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Abstract

Purpose: To identify proteins and (molecular/biological) pathways associated with differences between benign and
malignant epithelial ovarian tumors.

Experimental Procedures: Serum of six patients with a serous adenocarcinoma of the ovary was collected before treatment,
with a control group consisting of six matched patients with a serous cystadenoma. In addition to the serum, homogeneous
regions of cells exhibiting uniform histology were isolated from benign and cancerous tissue by laser microdissection. We
subsequently employed label-free liquid chromatography tandem mass spectrometry (LC-MSe) to identify proteins in these
serum and tissues samples. Analyses of differential expression between samples were performed using Bioconductor
packages and in-house scripts in the statistical software package R. Hierarchical clustering and pathway enrichment analyses
were performed, as well as network enrichment and interactome analysis using MetaCore.

Results: In total, we identified 20 and 71 proteins that were significantly differentially expressed between benign and
malignant serum and tissue samples, respectively. The differentially expressed protein sets in serum and tissue largely
differed with only 2 proteins in common. MetaCore network analysis, however inferred GCR-alpha and Sp1 as common
transcriptional regulators. Interactome analysis highlighted 14-3-3 zeta/delta, 14-3-3 beta/alpha, Alpha-actinin 4, HSP60, and
PCBP1 as critical proteins in the tumor proteome signature based on their relative overconnectivity. The data have been
deposited to the ProteomeXchange with identifier PXD001084.

Discussion: Our analysis identified proteins with both novel and previously known associations to ovarian cancer biology.
Despite the small overlap between differentially expressed protein sets in serum and tissue, APOA1 and Serotransferrin were
significantly lower expressed in both serum and cancer tissue samples, suggesting a tissue-derived effect in serum. Pathway
and subsequent interactome analysis also highlighted common regulators in serum and tissue samples, suggesting a yet
unknown role for PCBP1 in ovarian cancer pathophysiology.
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Introduction

Epithelial ovarian cancer is the leading cause of gynecologic

cancer deaths in the Western world [1]. Approximately 70% of

epithelial ovarian cancers are detected at an advanced stage.

Although about 80% of the patients have complete remission of

the disease after treatment with extensive debulking surgery and

chemotherapy, the recurrence rate is very high. Currently, there

are no curative treatment options for patients with recurrent

disease and the 5-year survival rate is less than 30% [1]. In order
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to improve upon this poor survival rate many studies have tried to

identify more sensitive early detection markers and methods for

discriminating between different pelvic masses [2,3]. A large

number of these studies used various mass-spectrometric methods

to search for new markers in patient material such as serum [4].

The OVA1 test, which has been approved by the Food and Drug

Administration (FDA) in 2009, was one of the first multimarker

diagnostic tests that resulted from this type of research [5].

