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Abstract: There are two challenges that researchers face when performing global sensitivity analysis (GSA) on multiscale ‘in
silico’ cancer models. The first is increased computational intensity, since a multiscale cancer model generally takes longer to
run than does a scale-specific model. The second problem is the lack of a best GSA method that fits all types of models,
which implies that multiple methods and their sequence need to be taken into account. In this study, the authors therefore
propose a sampling-based GSA workflow consisting of three phases – pre-analysis, analysis and post-analysis – by integrating
Monte Carlo and resampling methods with the repeated use of analysis of variance; they then exemplify this workflow using
a two-dimensional multiscale lung cancer model. By accounting for all parameter rankings produced by multiple GSA
methods, a summarised ranking is created at the end of the workflow based on the weighted mean of the rankings for each
input parameter. For the cancer model investigated here, this analysis reveals that extracellular signal-regulated kinase, a
downstream molecule of the epidermal growth factor receptor signalling pathway, has the most important impact on
regulating both the tumour volume and expansion rate in the algorithm used.
Nomenclature

Abbreviations
ANOVA
 analysis of variance

EGF
 epidermal growth factor

EGFR
 EGF receptor

ERK
 extracellular signal-regulated kinase

GSA
 global sensitivity analysis

LSA
 local sensitivity analysis

MAPK
 mitogen activated protein kinase

MEK
 mitogen activated protein kinase kinase

MLRA
 multivariate linear regression analysis

PLCγ
 phospholipase Cγ

PKC
 protein kinase C

PRCA
 partial rank correlation analysis
1 Introduction

Recently, computational cancer models across different
biological scales, that is, ‘multiscale’ cancer models, have
garnered much attention for its potential to help move the
field of integrative cancer systems biology towards clinical
implementation [1–3]. As the model parameters defining
biological properties at different scales are generally not
produced by a single laboratory, studying the dynamic
system behaviours governed by a fixed set of parameters is
inappropriate. This implies that the influence of the
perturbations of these parameters on the overall system
behaviour needs to be further investigated [4]. Sensitivity
analysis has been widely accepted as a useful tool for this
purpose, especially when it is not possible or practical to
conduct numerous wet-lab experiments [5]. There are two
types of sensitivity analysis methods: ‘local’ sensitivity
analysis (LSA) and ‘global’ sensitivity analysis (GSA). As
the LSA (one-at-a-time parameter variation method) only
allows one parameter to change each time, for analysing
complex biosystems, such as cancer, GSA is believed to be
more appropriate for accessing a parameter’s sensitivity
because it allows multiple parameters to change
simultaneously.
Thus far, a number of GSA techniques have been

developed, especially in the engineering field, and include
response surface methodology, Monte Carlo analysis
(sampling-based approach), and variance decomposition
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Fig. 1 Introduction of the 2D agent-based model

a Schematic representation of the signalling pathway
In short, EGFR is activated by binding to extracellular EGF, inducing
receptor dimerisation and autophosphorylation
The bound receptor forms a docking site for the signalling molecule PLCγ,
which then activates the Raf signal through PKC
This process initiates the ERK signalling cascade, which is involved in
cellular proliferation, differentiation and survival. The rates of change of
PLCγ and ERK are employed to determine cell migration and proliferation
chances for the next step
b Virtual 2D microenvironment with a discrete lattice containing 200 × 200
grid points
A single, distant blood vessel representing a ‘nutrient source’ is located at
(150, 150)
The nutrient source is the most attractive location for the
chemotactically-acting tumour cells (i.e. cells tend to move towards the
nutrient source)
When the first cell reaches the nutrient source, a simulation run is terminated
The diameter of each cell and the unit interval of the 2D microenvironment
are all 10 µm
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procedures (variance-based approach). GSA methods have
also been applied to systems biology models [4, 6–8], but
most of them focus on the analysis of signalling pathways.
To assess the context-dependent relationship between
different biological scales of interest, we have previously
provided an applicable GSA strategy based on the
integration of Monte Carlo and resampling methods as well
as the repeated use of analysis of variance (ANOVA) [9].
Read et al. [10] also developed a GSA method based on
statistical techniques to link simulation results back into the
original biology domain in order to determine the
confidence of the simulation-derived predictions. However,
there is no single ultimate solution that best fits all types of
systems biology applications, that is, each method has its
advantages and disadvantages [11]. A particular method
may be favoured over another depending on the specific
model being studied and the objectives of the analysis.
Hence, in identifying inputs critical for certain outputs, it is
better to consider multiple methods together.
In this paper, we present a sampling-based GSA

