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Abstract

The first two decades of brain research using fMRI have been dominated by studies that measure

signal changes in response to a presented task. A rapidly increasing number of studies are showing

that consistent activation maps appear by assessment of signal correlations during time periods in

which the subjects were not directed to perform any specific task (i.e. “resting state correlations”).

Even though neural interactions can happen on much shorter time scales, most “resting state”

studies assess these temporal correlations over a period of about 5 to 10 minutes. Here we

investigate how these temporal correlations change on a shorter time scale. We examine changes

in brain correlations to the posterior cingulate cortex (PCC) across a 10 minutes scan. We show:

(1) fMRI correlations fluctuate over time, (2) these fluctuations can be periodic, and (3)

correlations between the PCC and other brain regions fluctuate at distinct frequencies. While the

precise frequencies of correlation fluctuations vary across subjects and runs, it is still possible to

parse brain regions and combinations of brain regions based on fluctuation frequency differences.

To evaluate the potential biological significance of these empirical observations, we then use

synthetic time series data with identical amplitude spectra, but randomized phase to show that

similar effects can still appear even if the timing relationships between voxels are randomized.

This implies that observed correlation fluctuations could occur between regions with distinct

amplitude spectra, whether or not there are dynamic changes in neural connectivity between such

regions. As more studies of brain connectivity dynamics appear, particularly studies using

correlation as a key metric, it is vital to better distinguish true neural connectivity dynamics from

connectivity fluctuations that are inherently part of this method. Our results also highlight the rich

information in the power spectra of fMRI data that can be used to parse brain regions.
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Introduction

When fMRI data is collected from volunteers lying in the MRI scanner without performing

any specific task, voxels with similar time series characteristics cluster in anatomically or

functionally consistent and interesting patterns. For example, fMRI time series from voxels

in the right motor cortex are strongly correlated to the time series of a voxel in the left motor

cortex (Biswal, Yetkin et al. 1995) and time series from areas that constitute what is known

as the default network correlate well with each other (Greicius, Krasnow et al. 2003; Fox,

Snyder et al. 2005). The most commonly used methods to analyze these types of data rely on

correlations to a time series from a seed region (Biswal, Yetkin et al. 1995) or model-free

methods like independent component analysis (Beckmann, DeLuca et al. 2005; Jafri,

Pearlson et al. 2008). Moreover, the existence of these correlations in BOLD time series is

commonly interpreted as evidence that networks of brain regions tend to alter their levels of

neuronal activity in concert over a long time scale.

Most of these analyses examine correlations over a 5 to 10 minute period since it has been

shown that a high level of test-retest reliability is achievable with these durations (Van Dijk,

Hedden et al. 2010). Nevertheless, fMRI connectivity patterns cannot be assumed to be

stationary and independent of cognitive load. Shirer et al. recently showed how connectivity

patterns computed over 10 minute windows differ as a function of cognitive task (Shirer,

Ryali et al. 2012). Moreover, several studies now have shown that spatial connectivity

patterns vary within the typical 5 – 10 minutes scan using different analysis methods. For

example, Majeed et al. showed how functional connectivity to a seed regions spatially

shifted across time in an anaesthetized rat using high temporal resolution fMRI (TR=100ms)

(Majeed, Magnuson et al. 2009). Raichle showed how correlation maps in humans appear to

be non-stationary in that the level of correlations change over short time windows (Raichle

2009). Others have shown how phase or frequency relationships between brain regions also

change over time (Kitzbichler, Smith et al. 2009; Chang and Glover 2010). Given this

accumulating evidence regarding the non-stationarity of connectivity patterns several recent

studies characterized the temporal stability of various resting state networks in humans

(Kang, Wang et al. 2011; Hutchison, Womelsdorf et al. 2012; Smith, Miller et al. 2012) and

their potential biological significance (Petridou, Gaudes et al. 2012). In particular, although

Petridou et al. showed that some correlation changes over time can be modeled with

estimates of discrete, regional fMRI signal changes and electromyography, they did not fully

demonstrate whether or not changes inter-regional fluctuations in fMRI signal correlations

represent dynamic changes in connectivity relationships of the underlying tissue (e.g., their

potential neuronal significance).