However, when Moore et al. [6] evaluated several of these

biomarkers alone and in combination with CA 125 in prediag-

nostically collected sera from women in the Prostate, Lung,

Colorectal and Ovarian Cancer Screening trial the addition of

these biomarkers to CA125 did not improve sensitivity for

preclinical diagnosis. Other strategies involve a combination of

known serum biomarkers such as Human Epididymal secretory

protein 4 (HE4) and CA125 in a discriminatory algorithm such as

ROMA (Risk of Ovarian Malignancy Algorithm) [7]. Most of the

biomarkers being investigated or used in the clinic today are

serum-based proteins, which are logical targets both for use as

biomarkers for screening and diagnosis, as well as potential drug

targets. However, most of the recently found biomarkers in serum

or plasma are acute phase proteins that are not specific for one

type of cancer or disease [8]. In fact, only a few FDA approved

cancer markers in current clinical use are tumor-derived proteins

(e.g., prostate-specific antigen, carcinoembryonic antigen), and are

present in serum at very low concentrations (1-10 ng/mL) only

[9]. In this study we have tried to overcome the problematic

aspecific aspects of blood-based protein markers by aiming to

identify proteins differentially expressed between tumor tissue

samples of patients with a serous adenocarcinoma of the ovaries

versus a benign serous tumor. In tumor tissue the potential marker

proteins are present at much higher concentrations, which could

facilitate protein identification. By comparing the protein content

of tumor tissue with that of serum samples, we aimed to detect or

infer reliable tumor-produced serum biomarkers. Directly studying

tumor tissue, even though it enhances the probability of finding

tumor-derived markers, is challenging nevertheless. Accurate

analysis of tumors is often hampered by within-tumor heteroge-

neity, for example due to the presence of contaminating stroma

cells, necrosis or infiltrating lymphocytes [10]. Laser microdissec-

tion minimizes this problem via the rapid and reliable isolation of a

specific cell population or type from a tissue section under direct

microscopic visualization [11,12].

Using laser microdissection we obtained homogenous tumor

samples that were subsequently measured with a mass spectro-

metric approach called LC-MSe. LC-MSe differs from traditional

data-dependent acquisition (DDA) modes in that all precursor and

fragment ions are measured by alternating the collision energy

between a low (precursor ions) and elevated (fragment ions) profile

without selection of ions. Thus LC-MSe is able to identify and

quantify more peptides in complex samples using a single

dimension reversed phase ultra-high pressure liquid chromatog-

raphy (UPLC) separation, than DDA on quadrupole time-of-flight

instruments (QTOF) [13,14].

The primary objective of the present study was to identify

differentially expressed proteins in tissue and serum, comparing

benign and malignant serous ovarian tumors. After initial protein

identification we performed extensive pathway and network

analyses in order to find differences in the underlying protein

pathways associated with benign and malignant ovarian tumors.

Experimental Procedures

Patients and Ethics Statement
After written informed consent was obtained, serum and tissue

samples were prospectively collected from patients admitted at the

Academic Medical Center (AMC) for treatment of an ovarian

tumor. The study was performed in agreement with the Helsinki

Declaration and approved by the Ethical Committee at the

Academic Medical Center, University of Amsterdam. For serum

analysis, we included 6 patients that were newly diagnosed with

non-familial invasive serous epithelial ovarian carcinoma, stage

IIIB or higher based on FIGO (Fédération Internationale de

Gynécologie Obstétrique) criteria, and 6 patients with benign

serous cystadenomas. For 4 of the 6 patients with benign disease

and 3 of the 6 with a malignant tumor, also tissue was available.

To increase sample size for the tissue comparison, we included two

additional patients with benign disease and two additional patients

with a malignant tumor. Both in serum and tissue, the two groups

were matched for age, body mass index (BMI), menopausal status

and sample-storage duration. Clinicopathological data are listed in

Table 1. All samples were collected using a strict protocol. Blood

was collected from all patients by the same operator, at least two

hours after the patient’s last meal, and left to clot for 30 minutes.

After centrifugation (at 17506g) serum was immediately frozen

and stored at -80uC. Samples used for these experiments were only

thawed once.

Laser microdissection and protein isolation
During surgery tumor tissue was collected, snap frozen in liquid

nitrogen, and stored at 280uC within 30 minutes of surgery. From

these samples 10 mm cryostat sections were prepared. One section

was stained with hematoxylin and examined microscopically in

order to detect tissue areas of interest for microdissection.

Corresponding consecutive tissue sections were mounted on a

microscope slide coated with a membrane (polyethylene naphta-

late (PEN) Zeiss/Palm, Bernried, Germany) and stored at 280uC.

Comparison of stained and unstained tissue sections revealed that

hematoxylin staining had no influence on the quantitative protein

measurements and identification using LC-MSe.

Tissue areas were cut using a Veritas Microdissection System

(Arcturus Molecular Devices, CA, USA), as described earlier [15].

Slides were stained for 1 minute with hematoxylin. Dissected

cancer samples contained at least 90% cancer cells (Figure 1).