‘workflow’ that accounts for multiple GSA methods
together. We chose sampling-based GSA methods because
they are relatively easy to implement and to demonstrate the
applicability of the workflow; the focus here is not on
whether or not variance-based methods are always more
superior over sampling-based ones. Specifically, in addition
to the ANOVA-based method, two other sampling-based
GSA methods, that is, partial rank correlation analysis
(PRCA) and Sobie’s [12] multivariate linear regression
analysis (MLRA; capable of prioritising parameters for
non-linear computational models), are also an integral part
of the workflow. After an initial parameter ranking is
produced with a specific GSA method, parameters are
grouped by ANOVA using statistical comparison
procedures. In the end, we generate a summarised
parameter sensitivity ranking sorted by the strength of
influence that each input parameter exerts on model output.
We exemplify the feasibility of the workflow using a 2D
multiscale agent-based model previously developed for
simulating non-small cell lung cancer (NSCLC) [13]. The
identified critical model parameters (on the molecular level)
may have the potential to serve as therapeutic targets in
treating NSCLC.

2 Methods

2.1 Multiscale NSCLC model

The two-dimensional (2D) agent-based NSCLC model [13]
encompasses both molecular and microscopic (i.e.
multi-cellular) scales, and we only briefly introduce its key
development methods here. An epidermal growth factor
(EGF)-induced, EGF receptor (EGFR)-mediated signalling
pathway is implemented at the molecular scale, and
includes seven main components (see Fig. 1a for an
illustration of the simplified pathway). At the microscopic
scale, a lattice-based 2D biochemical microenvironment is
constructed and populated with diffusive chemical cues
including EGF, glucose and oxygen (see Fig. 1b for model
setup). Each cell (or agent) in the model carries a
self-maintained signalling pathway, and as a simulation run
progresses, these cells constantly sense changes in
environmental factors, interact with other cells and adjust
their behaviour according to a set of predefined biological
rules. A molecularly-driven cellular phenotypic decision
algorithm (Fig. 1a) is established to determine cell
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phenotypic transitions upon molecular changes:
phospholipase Cγ (PLCγ)-dependent migration and
extracellular signal-regulated kinase (ERK)-dependent
proliferation (see [13] for detail). This algorithm is derived
from and supported by experimental studies [14, 15]. In the
model, each lattice grid can be occupied by one cell or
remain empty at a time; if a cell decides to migrate or
proliferate, it will search for a neighbourhood location to
move to or for its offspring to occupy. The model is able to
quantify the relationship between extracellular stimuli,
intracellular signalling dynamics and multi-cellular tumour
growth and expansion. Thus, it can be used to investigate
the cross-scale effects of ‘simultaneous’ molecular
parameter variations on tumour ‘outcome’ at the
microscopic scale.
2.2 GSA workflow

We propose a GSA workflow consisting of ‘three’ phases
(Fig. 2): pre-analysis (for preparing the basic input
sampling data set), analysis (for performing sensitivity
analysis with three GSA methods and for quantifying the
distribution of the sensitivity index) and post-analysis (for
producing the final summarised parameter ranking). We will
explain each phase using the 2D NSCLC multiscale model
(described in Section 2.1) as a practical example. Note that,
to investigate the effects of how molecular changes in
individual cancer cells percolate throughout and across the
scales of a cancer system, the model output (i.e. biological
response of the tumour) no longer consists of the
behaviours of output signals or signal activation patterns (as
it is in most current signalling pathway studies [16]);
instead, the output is the tumour’s growth and expansion
rate, two phenotypic behaviours at the microscopic level
driven by the implemented molecular network. Similar to
IET Syst. Biol., 2014, Vol. 8, Iss. 5, pp. 191–197
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Fig. 2 Workflow of the global cross-scale sensitivity analysis,
which is composed of three phases: pre-analysis, analysis and
post-analysis
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previous studies [17–19], we will use the number of elapsed
time steps as a measure for ‘tumour expansion rate,’ and the
final number of live cells for ‘tumour volume.’