As an attempt to better understand the potential biological and neurological meaning of

dynamic changes in inter-regional BOLD signal fluctuations over different temporal scales,

here we examine in detail the dynamic behavior of the correlation between a seed region and

the rest of the brain using a short, sliding temporal window. Plotting the correlation from

within this small window as it changes over time, we observe a periodic behavior that

sometimes corresponds to several well-known networks in the brain that would not

otherwise show a significant average correlation to this seed region. Interestingly, for a
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single seed, different combinations of brain regions appear at different correlation

frequencies.

One challenge of examining any connectivity fluctuation is that sliding window “correlation

analysis applied to any two processes, even independent processes, produces what appears

to be low-frequency periodic evolution in correlation.” (Robinson, de la Pena et al. 2008).

Existing statistical methods for accounting for these inherent fluctuations assume a null

condition of white noise (Gershunov, Schneider et al. 2001) or other models (Robinson, de

la Pena et al. 2008) that aren't as temporally and spatially structured as fMRI data and don't

have the same multiple comparisons challenges. Here, we map these interesting fluctuating

correlations and then examine the likelihood they are neuronally relevant. For this, we use

simulated time series that contain actual fMRI time series amplitude spectra but whose

phase has been randomized. If the frequency peaks in the sliding window correlation time

series remain after phase randomization, this would show that the original temporal ordering

of events is not required to get periodic correlation fluctuations. If phase randomization

removes or decreases periodic correlation fluctuations, then the temporal ordering of the

original fMRI time series is relevant and adds evidence that most of these correlation

fluctuations are neural in origin.

Methods

Data collection

Data were collected from twelve healthy adults (ages mean±std=29±8, 7 female) who

provided informed consent under an IRB approved protocol. A 3T General Electric HDx

MRI scanner equipped with a 16-element receive-only brain array coil was used. T1

anatomical scans were collected using an MPRAGE sequence (voxel

size=0.94×0.94×1.2mm3). Single shot, full k-space gradient recalled EPI was used for all

functional scans. Whole brain coverage fMRI scans with 27 sagittal slices were collected

with the following scan parameters: TR=2s, TE=30ms, matrix=64×64, FOV=24mm, slice

thickness/gap= 5mm/0mm, flip angle = 90°, reps=300 or 304 (10 minutes). Physiological

data were recorded during each scan using a pulse-oximeter placed on the left 2nd or 4th

finger and a pneumatic belt positioned at the level of the diaphragm. During the scan, the

room lights and projector were turned off and the volunteer was told to keep eyes open and

head still. We termed this run the “resting scan.” As part of a separate study (Murphy, Birn

et al. 2009), volunteers performed other tasks during the same scanning session, but these

data were collected after the resting scan used in this study.

Preprocessing

The EPI data were preprocessed primarily using AFNI (Cox 1996) with in-house Matlab

(www.mathworks.com) scripts and C code. The first 4 volumes were discarded to allow

magnetization to reach steady state. Data were corrected for subject motion using a rigid-

body volume registration, slice-timing differences, and then the time series signal

magnitudes were converted to percent change from the mean. Signal oscillations from

aliased cardiac and respiration were removed using RETROICOR (Glover, Li et al. 2000).

Slow respiratory volume changes over time (RVT) were also removed (Birn, Diamond et al.
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2006). For the RVT correction, the RVT time series were deconvolved from the data with

lags from 0 to 15 volumes (0-30s) using a general linear model (GLM). This was performed

to remove any signal that might have a linear relationship to the RVT curve. In the same

GLM, the 6 translational and rotational motion parameters and their first derivatives were

deconvolved from the data. Low frequency signal drifts were also removed from the data

using 0-5th degree polynomials in the same GLM. The data were then low pass filtered at

0.1Hz. The data were spatially smoothed using a Gaussian filter (full-with-half-

max=5.6mm).