Using microdissection, the samples from benign cystadenomas

were enriched for 75%–90% epithelial cells.

We obtained 100,000 cells from each sample. Cells were

denatured in 20 ml 0,1% RapiGest detergent solution (Waters

Corp., Milford, MA) and heated at 80uC for 15 minutes. After

centrifugation at 17506g for 10 min, the supernatants were

collected. Several tests were performed to determine optimal lysis

conditions. Protein concentrations were measured using a

Bicinchoninic Acid (BCA) solution (Sigma-Aldrich Chemie

GmbH, Schnelldorf, Germany) and 4% CuSO4. The average

protein concentration obtained from 100.000 cells was 1 mg/ml.

Sample preparation for LC-MS analysis
Serum samples were diluted in 50 mM ammoniumhydrogen-

carbonate (Fluka), 1% RapiGest SF (Waters Corp., Milford, MA)

to ,10 mg/ml total protein concentration. Laser dissected tissue

samples were lysed in 50 mM ammoniumhydrogencarbonate,

0.1% RapiGest SF, prior to protein determination by BCA-assay

(Thermo-Scientific) according to the manufacturer’s protocol.

Subsequently serum samples were denatured at 80uC for 15 min

and tissue samples at 95uC for 10 min prior to reduction of
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disulfide bridges 5 mM dithiorthreitol at 60uC for 30 min. Free

sulfhydryl groups were alkylated by addition of 15 mM iodoace-

teamide and incubation at ambient temperature for 30 min. in the

dark. Samples were digested overnight by addition of 0.3 activity

units/mg total protein content of sequencing grade modified

trypsin (Promega, Madison WI) and incubation overnight at 37uC.

Following digestion the acid-labile detergent was hydrolyzed by

incubation in the presence of 0.5% trifluoroaceticacid (Biosolve,

the Netherlands) at 37uC for 45 min and removal of immiscible

debris by centrifugation at 20.0006g for 10 min, collecting the

supernatant. Prior to analyses, serum digest samples were diluted

with aqueous 0.1% formic acid solution (Biosolve, the Nether-

lands) to ,0.5 mg/ml total protein concentration. Subsequently

both serum digest and tissue digest samples were mixed 1:1 with a

Mass Prep Quantitation standard (Waters, Milford MA) for

quantitation purposes (mix with either 100 fmol/ml Enolase or

Alcohol dehydrogenase 1 from S. cerevisiae for tissue samples or

250 fmol/ml ClpB from Escherichia coli for serum samples).

LC-MS analysis
0.5 mg of total protein was loaded onto a Nano-Acquity system

(Waters Corporation) equipped with a Bridged Ethyl Hybrid C18

1.7 mm, 15-cm6150-mm analytical reversed phase column (Waters

Corporation) and operated at a column flow rate of 1 ml/min. All

samples were measured in triplicate. Apart from the column

dimension and flow rate, all other gradient conditions were as

detailed earlier [14]. Analysis of tryptic peptides was performed

using a Synapt G2 quadrupole time of flight mass spectrometer

(Waters Corporation, Manchester, UK) with the operating and

experimental conditions as previously described [14]. Accurate

mass precursor and fragment ion LC-MS data were collected in

data-independent MSe mode of acquisition. This method alter-

nates the energy applied to the collision cell of the mass

spectrometer between a low and elevated energy state [16,17].

Briefly, the low energy portion of the obtained data sets is typically

used for quantification of the proteins, whereas the combined low

and elevated energy information are utilized for identification

purposes. In both modes of acquisition, mass spectral information

was obtained from m/z 50 to 1990 at a resolving power of at least

10,000 full width half maximum.

Data processing and protein identification
Continuum LC-MSe data were processed and searched using

ProteinLynx Globalserver version 2.5 (PLGS 2.5, Waters Corpo-

ration). Protein identifications were obtained with the embedded

ion accounting algorithm [18] of the software and searching the

Table 1. Patients characteristics.