2.2.1 Pre-analysis: Continuous input parameters are first
partitioned into mutually exclusive ranges of values, and
each individual range is termed a parameter level. In our
case, we only consider the initial concentrations of pathway
components as input parameters to demonstrate the
applicability of the GSA workflow. When the number of
parameters or parameter levels is large, exploring the entire
parameter space is computationally impractical. For
example, suppose we have K parameters and for each
parameter we have N levels, for a total of NK combinations.
The number of simulations grows exponentially as K or N
increases. The other fact rendering exploring the entire
space impractical is that this/any 2D multiscale cancer
model takes a relatively long time to finish, because each
cell has to undergo a series of pathway analysis throughout
the course of the simulation. Hence, we use a ‘random
sampling’ of input parameters to render the large number of
variation combinations computationally manageable.
Specifically, as implemented in [9], we use the Latin
hypercube sampling (LHS) method to generate 2000
random sets of parameter values, and thus 2000 sets of
simulation results will be generated correspondingly. For
simplicity, we call each set of parameter values along with
the corresponding two tumour output values an
‘observation’. Thus, at the end of the pre-analysis phase, we
have 2000 observations, and we refer to the 2000
observations as the ‘original’ sample.

2.2.2 Analysis: The sensitivity indices for the three
sampling-based GSA methods are as follows: the F value
for ANOVA calculated by the F-test [9], the magnitude of
the partial correlation coefficient for PRCA, and the
magnitude of the regression coefficient for MLRA. For all
analyses, the bigger the value of the sensitivity index is, the
larger the influence that the (molecular) parameter has in
determining the (microscopic) system output. We note here
that, based on the original sample obtained at the
pre-analysis phase, each of the three GSA methods can
IET Syst. Biol., 2014, Vol. 8, Iss. 5, pp. 191–197
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already yield their own parameter rankings. However, there
is still the possibility that the sample data is biased
(regardless of how sophisticated the LHS method is), which
would make the resultant ranking incorrect. Thus, we
further quantify the ‘sampling distribution’ of the sensitivity
index for each GSA. As implemented in [9], to understand
such distributions (of F value, partial correlation coefficient
and regression coefficient, respectively), we use bootstrap
resampling [20], which repeatedly samples the original
sample with replacement and forms a new sample that is
the same size as the original sample. The most attractive
feature of this approach is that we do not have to run the
multiscale cancer model again, thereby saving a great deal
of time. In practice, we again generate 1000 bootstrap
samples (including the original sample) and then apply each
GSA to each bootstrap sample to calculate the sensitivity
index values. As a result, with respect to each model output
(tumour volume or expansion rate), for each GSA, there
will be 1000 sensitivity index values (each corresponding to
a bootstrap sample) generated for each input parameter. We
then draw probability distributions of sensitivity indices
from these results.
Next, to discriminate between two closely ranked input

parameters, we use ANOVA with Tukey’s method (also
known as Tukey’s studentised range test) [21]. Tukey’s
method is a single-step multiple pairwise comparison
procedure which, in conjunction with ANOVA, can
determine which parameter means across the groups are
significantly different from the others. In brief, suppose we
have N treatment groups: ANOVA examines the difference
across the N group means as a whole, and Tukey’s method
looks for statistically significant differences between each
pairs of the groups. In our case, each input parameter is
regarded as a treatment group, containing 1000 sensitivity
index data. We note that other statistical methods for
performing multiple comparison tests, such as Duncan’s
test, Scheffe’s procedure and the Waller-Duncan k-ratio t
test can be used as a substitute for Tukey’s method;
however, detailed discussion of this topic is beyond the
scope of this paper, and interested readers should refer to
[22]. If the difference between the means of two originally
closely ranked input parameters is statistically significant
(unless otherwise noted, all statistical comparisons are
conducted at the 5% confidence interval), they will be
assigned to different groups; if not, they will remain in the
same group. Parameters from the same group are assumed
to have similar effects on the model output, and thus will
be reassigned the same rank. In practice, for all three GSA
methods, a rank of 1 is assigned to the input with the
highest sensitivity index in a parameter ranking, and the
largest value of rank is assigned to the input of least
importance (i.e. lowest sensitivity index).

