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Guillain-Barré syndrome (GBS) is a neurological disorder which has not been explored using clustering algorithms. Clustering
algorithms perform more efficiently when they work only with relevant features. In this work, we applied correlation-based feature
selection (CFS), chi-squared, information gain, symmetrical uncertainty, and consistency filter methods to select the most relevant
features from a 156-feature real dataset. This dataset contains clinical, serological, and nerve conduction tests data obtained from
GBS patients. The most relevant feature subsets, determined with each filter method, were used to identify four subtypes of GBS
present in the dataset. We used partitions around medoids (PAM) clustering algorithm to form four clusters, corresponding to the
GBS subtypes. We applied the purity of each cluster as evaluation measure. After experimentation, symmetrical uncertainty and
information gain determined a feature subset of seven variables. These variables conformed as a dataset were used as input to PAM
and reached a purity of 0.7984. This result leads to a first characterization of this syndrome using computational techniques.

1. Introduction

Guillain-Barré syndrome (GBS) is an autoimmune neurolog-
ical disorder characterized by a fast evolution, generally from
a few days up to four weeks [1]. GBS has an incidence of 1.3 to
2 per 100,000 people and a mortality rate from five to fifteen
percent. The exact cause of GBS is unknown; however, it is
frequently preceded by either a respiratory or a gastrointesti-
nal infection. The diagnosis of GBS includes clinical, serolog-
ical, and electrophysiological criteria [2]. The severity of GBS
varies among subtypes, which can be mainly acute inflam-
matory demyelinating polyneuropathy (AIDP), acute motor
axonal neuropathy (AMAN), acute motor sensory axonal
neuropathy (AMSAN), and Miller-Fisher syndrome [1]. Elec-
trodiagnostic criteria for distinguishing AIDP, AMAN, and
AMSAN are well established in the literature [3], while the
Miller-Fisher subtype is characterized by the clinical triad:
ophthalmoplegia, ataxia, and areflexia [1].

A better understanding of the differences in the GBS
subtypes is critical for the implementation of appropriate
treatments for total recovery and in certain cases for the
survival of patients. Hospitalization time and the cost of treat-
ments vary according to the severity of the specific subtype.
Finding a minimum feature subset to accurately identify GBS
subtypes could lead to a simplified and cheaper process of
diagnosis and treatment of the GBS case. The ultimate goal
of a physician is to get patients to a full recovery. This can be
more effectively achieved when an early diagnosis of the case
is performed using a minimum number of medical features.

This work constitutes a first attempt to using machine
learning techniques, specifically cluster analysis in combina-
tion with filter methods for feature selection. We aim at find-
ing a small feature subset to identify four GBS subtypes.
Machine learning techniques have been found in the litera-
ture to predict the prognoses of this syndrome [4, 5] as well as
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to find predictors of respiratory failure and necessity of
mechanical ventilation in GBS patients [6-8]. Nevertheless,
no previous publications about specific subtypes identifica-
tion of the syndrome using machine learning techniques were
found in the literature.

Cluster analysis is a computational technique from the
machine learning area that is shown to be useful to find dif-
ferent groups of objects in datasets [9-12]. However, datasets
might contain a mixture of “bad” and “good” features. “Bad”
features are redundant or noisy features and make algorithms
slow and inaccurate. Feature selection techniques allow
reducing the dimensionality of a dataset such that it only con-
tains “good” features which would maximize the performance
of the algorithms and thus enabling the possibility of reaching
a higher accuracy [13]. For feature selection, several machine
learning methods are available, which are usually classified
as filter [14-19], wrapper [20-22], embedded [23-25], and
hybrid [26-29]. From the machine learning point of view it
is interesting to analyze the performance of feature selection
methods in diverse scenarios with real data, as this case is.

In this work we use a real dataset consisting of 156 features
and 129 cases of GBS patients; these are 20 AIDP cases, 37
AMAN, 59 AMSAN, and 13 Miller-Fisher cases. The dataset
contains clinical, serological, and nerve conduction tests data.

