most relevant for recent CASPs,

CASP10 human targets suffer a 6% greater loss than CASP5 targets. We also examined a

fourth way of assigning templates, based on the sets of templates that prediction submissions

stated were used in the building of models (normally provided in the ‘PARENT’ field in a

standard CASP prediction file). The ‘PARENT’ analysis in figure 5 shows these data.

Typically, a number of templates are declared in a prediction file. We superimposed all of

the declared templates onto the target structure and selected the one with the highest

coverage. As the plot shows, the PARENT template lists do usually contain an entry with

nearly as good coverage as that of the best available template (the left 3 bars in the PARENT

section). Note though, that in the underlying calculations we took into account all the

templates acknowledged by the predictor groups, in this way establishing the maximum

achievable performance by the community as a whole. To check if a specific group can

consistently include the best template in the list, we examined predictions from three of the

better performing CASP10 servers: Rosetta, Zhang-server and Tasser-VMT on all CASP10

targets. As can be seen, the methods are roughly equal in their ability to pick a good

template, on average losing about 12% of coverage compared with the best possible

template and 5% compared with the best HHsearch template. Note that the weight given to

that template in the modeling method may be small, and therefore these results can be

deceptive. Overall, it does appear that it has become harder to pick a good template since

CASP5, resulting in about an average 6% loss of coverage.

Since template quality goes a long way to determining overall model quality, these data

suggest that CASP10 models would be expected to be worse than those of CASP5, because

of the greater difficulty of choosing a good template using HHsearch-like methods. In fact,

figure 3 shows they are of similar quality, suggesting that improvements in modeling

methods have roughly compensated for the increasing difficulty of the targets.

The question remains as to why it is harder to identify a near-optimal template in recent

CASPs. Both structure and sequence databases have grown enormously in the last decade
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(the PDB roughly quintupled, while NCBI’s NR database grew twenty-fold), so that there is

a much larger background effect to deal with. It has been shown that including too many

sequences in a multiple sequence alignment leads to less accurate alignments(12), but so far

there are no published methods of optimizing sequence inclusion. For structure, an

implication of increased difficulty of finding a good candidate because of increased database

size is that better template choices would be made for CASP10 targets using the structure

database available at the time of CASP5. We tested this possibility. In fact templates chosen

in this way using HHsearch provide very substantially (13% on the average) less coverage

than those found using the CASP10 structure database (figure 5A). It should be mentioned,

though, that inclusion of all CASP10 targets into such a comparison is not restrictive

enough, as many targets that have very good, easy identifiable templates in the CASP10

structural database would not have had such at the time of CASP5. To eliminate this bias,

we repeated the analysis comparing only the targets that had quite good templates (coverage

>40%) in the CASP5 database (i.e., essentially eliminating free modeling targets) and where

the difference in coverage between the best CASP10 and CASP5 templates was below 20%

(i.e., eliminating those TBM targets where in the last decade a much better template has

become available). It appeared that for the remaining subset of 67 CASP10 targets the

difference in the coverage was much thinner (only 3%), but still in favor of the CASP10

dataset. So, while it is true that picking good templates has become harder, it is not

apparently clear why that is the case.

Alignment accuracy

Figure 6 shows alignment accuracy as a function of target difficulty over all the CASPs.

Trends here are very similar to that of figure 3 for backbone accuracy. The similarity of the

two plots suggests that overall model quality continues to be dominated by alignment

accuracy, in spite of the improvement in non-template region modeling discussed earlier.

There is no apparent improvement in alignment since CASP5, consistent with the increased

difficulty of finding a near optimal template, discussed above. The large fall-off in overall

alignment quality as a function of target difficulty in figure 6 is the a combination of two

effects - actual alignment errors and the extent to which the best template does cover the

target. Figure 7 shows the difference in achieved alignment accuracy compared with

theoretically possible using the best template for the template based modeling targets in

CASPs 5, 9 and 10. It is apparent that already in CASP5, errors are quite small – close to

zero for easy models, about 10% in mid-range, and rising to ~25% at the difficult end of the

scale. While there is evidence of improvement in CASP9, compared to CASP5, CASP10

and CASP5 results are very similar. It is likely this is because remaining errors are

sufficiently small that they cannot be resolved at the sequence level, and further

improvement will only come from the use of methods that test alignment alternatives at the

three dimensional structure level.