Serum Tissue

Malignant Benign Malignant Benign

Patients 6 6 5 6

Age (mean, SD) 53 (16.5) 57 (7.2) 51 (15.2) 56 (9.8)

BMI (mean, SD) 25 (4.9) 25 (5.1) 23 (3.3) 26 (4.8)

Pre-menopausal 3 1 2 2

Post-menopausal 3 5 3 4

CA125 kU/L (median, range) 6946 (113–14100) 12 (7–26) 2651 (113–7737) 70 (7–376)

Differentiation grade

2 1 1

3 5 4

Figo Stage

III 5 5

IV 1

Clinicopathological characteristics of the patient groups. SD: standard deviation.
doi:10.1371/journal.pone.0108046.t001

Figure 1. Laser capture microdissection of tumor tissue. A 10 mm hematoxylin stained cryostat section of a serous adenocarcinoma of the
ovaries. The picture on the left is prior to microdissection, on right the same slide after microdissection is shown.
doi:10.1371/journal.pone.0108046.g001
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human SwissProt entries of the UniProt database (release 13.2)

that was modified to include N-terminal processing of proteins

using the protein maturation device software [19] and to which

enolase and alcohol dehydrogenase 1 of S. cerevisiae or ClpB from

Escherichia coli were appended as the internal standard to provide

the ability to address technical variation and to accommodate

concentration determinations [13]. The search tolerances were set

to automatic, typically 10 ppm for precursor and 25 ppm for

product ions, cysteine carbamidomethylation specified as a fixed

modification and N-terminal acetylation, deamidation of aspara-

gine and glutamine and oxidation of methionine as variable

modifications. Estimation of false positive identification rates was

performed by searches in a shuffled version of the UniProt human

protein database generated in PGLS 2.5. Robust criteria were

applied for quantification, including the identification of minimally

three and seven product ion matches per peptide and protein,

respectively. In addition, at least two peptides per protein had to

be identified and the identification had to occur in at least two

independent patient serum or tissue samples. Protein false positive

identification rate, taking into account the criteria mentioned

above, was less than one percent. Label free quantitation of

proteins was based on the sum of the signal intensities of the three

most abundant peptides of a protein, divided by the sum of the

signal intensities of the three most abundant peptides of the

internal standard, times the amount in fmol of standard injected

on the column. This gives an estimation of the molar amount of

each protein injected on the column. PLGS 2.5 determines the

molar amount (the amount in ng is determined using the

molecular weight in the database) for each protein based on the

ratio of its three most abundant peptides (HI3) determined in each

individual experiment [13]. These measured amounts were used

for proteins that met the criteria for identification indicated above

in order to calculate the average concentration of each protein in

g/L using the dilution factor of the samples. Protein identity and

quantitative data were exported as a comma separated value file

for further statistical and pathway analysis. The mass spectrometry

proteomics data have been deposited to the ProteomeXchange

consortium (http://proteomecentral.proteomexchange.org) [20]

via the PRIDE partner repository with the dataset identifier

PXD001084. A list of filenames deposited in ProteomeXchange

and their corresponding sample annotation can be found in the

supporting information section (Table S1, worksheet ‘Filenames’).

Statistical analyses
Statistical analyses were performed using Bioconductor pack-

ages and in-house scripts in the statistical software package R [21].

Serum and tissue data were analyzed separately. Missing values in

the raw quantitative data were imputed with the minimum value

measured for the sample in which the missing value occurred.

Data were scale normalized to the same mean intensity across

samples; resulting values were then log2-transformed with an offset

of 1 in order to stabilize their variance. The array Quality Metrics

R package was used to assess whether all MS samples were of good

quality. The tissue samples were measured in two separate

batches; quality control clearly showed the presence of a

pronounced batch effect in the normalized data. Tissue data were

made comparable across batches by fitting a linear model,

including both batches and regular conditions, and removing the

component due to the batch effects (function ‘removeBatchEffect’

from the R package limma). After normalization and batch

correction (tissue study), the technical replicate samples for each

patient were highly similar. A more detailed description of the

quality control analysis is given in Text S1. The technical

replicates of the batch corrected data were averaged and resulting

data was used for hierarchical clustering analyses. For benign

tissue sample 4 only two technical replicates were used for data

analyses due to technical problems with the third measurement.