Correlation frequency maps

Fig. 1 shows our fundamental observation as well as the analysis steps. The posterior

cingulate cortex (PCC) seed region was a 12 mm diameter sphere centered at the Talairach

coordinate [-5, -49, 40]. While a spherical seed (Fig. 1A) can't precisely define the PCC, this

ROI this is commonly called the PCC is consistent with other papers (Fox, Snyder et al.

2005; Murphy, Birn et al. 2009) that utilize this region. The seed time-series was the average

of the voxels in the specified region. The unthresholded correlation map from the PCC seed

to the rest of the brain across the entire ten minute time-series is shown in Fig. 1B and the

Supplementary video. This is the standard type of correlation map presented in most

correlation-based connectivity studies. In the next step, instead of calculating a correlation

across the entire time series, we calculated correlations over brief temporal windows. The

same time range in each voxel's time series was tapered using a Hamming filter to remove

window edge artifacts. Fig. 1D shows the time series of the correlations between the seed

ROI and another voxel marked by the green crosshairs in Fig 1A-C. The blue dashed lines in

Fig. 1E mark the 16 time point (32s) window and show the correlation of the two time series

over this window. The window was then shifted by one time point (2 sec) and a new

correlation value was calculated. For 296 time points in the data, the end result was a time

series of 281 correlation values. Fisher's transform was used to convert correlation

coefficients to z values for all analyses (Fig 1E). This voxel, which shows only a z=0.23

correlation to the seed voxel in the ten minute time series, shows a highly oscillatory

correlation over time windows of all the lengths shown. The window duration acts as a low-

pass filter and defines what frequencies of fluctuations are visible in later analysis steps.

Correlations to the PCC change across most brain voxels over time (Fig. 1 C). Many voxels

shift between being correlated and anti-correlated to the PCC. For the volunteer shown in

Fig. 1, 51% of brain voxels had a Z statistic less than -0.1 for at least 10% of the correlations

calculated across time. Only 2% of brain voxels never had Z statistics below 0.

Power spectra were calculated on the correlation time series using Welch's method (Welch

1967). Several window sizes and overlaps were tested, but all of the presented data

calculates spectra using 3 averaged Hamming windowed (with 10% tapering) periodograms

with 192 time points each and 77% overlap. Even though the specific parameters are

arbitrary, they allowed for some averaging while using all data in the correlation time series

and keeping sufficiently narrow frequency bins to show distinct maps.
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Phase Randomized Simulations

Since low frequency fluctuations may appear in sliding window correlation time series

whether or not there is a true dynamic relationship between the two time series, we used

simulations to test the likelihood our observed correlation fluctuations depend on the precise

timing in our fMRI data. To generate time series as similar to our actual data as possible, we

created seed and target time series by taking the inverse Fourier transform of the amplitude

spectrum from real data (the absolute value of the discrete Fourier transform) combined with

uniformly distributed phase spectrum. The advantage of this approach is that the resulting

synthetic data looks very similar to our fMRI time series — it even retains the original time

series' autoregressive properties — yet the precise timing of signal fluctuations in our seed

and target time series are random. Thus, a correlation fluctuation that appears in these

simulations does not represent dynamic connectivity changes between two time series. One

can use these simulated data to create probability distributions and determine the likelihood

that observed properties in the original fMRI data couldn't come from merely random event

timing and are more likely to represent dynamic neuronal connectivity changes.

For the simulations, the phase randomization process was run on the time series after all

preprocessing steps including the removal of cardiac & respiratory noise, and low frequency

drifts. The phase randomized time series were low pass filtered at 0.1Hz before sliding

window correlations were calculated.

Figure 2A shows a segment of the PCC ROI time series from one volunteer in black and two

time series with randomized phase in blue and green. Fig. 2C shows actual and simulated

time series from a voxel in the blue circle in Fig. 3. Fig. 2B and 2D show the amplitude

spectra for these series. These are identical for the original and phase randomized time

series. For every time series pair, we calculated sliding window. The correlations for the

time series in Fig 2A and C are shown in Fig 2E. Power spectra were calculated in the same

way as with the original data (Fig. 2F).