We use PAM (Partitions Around Medoids) clustering
algorithm to identify with the highest purity groups corre-
sponding to four subtypes of GBS. A group with high purity
contains the largest number of elements of the same type
and the fewest number of elements of a different type. Purity
is an external clustering validation metric that evaluates the
quality of a clustering based on the grouping of objects into
clusters and comparing this grouping with the ground truth.
Although there are several clustering validation metrics,
both internal and external [30], we selected purity since our
interest was to find “pure” groups and to take advantage of the
available prior knowledge of the true labels. The use of a prior
knowledge to evaluate a clustering process is also known as
supervised or semisupervised clustering; some examples can
be found in [31-34].

In order to achieve the identification of the four groups
with a high purity it is necessary to select the relevant features
in the dataset; otherwise the purity magnitude would be com-
promised as stated in [13]. For this initial exploratory study,
we chose filter methods as they are the simplest and lowest
computational demanding methods available in the literature
and as they work independently of the clustering algorithms.
We focus on five filter methods: correlation-based feature
selection (CFS), chi-squared, information gain, consistency,
and symmetrical uncertainty methods.

The experimental results showed a good performance of
the method and allowed us to obtain a first characterization
of GBS using machine learning techniques.

2. Materials and Methods

2.1. Data. The dataset used in this work comprises 129 cases
of patients seen at Instituto Nacional de Neurologia y Neu-
rocirugia located in Mexico City. Data were collected from
1993 through 2002. There are 20 AIDP cases, 37 AMAN,
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59 AMSAN, and 13 Miller-Fisher cases. The identification of
subtypes was made by a group of neurophysiologists based
on the clinical and electrophysiological criteria established in
the literature [1-3]. This dataset is not yet publicly available
and this is the first time it is used in an experimental study.
No public dataset was found to be used as a benchmark.

Originally, the dataset consisted of 365 attributes cor-
responding to epidemiological data, clinical data, results
from two nerve conduction tests, and results from two cere-
brospinal fluid (CSF) analyses. The second nerve conduction
test was conducted in 22 patients and the second CSF analysis
was conducted in 47 patients only. Therefore, data from these
two tests were excluded from the dataset.

The diagnostic criteria for GBS are established in the lit-
erature [1-3]. These formal criteria were considered to deter-
mine which variables from the original dataset could be
important in the characterization of the four subtypes of GBS.
We made a preselection of variables based on these criteria.
Originally, the dataset had 365 variables. After preselection,
it was left with 156 variables: 121 variables from the nerve
conduction test, 4 variables from the CSF analysis, and 31 clin-
ical variables. As for the type of attributes, these are 28 cate-
gorical and 128 numeric attributes. The situation of dealing
with mixed data types was solved using Gower’s similarity
coeflicient, as explained later.

2.2. Filter Methods. We selected filter methods for this initial
exploratory study as they are in computational terms the
fastest and simplest methods available in the literature for fea-
ture selection. Filters work independently from any clustering
algorithm and base their decision solely on characteristics of
data.

We chose these five particular methods based on their
performance reported in the literature [15,17, 35, 36]. Chosen
filters apply diverse criteria to evaluate feature relevance.
Filters investigated are CFS, chi-squared, information gain,
symmetrical uncertainty, and consistency.

2.2.1. Correlation-Based Feature Selection (CFS). CFS [14]
evaluates two aspects of a feature subset: its capacity to predict
the class and the correlation between the features of the
subset. This method seeks to maximize the first aspect and
minimize the second one. This method results in a feature
subset with the highest capacity to predict the class and
the least correlation between features of the subset. Given a
feature subset S containing k features, CFS finds the goodness
of § denoted (M) as follows:

kr
of
Mg=——— )

Jk+k(-1)7;

where 7 is the average correlation of all feature-feature pairs,
and k7 is the average correlation of all feature-class pairs.

2.2.2. Chi-Squared. This method evaluates the chi-square
statistic of each feature taken individually with respect to the
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(2) repeat

(2.3) An initial total cost E, ; is calculated.

(2.4) A random o is selected.

until E;, - E;, = 0.

i

(1) k objects are arbitrarily selected as the initial medoids m.
(2.1) The distance is computed between each remaining object o and the medoids m.

(2.2) Each object o is assigned to the cluster with the nearest medoid .

(2.5) A total cost Eg,, is calculated as a result of swapping an arbitrary m with the o randomly selected.
(2.6) If E;,, — E,,; < 0 then m is replaced with o.