2.2.3 Post-analysis: Since there is no one-stop GSA
method for all types of systems applications, we propose an
approach to synthetically take into account the parameter
rankings produced by all of the GSA methods. This
approach calculates the weighted mean of the rankings for
each input parameter, according to the following equation

Si =
∑N

j=1

kjri,j (i = 1, 2, ...,M ) and
∑N

j=1

kj = 1

where i refers to the ith ofM parameters, j refers to the jth of N
GSA methods; ri,j represents a specific rank for the ith
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Fig. 3 Process for producing the final summarized parameter ranking

All three GSA methods (ANOVA, PRCA and MLRA) generate their own individual parameter rankings based on the same 1000 bootstrap samples
Note that all GSA methods use ANOVA and Tukey’s method to perform parameter grouping
The summarised ranking is obtained using Eq. (1)
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parameter with respect to the jth GSA method; kj represents
the weight for the jth GSA method; and Si is the final score
for the ith parameter. The smaller the Si, the more important
is the given parameter. The weights are normalised to sum
up to 1. Fig. 3 illustrates the process of producing the
summarised (or integrated) parameter ranking. In practice,
GSA methods can be set with different weights (i.e. the
coefficient k), depending on the researchers’ experience or
prior knowledge. For example, for a specific model,
methods that have been proven to be more suitable than
others may have higher weights, while others have lower
weights. However, for simplicity and because we have no a
priori knowledge regarding which GSA method is more
powerful than others for this particular multiscale cancer
model, we set kj = 1/N ( j = 1,2,…,N ), meaning that all GSA
methods are equally important.
Table 1 Parameter variation ranges and corresponding levels
of input parameters

Input Standard value, nM Variation range Number of levels

EGF 2.65 0–10.0-fold 10
EGFR 80 0–2.0-fold 10
PLCγ 10 0–2.0-fold 10
PKC 10 0–2.0-fold 10
Raf 100 0–3.0-fold 12
MEK 120 0–4.0-fold 10
ERK 100 0–10.0-fold 20

Variation ranges were set large enough to cover the entire
possible parameter space. The variation range for each
parameter was partitioned into levels by means of evenly spaced
intervals. Standard values are taken from the literature [23, 24].
3 Results

The agent-based model was implemented in C/C++. In each
simulation, a total of 49 seed cells arranged in a 7 × 7
square were initially positioned in the 2D lattice. The first
2000 sets of parameter combinations (i.e. the original
sample) were created with Matlab 2008 (Mathworks, Inc.).
All statistical analysis programs for running ANOVA,
Tukey’s method and bootstrap resampling were developed
with SAS/STAT 9.3 (SAS Institute). Each GSA method
took approximately 3 min to obtain the ranking results on a
Dell workstation (Pentium-4 1.7 GHZ, 2.0 GB RAM). Input
parameters are the initial concentrations of the seven EGFR
pathway components (Fig. 1a). Table 1 summarises the
input parameter variation ranges and corresponding levels.
194
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3.1 Individual parameter rankings