We then calculated several spectral metrics, described in Results, on the actual correlation

time series and the simulated iterations. For each metric, the distribution of the range of

values that appeared in simulations was compared to the values in the actual data to give a

probability that the actual value could appear by chance.

Results

Correlation Fluctuation Maps

For each volunteer, we calculated a power spectrum for the correlation time series as shown

in Fig. 1C & E. The correlation time series are all based on a seed time series from the PCC.

Fig. 3 shows example spatial maps of relative power magnitude from a single volunteer.

Thus, a map for each frequency bin shows which regions have relatively more power at that

frequency. For example, the power of correlation fluctuations (with the PCC) at 0.005 Hz is

greater in primary sensorimotor cortex and primary visual cortex than the rest of the brain.

At 0.018Hz, the inferior parietal lobe has more power. At 0.026 Hz, there is more power

around the inferior frontal gyrus and insula along with part of the superior temporal and

inferior parietal lobes. At 0.029 Hz, there is more power in the middle temporal gyrus. The
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power spectra at the bottom of Fig. 3 are from voxels with high relative power in each of the

four maps. Voxels in different clusters have distinct spectral profiles. While the average

correlation calculated for the entire time series of data generates only a single map of

relationships to the PCC (i.e. Fig. 1B), using this sliding window approach, we were able to

identify several distinct maps based solely on the frequency of the temporal fluctuations of

their correlations to the PCC. These maps show that the correlation time series from other

brain regions to the PCC seed fluctuate with distinct frequency profiles. Maps do not appear

in all frequency bins of the power spectrum. Supplementary Fig 1 shows maps from the

same slices and subject as Fig 3 for all frequency bins up to 0.055Hz. For this subject, visual

inspection identified 17 of 54 frequency bins from 0-0.143Hz that contained spatially

contiguous clusters that were mostly in gray matter and often showed bilateral symmetry.

For this same range, there were 8-20 frequency bins with such clusters in each of the 12

subjects (mean 15.2).

We also examined whether these maps were sensitive to the window duration for the

correlation calculations. Fig. 4 shows the same frequencies from the same subject as Fig. 4

for a single brain slice. Data are shown using 8-128s duration windows (4-64 time points).

While shorter duration windows cause what looks like more fluctuations in the sliding

window correlations (Fig. 1E), those fluctuations are at higher frequencies. The window

duration is essentially a low pass filter. If the power spectrum frequency is within the filter's

pass band, then the maps are similar regardless of filter duration (Fig 4). Only when a

frequency is higher than resolvable with a long duration window, as in the bottoms right

slices in Fig. 4, do the spatial maps significantly change. The 32s window used in the rest of

this manuscript was an arbitrary selection, but was sufficiently long to remove some noise

from the correlations without overly filtering potentially interesting frequencies.

For 11 of the 12 volunteers, we collected two 10 min rest runs separated by other tasks

(Murphy, Birn et al. 2009). We examined test-retest reliability by spatially correlating all

combinations of frequencies between each person's two runs. The maps corresponding to

similar frequencies were rarely the best correlated between the two runs and there was no

clear or consistent pattern in which frequencies showed various spatial maps. We also

identified the frequency maps in each volunteer that had the relatively higher power in

primary sensorimotor cortex compared other regions. In 3 of 11 people the frequency that

showed this map was within 0.003 Hz (a single frequency bin) between the two runs.

Although similar maps didn't consistently appear at the same frequencies of the temporal

correlation change power spectrum, spatially consistent maps do reliably appear across

volunteers, and some have patterns that resemble well known functional networks such as

those for visual or sensorimotor processing. Every volunteer had maps at multiple

frequencies that formed anatomically relevant clusters. Similar clusters appeared in multiple

volunteers. To demonstrate this, we transferred the power spectra into a common space that

was mapped to the Talairach-Tourneux atlas. For each anatomical clustering in subjects and

frequencies, we used a combination of automated ranking based on spatial correlations and

visual inspection to find frequencies in volunteers that showed similar combinations of brain

regions. Figure 5 shows four anatomical clusters that appeared consistently across the

population. Supplementary Figures 2-5 show the maps from each volunteer that were
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averaged to make the four rows in Fig. 5. While the supplementary figures show there is

variation across these subjects, the averaged images show the inter-subject similarity.