ALGORITHM 1: Partitions around medoids (PAM).

class [15] and provides a feature ranking as a result. The chi-
square test for a feature f and the class c is defined as follows:

N[P(£0)P(7.2) - P(£2) P(F.c)]
P(f)P(F)P(©)P@ ’

X* (fre) =
(2)

where N is the number of observations in the dataset, P(x, y)
is the joint probability of x and y, and P(x) is the marginal
probability of x.

2.2.3. Information Gain. Information gain measures the good-
ness of a feature to predict the class given that the presence or
absence of the feature in the dataset is known. This method
delivers a ranking according to the goodness of each feature.

Information gain [16] of a feature f; and a class ¢ is
defined as follows:

GUs)= Y Y P(rolog o)
ce{g C}fe{fk fk}

P(f.c)
HPe) O

where ¢ € {¢;,¢;} is the set of all classes, f € { fk’7k} is the set
of all features, P(f, ¢) is the joint probability of feature f and
class ¢, and P(f) and P(c) are the marginal probabilities of f
and c, respectively.

2.2.4. Consistency. 'This method finds the smallest feature
subset that presumably improves the discriminatory power
of the original feature subset. This subset has the highest
consistency. The consistency for a given feature subset S is
computed as follows [17]:

Consistency = 1 — inconsistency rate. (4)

Let us define a pattern as a set of values for S. An inconsistency
arises when two patterns match exactly all attributes except
for the class. The inconsistency count for a pattern is the
number of times it appears in the dataset minus the number
of times it appears in the majority class. The inconsistency
rate is the sum of all the inconsistency counts for all possible
patterns of S divided by the total number of patterns [18].

2.2.5. Symmetrical Uncertainty. This method measures the
correlation between pairs of attributes using normalization
of information gain. The normalization is performed to

compensate for the bias of information gain to benefit

attributes with more values and to ensure that they are com-

parable [17]. This method results in a feature ranking.
Symmetrical uncertainty is computed as follows [19]:

MI (A, B)

U(A,B) =2+ Entropy (A) + Entropy (B) 5)
5
P(A,B)
)= P(4B)] 82 (A) P (B)’

where P(X) is the marginal probability of feature X, R, is
the range of feature A, and P(A, B) is the joint probability
of features A and B. Entropy is computed using the classical
equation discussed in [17].

2.3. Clustering Algorithm: Partitions Around Medoids (PAM).
As stated before, the dataset used in this work combines
categorical and numeric data. PAM is a clustering algorithm
capable of handling such situations. It receives a distance
matrix between observations as input. The distance matrix
was computed using Gower’s coefficient, explained later.
PAM, introduced by Kaufman and Rousseeuw [37], aims
to group data around the most central item of each group,
known as medoid, which has the minimum sum of dissimi-
larities with respect to all data points. PAM forms clusters that
minimize the total cost E of the configuration, defined as

k
E= Z z dist (o, m), (6)

i=1 0€C;

where k is the number of clusters, o € C; is the set of objects
in cluster ¢;, and dist(o, m) is the distance between an object
o and a medoid m.

PAM works as shown in Algorithm 1 [38].

2.4. Gower’s Similarity Coefficient. Distance metrics are used
in clustering tasks to compute the distance between objects.
The distance computed is used by clustering algorithms to
determine how much similar or dissimilar the objects are
and what cluster they belong to. There are many distance
metrics. Some of them deal with numeric data, like Euclidean,
Manbhattan, and Minkowski [38]. To deal with binary data
the Jaccard coeflicient and Hamming are often used [38]. For
categorical data, some distance metrics are Overlap, Goodall,
and Gambaryan [39].



In this work we used for experimentation a dataset that
contains mixed data, that is, both categorical and numeric
data. To deal with this situation we selected Gower’s coeffi-
cient. It is a robust and widely used distance metric for mixed
data. We used this coeflicient to obtain a matrix of distances
between observations as PAM requires. It was introduced by
Gower in 1971 [40]. Gower’s coeflicient is defined as follows
[41]:

2
Zﬁil(l— |xih—xjh|/Gh)+a+oc )
v pl+p2—d+p3 ’

where pl is the number of quantitative variables, p2 is the
number of binary variables, p3 is the number of qualitative
variables, « is the number of coincidences for qualitative vari-
ables, a is the number of coincidences in 1 (feature presence)
for binary variables, d is the number of coincidences in 0
(feature absence) for binary variables, and G, is the range of
the hth quantitative variable.