Improvement over a naïve model

Figure 8 shows the net result of the interplay between the three factors discussed above:

better non-template region modeling, harder to find good templates, and saturated alignment

accuracy, in terms of the main chain accuracy of the best models compared to the that which

could be obtained by copying the best possible template. The trend lines show little
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difference between performance in different CASPs, but as in the other figures, scatter in

recent CASPs is large, with some impressive successes in CASP9 and 10, but also some

impressive failures, corresponding to the more difficult targets discussed above. In the easier

half of the difficulty scale there is usually a net gain over the template, while in the harder

half - a net loss.

Overall template-free performance

Figure 9 shows free modeling (FM) performance as a function of target domain length in

CASPs 5, 9 and 10. For CASP10, an extended set of 28 FM targets are used, consistent with

those of earlier CASPs (see Methods) (13). Also included are the 19 targets from the CASP

ROLL experiment. CASP ROLL was introduced in 2012 to provide a larger supply of

template free modeling targets, and operates continuously rather than being restricted to the

normal CASP experiment three month target release period. As has been noted before(14) in

CASP 8 (not shown) and 9(15) best models for targets less than 120 residues long are

impressive. In particular five out of eleven CASP9 ones have GDT_TS values higher than

60. In contrast, only one out of the five CASP5 targets in this range is above 60, and the

other three are below 40. In CASP10, three targets of less than 120 residues have GDT_TS

greater than 60, but four are less than 40. The picture is similar for the ROLL targets, for

which two of less than 120 residues have GDT_TS greater than 60, and three have values

less than 40. Current FM methods perform best on single domain regular structures, and

there are very few of these in CASP10. The apparent lack of progress in CASP10 and ROLL

compared with CASP5 probably again reflects the more difficult nature of CASP10 targets.

First, many targets which in CASP5 would have been in this category now have templates

(twenty CASP10 targets, which in CASP5 would have been in this category, now have

templates, by the criteria of CASP5-era PDB coverage of less than 40% and CASP10

coverage greater than 50%). Second, as is the case with the template based targets, the

CASP10 FM targets exhibit more irregularity, and more of a tendency to be domains of

larger proteins that are hard to identify from sequence and that may be dependent on the rest

of the structure for their conformation. In contrast, most of the successful FM models in the

past have been for small, single domain highly regular targets. These have completely

disappeared in CASP10, probably reflecting the fact that most small independent folds have

now been seen. Nevertheless, it is clear that in contrast to the first ten years of CASP,

progress in this area since CASP5 has been limited. In CASP4 we witnessed for the first

time that a high quality model can be produced for a regular single domain target of less

than 100 residues (target T0091). With successive CASPs, more groups have been

successful with this class of targets. But there has been little detectable progress with longer

targets, or with targets embedded in large structures or complexes. Presumably this reflects

the limits of fragment based methods, the dominant technique in template free modeling

prediction. Limitations arise from the difficulty of identifying domains, the influence of

other inter-actors on conformation, the difficulty of sampling less common conformations,

and from the exponential increase in sampling required as structures become larger.

Difficulty in scoring conformations reliably also plays a role, though one study suggests this

is not the dominant problem(16).
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DISCUSSION

The picture of progress since CASP5 can be summarized as follows:

1. There has been an improvement in the amount of structure not covered by the best

available template that is successfully modeled. By this criterion, the best

prediction methods improved by approximately 10% in the last decade (an increase

from an average of 23% in CASP5) (figure 1). This progress likely arises from the

large amount of effort devoted to the development of multiple template methods in

recent years(17).

2. The nature of CASP targets has changed in the last decade, such that at a given

level of sequence identity and structural similarity to available experimental

structures, it is significantly harder to select a template close to the best available.

As a result, identifiable templates provide up to 10% less coverage of the target

than in CASP5, at the same apparent level of target difficulty.

3. The effects of increased sub-optimality of template choice are largely offset by the

improvement in modeling non-primary template regions, so that overall backbone

accuracy is little changed (figure 3) by the criteria used here.