Phase Randomized Simulations

While sliding window correlations of fMRI data clearly show spatial structure and sparse

brain regions, our desire is to show that these correlations cannot be due to random

processes. Figure 3 shows the power spectra from 4 voxels in a representative subject. The

time series from these 4 voxels along with the PCC ROI were phase randomized for 10,000

iterations and the power spectra of the sliding window correlations were calculated for each

iteration. Figure 2G shows spectra from 4 such iterations. With these phase randomizations,

times series are no longer representative of dynamic changes in neural connectivity, Fig 2G

sometimes shows frequency peaks and distinct frequencies for each voxel. While this

demonstration shows that phased randomized fMRI data can produce correlation changes

between regions, it does not imply that this is the case with fMRI data.

We defined several metrics, to quantify interesting aspects of the original power spectra.

These metrics were calculated for each phase randomized iteration and the distributions

were plotted in black in Figure 6. The metrics are:

1. Total Power – This is defined as the sum of power across all frequency bins of the

power spectrum. Is this consistent across iterations?

2. Maximum power at any frequency – While the frequencies where specific brain

regions clustered varied, if one could reliably find peak frequencies that clustered

in anatomical regions. How often do these peaks appear at any frequency?

3. Relative power in the top 3 frequency bins – This is a less stringent version of

maximum power that examines how much of the total power is contained in just a

fraction of the frequency bins. This metric should be sensitive to a few distinct

frequency peaks or a single, wide peak.

4. Peak ratio between voxels – When one looks at the maps and plots in figures 3-5,

the results are not just about peak frequencies. They require the peak frequency in

one anatomical region to be larger than others. This is what causes regional

distinctions at different frequencies. We took these 4 voxels, which represent 4

different clusters of brain regions in a volunteer and, at each frequency, created a

ratio of one spectrum's values to the mean of the other three spectra. The maximum

ratio across all frequencies was recorded. This value is proportional to the ability to

distinguish voxels by frequency. For each of these histograms, Fig. 6 also includes

vertical lines marking the actual values from the 4 voxels, using the same color

coding as in Fig. 3. For all 4 metrics, none of voxels were well outside values that

occurred in the phase randomized distributions. For one voxel, the peak ratio

between voxels was 95% p=0.05 without any multiple comparisons corrections.

To test these results across potentially significant voxels in the population, we identified

high magnitude clusters in the subjects and frequency bins presented in Fig. 5 and

supplementary figures 2-5. The peak magnitude voxel was selected from each cluster. For

each volunteer, voxels were removed if the time series correlated at r>0.6. This made sure
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we didn't compare highly similar voxels. This procedure resulted in peak voxels in 19-136

clusters in each of the twelve volunteers (mean=70, median=71). 1000 phase randomized

iterations were done for each voxel's time series. Sliding window correlations and the

resulting power spectra were calculated between each time series and the PCC ROI from the

same volunteer.

The same metrics presented in Fig 6. were calculated for these data and compared to the

distributions from the phase randomized iterations. For the peak ratio between voxels, the

magnitudes for the voxel of interest were compared to the magnitudes of voxels that weren't

peaks in the same frequency bin. For total power, maximum power, relative power at the top

3 frequency bins, and peak ratio 0.6%, 0.5%, 0.1%, 0.1% of voxels crossed a p<0.001

significance threshold and 5.4%, 4.4%, 2.6%, and 2.9% of voxels crossed a p<0.01

significance threshold respectively. Figure 7 uses these phase randomized iterations to show

the probability of various magnitudes occurring at each frequency. Each line is a different

threshold from 50% (the median value) to 99.9% (i.e. p=0.01 significance). The black dots

show the magnitudes from the original data at the frequencies were they were identified as

the maximum magnitude in a cluster. Even though each of these voxels was selected for

having a large magnitude, most are well within the phase randomized distributions.