Gower’s coeflicient is within the range 0-1. A value near to
lindicates strong similarity between items and a value near to
0 indicates weak similarity.

2.5. Metrics to Evaluate the Quality of a Clustering Process.
The quality of a clustering process can be evaluated using two
types of metrics: internal and external. Internal metrics evalu-
ate the quality of a clustering process based on some intrinsic
characteristics, regularly, intra- and intercluster distances.
Internal metrics assign high scores to clusters with largest
distances among them (separability) and shortest distances
among members of the same cluster (compactness). These
metrics are very useful when the number of clusters is not
known at all. Examples of internal metrics are Q-modularity
[42], Davies-Bouldin index, Dunn index, and silhouette [43].

External metrics evaluate the quality of clusters based
on data not used during the clustering process, such as the
ground truth, that is, the real classes of the instances. The
larger the number of instances correctly located according
to the ground truth, the higher the index. Some examples of
external metrics are Rand index, Folkes and Mallows index,
Hubert’s T statistic [30], and purity [44].

2.5.1. Purity. The dataset used in this work provides the
ground truth. We know there are four classes in the dataset.
The objective of this study was to find the features that
identify with the highest accuracy possible four clusters, each
corresponding to one class. To achieve this goal we selected
purity as the metric to evaluate the quality of the clustering
process.

Purity validates the quality of a clustering process based
on the locations of data in each cluster with respect to the
true classes. The more objects in each resultant cluster belong
to the true class, the higher the purity. Formally [44],

purity (C, W) = %Z max j (n’J) , (8)
k

where N is the number of samples, C = {¢,c,...,¢}
is the set of clusters found by the clustering algorithm,
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TABLE 1: Purity of a clustering with three classes.

Class A Class B Class C
Cluster 1 0 14 1 15
Cluster 2 9 2 0 11
Cluster 3 3 1 21 25
12 17 22 51

W = {w;,w,,...,w} is the set of the classes of the objects,
n’] = |w; N ¢j| is the number of objects of cluster i being in
class j, w; is the set of objects in class k, and ¢; is the set of
objects in cluster k.

The value of purity ranges from 0 to 1. A purity value of 1
indicates that all the objects in each cluster belong to the same
class. An example of purity calculation is shown in Table 1.

The number of objects of the majority class in each cluster
is shown in bold. The purity of the clustering is computed as
follows: (9 + 14 + 21)/51 = 44/51 = 0.8627.

3. Results and Discussion

3.1. Experimental Design. We used the 156-feature GBS
dataset, described earlier, for experiments. This dataset con-
tains a combination of categorical and numeric features.
Gower’s coefficient is able to deal with both types of features
when present in the same dataset. We used this method
to compute the distance matrix among instances, which is
required as input to the PAM algorithm.

As we know beforehand, there are four GBS subtypes
present in our dataset. This is why the number of clusters
requested to PAM algorithm in our experiments was k = 4.
We expected the clustering algorithm would identify each
subtype as a cluster, with the highest purity possible. Five
filter methods were used for feature selection, as clustering
algorithms perform more efficiently when they work only
with relevant attributes [13].

The class attribute was not used when the clustering
algorithm was executed. We used it to compute the purity of
the clusters obtained with PAM.

A baseline purity using all the 156 features included
in the dataset was computed. This value was compared
with the purity obtained using only the relevant features as
determined by each filter method. Such comparison would
allow for a clear view of the benefits of the feature selection
process over using the entire dataset, in terms of purity.

Each of the five filter methods selected for experiments in
this work was applied to the 156-feature dataset. Along with
the features, the class attribute was included in the dataset
during the filtering process.

As previously described, CFS and consistency methods
include in their output the subset with the most relevant fea-
tures found. In contrast, chi-squared, information gain, and
symmetrical uncertainty methods output a feature ranking.