4. The accuracy of alignment of the target sequence to template had saturated by

CASP5, when mature profile-profile methods were already in general use.

Remaining errors are typically fairly small, probably reflecting the limits of linear

sequence/secondary structure methods.

5. Consistency in modeling small, regular, single domain template free structures has

advanced since CASP5, with more methods being successful. These improvements

have been offset by the increasing rarity of such ideal targets. FM targets are now

typically part of larger proteins and complexes, and more irregular.

How will the field advance in the next ten years? There have been two encouraging

developments. In CASP10, as described in a companion paper(18), for the first time a

refinement method succeeded in consistently improving the accuracy of every target, albeit

by a small average amount. In the larger community, there has been much excitement about

improved methods of predicting three dimensional contacts, providing restraints for

producing more accurate models(19). So far, these methods have not had an impact in CASP,

but we look forward to the next experiment…

METHODS

Domain definitions

As different domains within the same protein may present different modeling difficulty,

CASP assessment is performed at the domain level(18, 20, 21). We adopt the same practice

here, but use a somewhat different domain separation procedure from that used by the

assessors(22). We required that domains used in this analysis should be clearly identifiable at

the time of prediction and therefore relied exclusively on the results of sequence-based

homology searches. If templates strongly suggested that the target consisted of several

domains, we divided the targets accordingly (T0651, 652, 671, 674, 677, 686, 705, 713, 717,
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724, 732), except where all putative domains were sequentially related to the same template

(T0663, 675, 685 690). If a target was only partially covered by the templates (or not

covered at all), this was an indication that it might be a multi-domain target containing

template-free domains. As domains belonging to different modeling categories require

different modeling techniques, in such cases (T0658, 684, 693, 719, 726, 735, 739, 756) we

divided the targets into the domains as identified by the assessors.

As some residues in the experimental structures were not well defined(22), assessors

excluded them from the evaluation. We base our analysis on the untrimmed targets

following the notion that predictors had no means to establish a-priori which residues in the

target will be removed by the assessors. We do use official (trimmed) domain definitions for

some of the single-domain NMR targets, where the spread of experimental models in the

ensemble is very large (T0655, 657, 662, 668, 669, 709, 711, 714, 716, 731), and for some

X-ray targets containing regions strongly affected by the crystal packing (T0691, 704).

Target Difficulty

The predictive difficulty of a target depends on many factors. Two of them - structural and

sequence similarity of a target to proteins of known structure - are readily accountable,

comparable across different CASPs, well correlated with the quality of the produced models,

and therefore naturally suited for estimating the difficulty. Here we define the difficulty of a

target through these two parameters of the single best available template. Note that other

factors like difficulty of finding the best template, difficulty of aligning this template to the

target or availability of other templates covering different regions of the target are also

known to affect modeling difficulty, but not taken into account here as they are difficult to

quantify.

In CASP10, the templates were searched for in the PDB releases accessible before each

target deadline. To identify the best template, each target was compared with every structure

in the appropriate release of the protein databank using the LGA structure superposition

program and the most similar structure was chosen as the representative template. Templates

for the previous CASP targets were those used in the earlier analyses.

Similarity between a target structure and a potential template is measured in terms of the

LGA_S score, coverage and sequence identity calculated from the LGA sequence

independent superpositions with a 4Å distance cutoff. Note that this cutoff differs from the

5Å cutoff used in all previous similar studies; because of that we recalculated the similarity

parameters for all templates from the previous CASPs with the same distance parameter for

consistency. The cutoff was lowered as in previous studies we observed that the more lax

5Å cutoff sometimes allowed for unreasonably high superposition scores between unrelated

structures, particularly for small proteins.

As a rule, the template with the highest LGA_S score is chosen to be the representative

template. There are several exceptions to the rule, where a structure with a slightly lower

LGA_S score had substantially higher coverage or sequence identity than the originally

selected template, and so was selected as the representative template. The coverage is

defined as the number of target-template Cα atom pairs that are within 4Å in the optimal
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LGA superposition, irrespective of continuity in the sequence, or sequence similarity.

Sequence identity is defined as the fraction of structurally aligned residues that are identical,

maintaining sequence order. Note that basing sequence identity on structurally equivalent

regions will usually yield a higher value than obtained by sequence comparison alone.