Discussion

We demonstrate a novel way to summarize information contained in the changing

correlations between a reference seed and fMRI time series. This is a unique way to portray

a potentially relevant aspect of the non-stationarity of correlation over time as a spatial map

of the brain and is based on the observation that the correlations to anatomically clustered

brain regions seem to fluctuate in a periodic manner. While the correlation frequencies of

fluctuations where specific spatial maps appear are not consistent across individuals or runs,

all volunteers show this effect. Brain regions were parcellated based on their relationship to

a single seed time series.

In much of the existing literature on non-stationarity of connectivity over time, there is a

general assumption that changes in how fMRI time series between brain regions connect

over time represent changes in the neural interactions between these areas. For example, a

similar analysis showed periodicity in sliding window correlations and interpreted these

results as pairs of brain regions oscillating between correlations and anti-correlations

(Hutchison, Womelsdorf et al. 2012). The results of our simulations show that such

fluctuations can appear based solely on the frequency power spectra of brain regions' time

series. If the temporal phase relationships between brain regions are unnecessary, then,

without additional information, it would be premature to conclude that the observed

fluctuations in correlations are due to changes in a seed region's interactions with the rest of

the brain. For example, Petridou et. al. created activation time series based on discrete peaks

in fMRI time series. By removing these discrete events from the data the periodicity of

correlation fluctuations were reduced (Petridou, Gaudes et al. 2012). While this constitutes

additional evidence of a neural basis for some of these fluctuations, the method removed

some of the largest fluctuations in the original time series. Any method that removes signal

peaks that are distinct to specific brain regions will affect the temporal relationships between
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those brain regions whether or not the method is correctly identifying neuronal fluctuations.

Petridou et. al. show that their method sometimes aligns with electromyography, which

makes it more likely some of these discrete events are neuronal.

If these results do not represent brain region interaction, a possible alternative explanation

for our results is that the fMRI signal in each brain region is fluctuating at slightly different

combinations of frequencies. Recent work has shown the different brain networks have

distinct spectral profiles (He, Snyder et al. 2008; He, Zempel et al. 2010; Niazy, Xie et al.

2011). When correlations between brain regions are calculated over time, frequencies that

are common across regions don't cause correlation fluctuations. When the remaining,

different frequencies are correlated, they result in periodic fluctuations in the correlation

time series that are similar to beat frequencies. It is the interaction of the distinct frequencies

of the seed time series and the target region that might cause some of the power maps shown

in figures 3-5. Since the frequency magnitude peaks for the sliding window time series

remain even after randomizing phase, this implies that the effect is partially driven by

distinct amplitude spectra in voxels. Thus, precise event timing isn't relevant. Even if the

sliding window correlations don't definitively represent neural dynamics, the approach

described in this manuscript may be highlighting frequency differences in networks that

aren't easily visible.

An interesting challenge arises from this work. Based on the thousands of task paradigms

that cause distinct patterns of brain activity and connectivity, we know that brain

connectivity dynamics can change over time and that we can measure these changes with

fMRI. It is extremely likely that neural connectivity changes happen even during rest. We

present fluctuations that anatomically cluster and look like effects that could be neural in

origin. Still the magnitudes of fMRI correlation changes to the PCC that exist during

spontaneous brain activity are often lower than magnitude changes in structured noise (the

phase randomized time series). Figure 7 includes a few voxels with more fluctuation power

than is likely to occur in the null distribution. One might simply set a threshold at p<0.001

and interpret only the voxels above it as neuronally significant. Still, the observed data

points in figure 7 are from the peaks of clusters representing the largest power magnitudes

across the population. Since 99.9% of the null distribution covers almost all these values,

this highlights the wide range of power magnitudes that can appear by chance. While one

cannot identify the specific voxels that are neuronally significant, such a threshold is likely

to produce many false negatives results. Since spurious correlation fluctuations can arise in

many types of data, this issue is not limited to fMRI.