In all scenarios, new datasets were created with the best
feature subsets. The distance matrix of the new datasets was
calculated and used as input to the PAM algorithm. Finally,
purity of clusters was computed.
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TABLE 2: Results of filter methods ranked on purity.

Method Number of features Purity
Information gain 7 0.7984
Symmetrical uncertainty 7 0.7984
CFS 16 0.7984
Chi-squared 41 0.7829
Consistency 6 0.6589

TABLE 3: List of variables with the highest purity (0.7984) selected
by information gain and symmetrical uncertainty.

Feature Meaning

v105 Amplitude of left ulnar motor nerve
v106” Area under the curve of left ulnar motor nerve
v116 Amplitude of right ulnar motor nerve
v172* Amplitude of left median sensory nerve
v177* Amplitude of right median sensory nerve
v182* Amplitude of left ulnar sensory nerve
v187 Amplitude of right ulnar sensory nerve

In both CFS and consistency methods, the new datasets
were created with the resultant most relevant features.

For chi-squared, information gain, and symmetrical
uncertainty, feature rankings they produced were used to cre-
ate the new datasets. Datasets with dimension from 2 through
156 were created, with the best two features, the best three
features, and so on. The reason for a dataset of dimension 2
is that the calculation of the distance matrix requires at least
2 attributes. The best feature subset was the set of features
conforming the dataset which led to the highest purity in the
clustering process.

3.2. Results

3.2.1. Identification of the Four GBS Subtypes. The baseline
purity of the four clusters obtained using all the 156 features
included in the dataset was 0.6899. After experimentation,
four filter methods found feature subsets which increased
the baseline purity after the clustering process. Only the
feature subset selected by the consistency method as the most
relevant obtained a lower purity of 0.6589 than that of the
baseline experiment.

Table 2 shows the results of purity of the five methods.
Three methods tied with the highest purity (0.7984): informa-
tion gain, symmetrical uncertainty, and CFS. Both informa-
tion gain and symmetrical uncertainty selected seven relevant
features while CFS selected 16 relevant features. Chi-squared
method chose 41 nerve conduction test variables as the
most relevant and reached 0.7829 of purity. The consistency
method showed the worst performance, which reached a
purity of 0.6589. The six relevant features selected by consis-
tency method were two clinical and four corresponding to the
nerve conduction test.

Table 3 shows the list of the variables selected by both
information gain and symmetrical uncertainty. These vari-
ables conformed as a dataset were able to identify the four
subtypes of GBS with a purity of 0.7984. All these variables
are related to the nerve conduction test.

TABLE 4: List of variables with the highest purity (0.7984) selected
by CFS.

Feature Meaning
v29 Extraocular muscles involvement
v30 Ptosis
v40 Karnofsky at discharge
v105 Distal amplitude of left ulnar motor nerve
v106”* Area under the curve of left ulnar motor nerve
v108 Proximal amplitude of left ulnar motor nerve
vlil Average F-wave latency of left ulnar motor nerve
vi16 Distal amplitude of right ulnar motor nerve
v134 F-wave amplitude of left tibial motor nerve
vi72” Amplitude of left median sensory nerve
v173 Area under the curve of left median sensory nerve
V177" Amplitude of right median sensory nerve
v182" Amplitude of left ulnar sensory nerve
v185 Conduction velocity of right ulnar sensory nerve
v187 Amplitude of right ulnar sensory nerve
v192 Amplitude of left sural sensory nerve
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FIGURE 1: Purity reached by the best feature subsets as ranked by chi-
squared, information gain, and symmetrical uncertainty methods.

CFS picked out 16 relevant variables, three of them clinical
and 13 corresponding to the nerve conduction test, which
reached a purity of 0.7984 as well. The list of 16 variables is
shown in Table 4.

Four variables from Tables 3 and 4, denoted by (*), were
selected by all methods.

Purity results of the clustering process using the datasets
formed with the most relevant features as ranked by chi-
squared, information gain, and symmetrical uncertainty, as
described in methodology section, are shown in Figure 1. The
three methods behave similarly. Both information gain and
symmetrical uncertainty methods reached a maximum value
with seven relevant variables, while chi-squared method
reached its maximum with 41 variables. All three methods
kept purity in the range of 0.7 and 0.8 for feature subsets of
sizes between 2 and 102. For bigger subsets, purity lies in the
range of 0.65 through 0.7.
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TABLE 5: Purity of pairwise clustering of GBS subtypes.