For all three GSA methods (ANOVA, PRCA and MLRA),
conducted using the 1000 bootstrap samples, the individual
ranking results are shown in Fig. 4. All GSA ranking
results find ERK to have the most significant impact on
both tumour volume and expansion rate, a result which
further emphasises the potential therapeutic value of ERK
in suppressing overall tumour growth. In tumour volume
evaluation, MEK remains among the top three parameters
in all rankings, but it is far less important than ERK in
influencing the tumour volume outcome because there is a
big difference in each corresponding sensitivity index value
between MEK and ERK. In tumour expansion rate
evaluation, other than ERK, both PLCγ and EGFR are
determined to be critical by all of the GSA methods. As
expected, for each model output, the different GSA
methods each produce different ranking results.
IET Syst. Biol., 2014, Vol. 8, Iss. 5, pp. 191–197
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Fig. 4 Individual parameter ranking results from 1000 bootstrap simulations for ANOVA, PRCA and MLRA, with respect to

a Final number of live cells – tumour volume
b Number of simulation steps – tumour expansion rate
SI stands for sensitivity index
Columns, mean; bars, SD
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3.2 Summarised ranking

For the three equally-weighted GSA methods, the value of
each weight, kj ( j = 1, 2, 3) for Eq. (1) is 1/3. The
summarised parameter rankings with respect to tumour
volume and expansion rate are shown in Fig. 5. From this
figure, one can easily identify whether a component is
critical, as well as what the component’s position relative to
other molecules in the pathway is. In tumour volume
evaluation (Fig. 5a), ERK is the most critical parameter,
followed by MEK. This result is most similar to the ranking
obtained by using ANOVA and MLRA (Fig. 4a). That
ERK is the most important parameter affecting tumour
volume is not surprising, since ERK decides a cell’s
proliferation fate in our phenotypic decision algorithm of
the 2D NSCLC multiscale model [13]. However, in tumour
expansion rate evaluation (Fig. 5b), ERK remains the most
critical parameter, followed by PLCγ and EGFR. This is
somewhat surprising, since we assumed that PLCγ would
have the most significant impact on tumour expansion
because it is the determinant of cell migration fate [13]. The
identified important parameters by the final summarised
ranking with respect to tumour expansion rate are in
agreement with all of the three individual parameter
rankings (Fig. 4b).
Fig. 5 Final summarised parameter ranking according to Eq. (1)
with respect to

a Tumour volume
b Tumour expansion rate
The ranking results (table) are shown on the left of each panel, while the right
(pathway figure) identifies the potential of each component for serving as a
therapeutic target
A molecule with a higher ranking is associated with a deeper background
colour
4 Discussion and future work

Each sensitivity analysis method (whether GSA or LSA type)
has its own key assumptions, limitations and demands
regarding the time and effort needed for application and
interpretation [11]. With that in mind, we have presented a
sampling-based GSA workflow into which a number of
helper techniques, such as LHS sampling, bootstrap
resampling and ANOVA with Tukey’s method for
parameter grouping are introduced, and have applied the
workflow to a previously developed multiscale NSCLC
model [13]. Overall, the workflow provides solutions to (i)
how to render the large number of parameter variation
combinations computationally manageable, (ii) how to
IET Syst. Biol., 2014, Vol. 8, Iss. 5, pp. 191–197
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effectively quantify the sampling distribution of the
sensitivity index for each GSA to address the computational
intensity issue and finally (iii) how to discriminate between
195
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two closely ranked input parameters. Parameter ranking
results indicate that, for the model used here, ERK is the
most critical parameter at the molecular scale chiefly
regulating the two tumour growth indices, that is, tumour
volume and expansion rate, on the multi-cellular level.
Cautiously extrapolated, this finding therefore supports
therapeutic efforts that seek to target ERK to control
tumour expansion in NSCLC. Furthermore, by extending
the model to incorporate drug–cell interactions [25–29], the
GSA can also be used to help develop optimal drug
treatment strategies for individual patients.
The workflow introduced here is ‘flexible’ in that some