The challenge is finding better ways to identify clear markers of neural dynamics. For

sliding window correlations, there might be multivariate metrics that distinguish spectra

with neural origins. Frequency based connectivity methods, like time-frequency coherence

analysis (Chang and Glover 2010), might not be sensitive to beat frequency effects or

distinct amplitude spectra in the same way as correlation, but it is unclear how much fMRI

data is needed to estimate robust and reliable time-frequency plots and which summary

metrics are neuronally relevant.
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Overall, these results clearly demonstrate that temporal correlations in the brain are not only

highly dynamic, oscillatory, and perhaps transient, but that they can be mapped and probed

further by temporal analyses of dynamic changes in correlation within a single time series.

Much work remains to be performed to explain the mechanisms behind these dynamics as

well as to identify when they represent dynamically interacting neuronal networks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(A) Posterior Cingulate Seed (PCC) seed region that was used. Here it is shown on a high

resolution anatomical image. (B) Correlation map created from the seed using the entire ten

minute time series. (C) Correlation maps created over 32s temporal windows centered at the

time points in the connected figures D and E. (D) Sample time series from the seed region

(red) and a voxel at the green crosshairs (motor cortex region) (E) Correlation values over

time for the sample time series using three different correlation windows with widths (32,

64, and 128 sec), showing that the temporal correlation varies significantly over time but

shows minimal dependence on correlation window at the widths used.
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Figure 2.
A demonstration of the phase randomization procedure. (A) A segment of the PCC ROI time

series from a volunteer (black) and two phase randomized time series with the same

amplitude spectra (blue and green). (B) The common amplitude spectra for the time series in

A. (C) The time series from the voxel labeled with a blue circle in Figure 3 (black) and two

phase randomized time series. (D) The common amplitude spectra for the time series in C.

(E) Sliding window correlations between the time series in A and C. (F) The averaged

power spectrum for E. (G) The averaged power spectra from four iterations of the phase

randomization procedure using the time series of the voxels circled in Figure 3. The same

color coding is used for these 4 power spectra
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Figure 3.
Example frequency maps from the same subject as shown in Fig. 1. The underlying

correlation time series used a 16 time point (32 s) sliding window. The left column shows

the anatomical slices for the frequency maps. Each frequency map shows the relative power

across the brain at the frequency marked by the dashed lines at the bottom. The four colored

circles surround the voxels from which the power spectra at the bottom were calculated.
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Figure 4.
A single slice from example frequency maps in Fig. 2 calculated with different correlation

window durations. Slices below and to the right of the blue lines are were the frequency of

the correlation window is lower than the presented frequency from the power spectrum of

the correlation time series. The color bar and scaling are the same as in Fig 2.
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Figure 5.
Four maps of clusters of regions that appear at a correlation frequency to the PCC across

volunteers. Each row is a different map. The maximum power in each volunteer is scaled to

1 and then the maps are averaged across volunteers and thresholded to 20% of max power

across the brain at the stated frequency. The anatomical slices are from the TT_N27 atlas

normalized brain in AFNI.
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Figure 6.
Histograms based on phase randomized simulations of the 4 voxels circled in figure 3

(black). There is a separate histogram based on simulations run for each voxel. Each metric

defines an aspect of the histograms as defined in the manuscript text. The vertical colored

lines are the actual values from each voxel and use the same colors as figure 3. Each subplot

reports the percentiles for the actual data compared to the phase randomized distributions.

The units for power calculations are the same as in figures, 2, 3, and 4.
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Figure 7.
Percentile probability lines for amplitude at each frequency. Distributions were calculated

using phase randomized time series from peak amplitude voxels in clusters from all

volunteers. Distributions were calculated for each subject separately. The lines are the mean

across subjects and the error bars show standard deviation. Black dots are the peak

amplitudes and frequencies from the data that were used to create these simulations.
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