Relative difficulty of target domains in all CASPs, Rcumul, is determined based on the two

difficulty parameters described earlier in this section. First, all domains are sorted according

to descending structural coverage (in case of identical values, next levels of the sorting are

sequence identity and LGA_S), and each target is assigned a structural alignment rank Rstr.

Next, we repeat the sorting procedure with the sequence identity as the primary sorting

parameter, and coverage and LGA_S as secondary sorting parameters, and assign a

sequence identity rank Rseq to each domain. These two ranks are then combined into a single

value Rcumul = Rstr + Rseq, and then all domains are re-ranked according to the cumulative

rank Rcumul, using Rstr ranking for tie breaking if necessary.

A number of different datasets are used in the analyses. The dataset that is used in the

majority of analyses consists of all targets from CASPs 1–7 and human/server targets from

CASPs 8–10 (as those are closest in their relative difficulty to the CASP 1–7 targets). We

also considered datasets of all targets from all CASPs; targets from CASP5, 9 and 10 only;

template-based modeling targets; single-domain targets, and some others. For each dataset,

the relative difficulty scale was recalculated based only on the targets included in the

dataset.

GDT_TS, AL0 and SWALI scores

The GDT_TS score is calculated with the LGA program(7), run in the sequence-dependent

mode with the 4Å distance cutoff (parameters: -3 -sda -d:4.0). The)GDT_ score determines

overall accuracy of a model in terms of the average percentage of Cα atoms in the prediction

deviating from the corresponding atoms in the target structure by no more than 1, 2, 4 and 8

Å (see our previous paper for the details).

AL0 score measures alignment accuracy of a model by counting the number of correctly

aligned residues in the 4Å sequence-independent LGA superposition of the modeled and

experimental structures of a target (LGA parameters: -4 -sia -d:4.0). A model residue is

considered to be correctly aligned if the Cα atom falls within 3.8Å of the corresponding

atom in the experimental structure, and there is no other experimental structure Cα atom

nearer. Note that in the present study we lowered the distance cutoff in the sequence-

independent LGA superpositions from 5Å to 4Å (see also Target Difficulty above), and for

consistency we recalculated the AL0 values for the models from all previous CASPs using

the same cutoff.

The maximum alignability score (SWALI) is the fraction of the best template’s residues that

can be correctly aligned to the target in the 4Å LGA sequence-independent superposition

using the Smith-Waterman algorithm. The dynamic programming procedure determines the

longest alignment between the two structures, in a way that no atom is taken twice and all

the atoms in the alignment are in the order of the sequence.
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Construction of naive models

Naive "template models" are built on SWALI-type alignments (see above) of a target and

the best structural template. The coordinates of the template’s backbone atoms are

transcribed to the aligned target residues.

Radius of gyration

Radius of gyration R is determined by the non-globularity compactness of a structure and is

defined as a root mean square distance from each heavy atom of the protein to their centroid

where Rc is the vector of coordinates of the center of geometry of all heavy atoms, ri (i=1,

…, N) is the vector of coordinates of the i-th atom, N is the number of non-hydrogen atoms

in the target.

Criteria for defining the extended FM set of targets

Defining domain boundaries and categorization of targets is always a subjective process. In

our comparison of performance across CASPs, it is of paramount importance to have

domains in different CASPs categorized using as a closely similar principles as possible.

This is especially true when comparing the performance on free modeling targets, as usually

there are only very limited number of such targets in each particular CASP. In CASP10, the

assessors used quite strict criteria for defining free modeling targets, and, as a result, the

GDT_TS scores of the best models on such targets never exceeded 40%. In CASP9, the

assessors used more lenient criteria that included a subjective reasoning on whether the

template for the domain was clearly findable by sequence methods at the time of the

experiment(13), and, as a result, the FM set included a number of targets with quite good

models (with the GDT_TS scores over 50). We solicited the help of the CASP9 free

modeling assessor in defining a compatible set of CASP10 FM targets. His conclusions

showed that indeed, many more (28 total) domains could have been classified to free

modeling provided the more lenient categorization criteria consistent with CASP9 are used:

T0651-D1, 653, 658-D1, 666, 671-D1, 678, 684-D1, 684-D2, 693-D1, 695, 705-D1, 705-

D2, 717-D2, 719-D6, 724-D2, 726-D3, 732-D2, 734, 735-D1, 735-D2, 737, 739-D1, 739-

D2, 739-D3, 739-D4, 740, 741, 742. These domains were used in our template-free analysis

in this study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Relative modeling difficulty of CASP targets, as a function of the fraction of each target that

can be superimposed on a known structure (horizontal axis) and the sequence identity

between target and template for the superimposed region (vertical axis). Each point

represents one target. Inset shows the average values for each CASP. For recent CASPs,

averages are shown for server only targets (marked with an “_s” suffix), human/server

targets (“_h”), and complete set of targets (“_all”). CASP10 human/server targets are on

average of similar difficulty to those of CASP5, by these measures.
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Figure 2.
% of residues successfully modeled that were not available from the single best template.

Each point represents the best model for a human/server target for CASPs 9 and 10, and all

targets for CASP5. CASP10 performance is similar to that found in CASP9, and markedly

improved over CASP5.
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Figure 3.
Best GDT_TS scores of submitted models for targets in all CASPs, as a function of target

difficulty. For recent CASPs, human/server targets are included, and in earlier CASPs, all

targets. Trend lines show little significant change in this measure since CASP5.
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Figure 4.
Radius of gyration of CASP targets as a function of target length. Dashed lines mark the

boundaries +/−2.5Å on either side of a line (not shown) derived from fitting to high

resolution crystal structures. CASP10 has a number of unusually high radius targets (one at

60Å, not shown).
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Figure 5.
(A): Target coverage provided by three classes of template: best available (solid lines), best

detectable using HHsearch (long dashes), and best using PSI-BLAST (short dashes). With

both sequence-based methods, achievable coverage is substantially lower than the provided

by the best available template, and lower in CASP10 (black lines) than in CASP5 (red lines),

showing that good templates are harder to find in recent CASPs. The dash-dotted line shows

coverage of CASP10 targets obtained using HHsearch and the CASP5 structure database.

The low coverage indicates that increased database size is not the primary cause of increased

difficulty in finding good templates in CASP10.

(B): Average loss of coverage relative to the best available template for the best templates

found with the methods shown in panel (A) and for templates declared by three of the best

performing CASP10 servers. With both PSI-BLAST and HHsearch, loss of coverage is

substantial and larger for the CASP10 human targets than for those of CASP5. Declared

parent lists for best models do contain near optimal templates, but typically amongst many

others. Best templates for CASP10 human targets returned by the selected servers have

similar coverage to HHsearch. This view of the data further supports the conclusion that

identification of near optimal templates has become substantially harder since CASP5.
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Figure 6.
% of residues correctly aligned for the best model of each target in all CASPs. Trend lines

are similar to those in the equivalent GDT_TS plot (Figure 3), indicating that for many

targets, alignment accuracy, together with the fraction of residues that can be aligned to a

single template, dominate model quality.
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Figure 7.
Alignment accuracy relative to the maximum that could be obtained using the single best

template. Top: trend lines as a function of target difficulty for the maximum % of alignable

residues (‘SWALI’) and for the fraction aligned for submitted best models (‘AL0’), for

CASPs 5, 9 and 10. Alignment accuracy is similar in these three CASPs. Bottom: %

difference between aligned residues (AL0) and maximum alignable residues (SWALI). The

average fraction of residues not aligned ranges from a few percent for easy targets to ~25%

at the difficult end of the scale.
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Figure 8.
Difference in GDT_TS score between the best submitted model for each target and a naïve

model based on knowledge of the best single template. Values greater than zero indicate

added value in the best model. In CASPs 9 and 10 there are number of targets with a net

gain of greater than 10% over the naïve model, but none in CASP5. There are also models

with loss of greater than 20% in CASPs 9 and 10, but none in CASP5, indicating the

difficult nature of some recent CASP targets.
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Figure 9.
Accuracy of the best models for template free targets, as a function of target length. In

CASPs 9, 10 and in CASP ROLL, there are a number of models of short targets with high

GDT_TS scores, but only one in CASP5. Methods are not currently effective for bigger

targets.
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