For each identified protein a linear model was fit on the

normalized data containing the two conditions (benign and

malignant) as explanatory variable; for the tissue study a batch

factor was also included in the linear model. A consensus between-

replicate correlation was estimated for the technical replicates

(function ‘duplicateCorrelation’ from the R package limma) and

included in the linear model fit. Differentially expressed proteins

between benign and malignant tumors were detected using a

moderated t-test. P-values were adjusted for multiple-testing using

the Benjamini-Hochberg false discovery rate [22]. Proteins were

considered to be significantly differentially expressed between the

two conditions with an adjusted p-value,0.05, and a fold change

#21.4 or $1.4. Moreover, the protein had to be present before

imputation in at least 50% of the samples in at least one of the two

conditions.

Hierarchical clustering and enrichment analyses
Two-dimensional clustering (Pearson correlation, average link-

age) was performed on protein expression values using the

function ‘heatmap.2’ from the R package gplots [23]. The

Cytoscape plugin ‘‘ClueGO’’ v2.0.2 was used for protein set

enrichment analysis by uploading the list of proteins with their

UniProt IDs and using a custom background reference set

consisting of all proteins detected in the experiment. [24,25].

For exploratory pathway enrichment analyses a less stringent

cutoff, using an unadjusted p-value less than 0.05 was used. Lists of

serum or tumor proteins differentially expressed between malig-

nant and benign cases were submitted for protein set enrichment

analysis according to the gene ontology (GO) biological process

domain. Within ClueGO we used the ‘compare lists’ feature and

compared protein set enrichment (one-sided hypergeometric test)

for the differentially expressed serum and tumor proteomes

simultaneously. The edges of the resulting ClueGO network are

based on kappa statistics and reflect the relationships between the

GO terms (network nodes) based on the similarity of their

associated proteins.

Protein accession numbers and their corresponding fold changes

were imported into the web-based integrative software MetaCore

(v 6.8 build 30387; Thomson Reuters, St. Joseph, MI) for network

analysis [26]. MetaCore analysis was used for network enrichment

and interactome analysis using the differentially expressed proteins

(unadjusted p-value,0.05) in either the serum or tissue samples of

benign versus malignant samples with the background reference

set consisting of all proteins detected in the experiment. Relative

connectivity of proteins inside a set (intra-connectivity) and

between a set and the global interactome (inter-connectivity) were

calculated using MetaCore protein interaction database. A

ranking of importance was given by using a ‘‘knowledge-based’’

analysis that considers the differentially expressed proteins in the

context of their known interactors in complex protein and

molecular networks.

Results

Hierarchical clustering of serum and tissue proteome
In total, we identified 84 proteins in serum and 209 in tissue,

which were present in at least 50% of the samples in at least one of

the conditions (benign or malignant) (Table S1). Of those proteins

20 and 71 were significantly differentially expressed between

benign and malignant disease in serum and tissue samples,

respectively (Figure 2). Only 16 proteins were detected in both
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serum and tissue samples (highlighted in yellow in Table S1). Of

these, only two proteins had an adjusted p-value of ,0.05,

Apolipoprotein A-I and Serotransferrin.

Hierarchical cluster analysis was used to group serum and

tumor samples according to the similarity of their expression

profiles. Clustering the 84 and 209 proteins detected in serum and

tumor samples respectively, could perfectly separate the benign

and the malignant tumors (Figure 3). This illustrates that

malignancy was the strongest signal in this dataset and that the

benign and malignant samples constitute well-defined groups that

could reveal differences in underlying biology between the

processes leading to malignancy. This result also supported our

methodology in which we minimized heterogeneity by going

through detailed patient and sample selection and by micro-

dissecting the tumor tissue.