GBS subtypes IG SU CFS Consistency Chi-squared All features
AIDP and AMAN 0.9649 (2) 0.9649 (2) * 0.9824 (2) 0.9649 (2) 0.8771
AMAN and AMSAN 0.927 (3) 0.9375 (2) 0.875 (7) 0.927 (3) 0.9687 (4) 0.7395
AIDP and AMSAN 0.962 (3) 0.9367 (2) 0.9113 (9) 0.7468 (5) 0.962 (3) 0.8354
AIDP and MF 0.8787 (3) 0.8787 (4) 0.8787 (4) 0.8787 (3) 0.909 (3) 0.6666
AMAN and MF 0.98 (6) 0.96 (3) 0.98 (4) 0.74 (2) 0.98 (6) 0.96
AMSAN and MF 0.9305 (13) 0.9444 (13) 0.9583 (14) 0.8194 (5) 0.9444 (14) 0.8333

IG: information gain, SU: symmetrical uncertainty, and *one feature selected therefore purity was not computed. The number of features selected in each case

is shown in parenthesis.

TABLE 6: Purity for different numbers of clusters using the four GBS subtypes.

k IG SU CFS Consistency Chi-squared All features
2 0.6434 (9) 0.6434 (10) 0.6511 (16) 0.4883 (6) 0.6124 (48) 0.5038
3 0.7906 (7) 0.7906 (7) 0.7286 (16) 0.6666 (6) 0.7829 (6) 0.5813
4 0.7984 (7) 0.7984 (7) 0.7984 (16) 0.6589 (6) 0.7829 (41) 0.6899
5 0.7984 (5) 0.7984 (5) 0.7906 (16) 0.7286 (6) 0.7829 (91) 0.6821
6 0.7751 (4) 0.7751 (7) 0.8139 (16) 0.7596 (6) 0.7751 (38) 0.6666
10 0.8139 (5) 0.8139 (5) 0.8217 (16) 0.7596 (6) 0.8062 (38) 0.6976
20 0.8449 (38) 0.8372 (31) 0.8527 (16) 0.8294 (6) 0.8294 (53) 0.7596

k: number of clusters, IG: information gain, and SU: symmetrical uncertainty. The number of features selected in each case is shown in parenthesis.

3.2.2. Pairwise Exploration of the GBS Subtypes. In order to
investigate if any two pairs of GBS subtypes were distinguish-
able we conducted an additional experiment. We created six
new datasets, each one containing instances of only two GBS
subtypes. We calculated a baseline purity of each pair of GBS
subtypes using all the 156 features. Our goal was to determine
a feature subset capable of identifying each pair of GBS
subtypes with a higher purity than that of the baseline. We
used the five filter methods investigated all along this work
to determine the most relevant features for each pair of GBS
subtypes. For all scenarios we used k = 2, as there are only
two GBS subtypes in each dataset. Finally, we applied PAM to
form the clusters using only the relevant features determined
with each filter method and calculated their purity.

Table 5 shows the results of this experiment. Each row
represents a pair of GBS subtypes. Columns 2 to 6 represent
a filter method. The right-most column indicates the purity
achieved using all the features in the dataset, that is, doing
no feature selection at all. Table entries indicate the purity
obtained in each case. Numbers in bold show the highest
purity obtained for each pair of GBS subtype. Based on the
purity obtained, it was found that any filter method is better
than using all the features. The highest purity for all pairs of
GBS subtypes was superior to 0.9. This result demonstrates
the effectiveness of filter methods and highlights the impor-
tance of feature selection.

3.2.3. Exploring Different Values of k. As explained at the
beginning of Section 3.1, we performed the clustering process
requesting k = 4 clusters as we know this is the number of
existing GBS subtypes in the dataset. However, we wanted
to explore the clustering process with different values of k.
Purity results were analyzed and shown in Table 6.