methods can be substituted with others at the investigators’
choice. For example, at the pre-analysis phase, in order to
introduce the uncertainty of the parameters into the model,
we use LHS to randomly select parameter values from their
respective probability distributions. In fact, there are many
other approaches to process random sampling (see [30]),
and this research topic has been extensively studied in the
statistics and engineering fields. We choose to use a
uniform probability distribution, that is, equal probability of
selection, for all of the input parameters because the
distributions of the parameters are unknown to us. If any of
the parameter distributions is known a priori, this
knowledge (or literature data) should be applied to the
model to improve the accuracy of the parameter sampling.
However, the probability distributions of parameter values
for real biological systems are usually unknown, and it is
thus reasonable to use a uniform distribution as the default
[31]. Also, as mentioned earlier, we can employ techniques
other than Tukey’s method along with ANOVA to quantify
the distribution of the sensitivity index, and other types of
GSA methods [11, 32] can be integrated into the workflow
as well.
As noted before, it is expected that different GSA methods

produce different parameter rankings with respect to either
tumour growth index (i.e. tumour volume or expansion
rate). This prediction is precisely what we find in our
analysis, and it highlights the importance of the adjusted,
summarised parameter ranking method, using Eq. (1),
which integrates the individual parameter rankings. This
way, a model parameter (pathway component) is identified
to be critical only when all or most of the GSAs agree. In
both tumour volume and expansion rate evaluation, PKC is
assigned the lowest ranking by most of the GSAs, and thus
is deemed to be a less important parameter. However, this
conflicts with our previous LSA study’s results [17], where
the model is observed to be sensitive to variations in PKC.
Since the LSA method only varies a single parameter at a
time while keeping all others fixed, we believe it only
accesses the baseline of the effect of perturbations in each
individual parameter. By incorporating multiple methods,
the proposed GSA analysis procedure inherently indicates
to the researcher how strong the produced ranking is – in
particular, how certain the evaluation of a molecule’s
importance is. A consistently high ranking indicates that a
molecule is likely a good therapeutic target, since the
multiple confirming analyses add to the robustness of the
results. Although it may be difficult to choose the ‘best’ or
‘surest’ method of analysis per se, this ‘across-GSA
methods analysis’ should increase confidence in the result,
which is essential once treatment strategy choices are
deduced from it.
We focus on computing the ranking of the parameters, not

on understanding what level of difference would make a
parameter more critical than others. In practice, this is the
196
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researcher’s responsibility to determine this level, which
also depends on the model being investigated. Although the
ANOVA with Tukey’s method can divide the parameters
into different groups from a statistical point of view, the
result should be used only as a reference to the assessment
of difference between groups.
As described, our multiscale model spans two biological

scales: molecular signalling and multicellular scales; a
molecularly-driven cell phenotype decision algorithm was
established to link the two scales. In this study, we focused
our parameter analysis on a subset of model parameters,
that is, on concentrations of pathway components, simply to
demonstrate the applicability of the GSA workflow.
However, other scale-specific parameters (e.g. association
and dissociation kinetic rates on the molecular scale,
oxygen and glucose concentration profiles on the
multicellular scales etc.) and the threshold parameters
(specifically, for ERK and PLCγ) for linking molecular
changes to cellular phenotypic determination can be varied
simultaneously together with the pathway parameters to
obtain a more complete ranking of pathway ‘signatures.’
Although this will incur overload computational cost, it is
particularly important for a multiscale model to be useful in
rationally designing multi-target or multi-component
therapies. This topic has not been fully addressed yet by the
multiscale modelling community.
In summary, we have presented a GSA workflow

accounting for multiple GSA methods together to identify
critical parameters at the molecular level that have
significant impact on tumour volume and expansion rate on
the microscopic level. Applying the workflow to a
previously developed multiscale lung cancer model, ERK is
found to be the most important molecule in regulating
‘both’ tumour evaluation indices, thus indicating its
potential to serve as a therapeutic target in NSCLC. In the
future, kinetic rate constants will also be considered as
molecular parameters, and their cross-scale effects will be
examined together with the signalling pathway component
concentrations. Currently, we only use the GSA workflow
to perform sensitivity analysis when a simulation task is
finished, but it is reasonable to hypothesise that parameter
rankings are changing over the course of the simulation.
Hence, we plan to perform GSA at regularly spaced time
intervals, producing a map of time-dependent ‘dynamic’
parameter rankings, which may provide additional and
useful information to molecular-targeted cancer research.
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