Biological functions and networks enriched in serum and
tumor signatures between malignant and benign
samples

To explore and compare the biological processes that contribute

to changes of the serum and tumor proteome during ovarian

cancer development, a protein set biological enrichment analysis

was performed on the differentially expressed protein signatures

derived from the serum and tissue comparisons. The serum

proteome signature was significantly enriched in categories

associated with immune function and lipoprotein metabolism. In

contrast, the tumor proteome signature was significantly enriched

in categories associated with glucose metabolism and the unfolded

protein response (Figure 4; Bonferroni corrected p-value,0.05).

Interestingly, there is little overlap in the biological processes

enriched in serum and tissue signatures. The proteins associated

with these protein sets and the relevant statistics are summarized in

Table S2.

Key transcriptional regulatory networks in ovarian cancer
We subjected the lists of differentially expressed serum and

tissue proteins to the transcriptional regulation network algorithm

in MetaCore. This was used to infer potentially important

transcription factors in the carcinogenic process. Summaries of

the top scoring transcriptional regulatory networks and the key

associated transcription factors in respectively serum and tissue are

shown in Table S3. The most significant transcriptional regulatory

network in serum was GCR-alpha (glucocorticoid receptor alpha)

signaling. Eleven proteins that are upstream or downstream of

GCR-alpha signaling were found differentially expressed in the

serum of patients with a serous adenocarcinoma of the ovaries

compared to patients with a serous cystadenoma. The pathways

linked to GCR-alpha signaling may explain regulation of the acute

inflammatory response that was seen altered in the cancer patients.

In the tumor tissue, GCR-alpha was also highlighted in the top

scoring transcriptional networks although associated with path-

ways related to cellular localization and protein folding (Table S3).

Figure 5A summarizes, which proteins in our dataset are

potentially regulated by GCR-alpha. Interestingly, despite the

limited overlap in terms of differentially expressed proteins

(Figure 2) and significantly enriched biological processes (Fig-

ure 4), two GCR-alpha target proteins, ApoA-1 and Serotrans-

ferrin, were present in the signatures of both the serum and the

tumor proteome (Figure 5A). These results suggest that the serum

cancer proteome could be used to detect changes in GCR-alpha

tumor associated processes.

Sp1 was associated with the third top scoring transcriptional

network in tumor tissue (Table S3) after the well-known cancer-

related transcription factor c-Myc and also CREB-1 that was

recently found to be associated with OVCA cell line platinum

sensitivity and overall survival [27]. Sp1 was also associated with

the top scoring transcriptional networks in the cancerous serum

Figure 2. Venn diagram of the detected proteins. We detected a
total of 84 proteins in serum and 209 in tissue, present in at least 50% of
the samples in at least one of the conditions (benign or malignant). The
grey area represents the proteins with an adjusted p-value of ,0.05
when comparing benign with malignant.
doi:10.1371/journal.pone.0108046.g002

Figure 3. Unsupervised hierarchical clustering. Unsupervised
hierarchical clustering was performed of the 84 and 209 proteins
detected in serum and tumor tissue samples, respectively. The key color
bar indicates standardized protein expression levels (dark red indicates
relatively higher expression; dark blue indicates relatively lower
expression).
doi:10.1371/journal.pone.0108046.g003
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signature. In total, 32 proteins associated with the Sp1 transcrip-

tional pathway were differentially expressed between benign and

malignant tissue samples (Figure 5B). Biological processes associ-

ated with Sp1 included several pathways related to lipid

metabolism such as regulation of cholesterol and sterol transport,

and acute-phase response and response to endogenous stimulus.

This suggests that this transcriptional regulator might be an

important contributor to the metabolic reprogramming that

occurs within the tumor as highlighted by our ontology analysis

(Figure 4).