The results of this experiment are shown in Table 6. The
first column represents the different values of k analyzed.
Each remaining column represents a filter method. The right-
most column represents the purity obtained using all the
features, that is, doing no feature selection at all. Each row
represents the results obtained for each value of k. Table
entries indicate the purity obtained in each case. The results
indicate that, in general, purity keeps an ascending pattern as
k increases. Purities for k = 4 and k = 5 are very close. In
all cases, purity is low for k = 2 and very high for k = 20.
The highest purity values were found for k = 20 in all cases;
however, these numbers do not indicate that the real number
of clusters in the dataset is 20; in fact this number of clusters
does not correspond with the nature of GBS subtypes in real
life. This result confirms what is reported in literature; higher
values of purity are easily obtained for higher values of k [45].
Purity is a good evaluation metric for clustering when the
number of clusters is known, as in this case.

3.3. Discussion. Our objective in this work was to find the
best feature subset to identify four GBS subtypes with the
highest purity. We did not find any similar work in the litera-
ture; therefore this one represents the first effort in this direc-
tion. In order to achieve our purpose, we applied machine
learning techniques. We used five filter methods for feature
selection and compared their performance.

3.3.1. Importance of Feature Selection to Identify GBS Subtypes.
The clustering of the four GBS subtypes using all the 156
features in the dataset reached a purity of 0.6899. This means
that many cases were mislocated in the clustering process.
Table 2 shows that four of the five feature selection methods
used in this work obtained a small feature subset that led to
the identification of the four groups with a higher purity than
that of the baseline.
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The identification of GBS subtypes pairwise was achieved
with a high purity. The initial baseline purity was improved in
all cases (Table 5) when the algorithm used only the relevant
features.

These results demonstrate that the clustering algorithm
underperforms in the presence of redundant and irrelevant
features and highlight the importance of feature selection
methods.

3.3.2. Analysis of Different Numbers of Clusters. Purity is a
good evaluation metric for clustering when the number of
clusters is known, as in this case. Higher purity is easily
achieved as the number of clusters increases [45] and that is
demonstrated with the results shown in Table 6.

3.3.3. Identification of Four GBS Subtypes. The main con-
tribution of this work is the identification of a subset of
seven relevant features from a dataset of 156 variables which
identified four GBS subtypes with a purity of 0.7984. Another
contribution is the analysis of the performance of five filter
methods for feature selection. Finally, this work contributes
with the feature rankings produced by chi-squared, informa-
tion gain, and symmetrical uncertainty methods.

A remarkable finding is that all five methods coincided
in four variables. It is also noteworthy that only two of the
five methods selected clinical variables. It is important to
highlight the fact that the consistency method was not able to
select a feature subset to improve the baseline purity (0.6899),
but instead the six features selected by this method achieved
a worse purity (0.6589).

Information gain, symmetrical uncertainty, and CFS
were showed to be highly efficient as they could obtain a
reduced subset of relevant features that allow identifying four
subtypes of GBS with high purity (0.7984). The first two
methods coincided in the same seven variables. CSF selected
16 variables. Further studies are needed to evaluate other
methods of feature selection, such as wrapper, embedded, and

hybrid methods.

4. Conclusions

In this work, we aimed to find a reduced feature subset for
identifying four subtypes of GBS with the highest purity. This
work represents the first effort on using cluster analysis to
identify GBS subtypes. We used for experiments a real dataset
of 156 features containing clinical, serological, and nerve con-
duction tests data. A clustering process was performed with
PAM algorithm. In order to select the most relevant features
from the dataset as input for PAM, we conducted experiments
with five filter methods: CFS, chi-squared, information gain,
symmetrical uncertainty, and consistency.

We succeeded as two filter methods were able to find a
feature subset consisting of only seven variables that allowed
us to obtain a purity of 0.7984. This result originated the first
computational characterization of GBS subtypes. Besides, the
reduced number of features found to identify the four GBS
subtypes could guide physicians to design a faster, simpler,
and cheaper diagnosis of the syndrome case.

Other filter methods like FCBF (Fast Correlation-Based
Filter) [46] and INTERACT [47] could be used in further
studies. Also, more sophisticated methods of feature selection
are recommended for analysis, such as those listed in [48-50].

Finally, machine learning techniques such as neural net-
works or support vector machines could be used for cluster-
ing. Purity on their resultant clusters can be compared to that
of PAM. This study is planned to further our research.
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