Overlap between candidate key-regulatory transcription factors

in serum and tumor tissue as highlighted by the transcriptional

regulatory network analysis was far greater than at the individual

protein level. Nine of the top-20 significantly associated transcrip-

tion factors in serum were also found in the top-20 of tumor tissue,

among them well known cancer-associated transcription factors

such as p53 and c-Jun.

Key proteins differentially expressed between benign
and malignant ovarian tumors

In an attempt to move beyond transcriptional regulation and

find other regulatory proteins that are statistically significantly

"overconnected" within our proteomics signatures, we subjected

the list of differentially expressed proteins in ovarian tumor

samples to ‘‘interactome analysis by protein function’’. This helps

in prioritizing potentially relevant individual proteins or hubs.

Table 2 summarizes the results of the interactome analysis. Only

five proteins were found to be significantly over-connected in the

tumor proteome signature namely, PCBP1, 14-3-3 zeta, 14-3-3

beta, alpha actinin-4, and HSP60 (CH60/HSPD-1). These

proteins were significantly upregulated in malignant tumors and

have all been linked to cancer previously and all but one, PCBP1,

specifically to ovarian cancer.

To further investigate the role of PCBP1 in ovarian cancer, we

retrieved the transcriptional profiles of an independent ovarian

cancer dataset containing 30 tumors of low malignant potential

and 60 serous ovarian cancer tumor samples [28] available at

Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/;

accession no. GSE12172). Compared to low malignant potential

tumors, there was a significant increase in PCBP1 gene expression

in malignant ovarian tumors (Figure 6). Furthermore, OncoPrints

from the cBioportal for Cancer Genomics (http://www.

cbioportal.org) showed that about 10% of all serous malignant

ovarian tumors had an altered PCBP1 mRNA expression (data not

shown) [29]. The combined observations of elevated protein

expression of PCBP1, with the computational analysis highlighting

over-representation of PCBP1 protein interactions in this study, as

well as the elevated gene expression in a microarray dataset, are

suggestive of a role of PCBP1 in ovarian tumor biology, a

previously unreported finding.

Discussion

In order to identify proteins and pathways underlying the

differences between benign and malignant ovarian tumors, we

performed a comparative proteomic analysis of ovarian tumor

tissue and serum, from a limited number of patients using a

combination of LC-MSe label-free mass-spectrometry and exten-

sive bioinformatics analyses. Our control group consisted of

patients with a benign ovarian tumor instead of healthy women.

Therefore, the proteins differentially expressed in our study are

more likely to be ovarian tumor-specific instead of reflecting a

more general response to disease. We further enhanced robustness

Figure 4. Protein set enrichment analysis using the Cytoscape plugin ’ClueGO’. In the network, only significantly enriched categories
(p-value,0.05, Bonferroni corrected) are shown. The node color represents the commonality of members of either the differentially expressed serum
or tumor proteome list. Dark red highlights categories that are specific to the tissue proteome signature while dark green represents biological
processes that are specific to the serum proteome signature. The number of proteins associated with each GO category are indicated within the
corresponding node. The edges of the resulting ClueGO network are based on kappa statistics and reflect the relationships between the GO terms
(network nodes) based on the similarity of their associated proteins. The complete results and relevant statistics are summarized in Table S2.
doi:10.1371/journal.pone.0108046.g004
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Figure 5. Proteins in the serum and tumor datasets that are potentially associated with GCR-alpha (A) and SP1 (B) pathways. The
proteins marked in blue were found in the serum dataset, those marked in green in both tumor and serum. Unmarked proteins are specific for the
tumor signature (except GCR-alpha and SP1). Proteins are ordered according to their position within the cell (extracellular, membrane bound,
cytoplasmic or nucleic). Individual proteins are represented as nodes, the different shapes of the nodes represent the functional class of the proteins.
The arrowheads indicate the direction of the interaction, the color of the lines between nodes describes activation (green), inhibition (red), and
unspecified (black) interactions. The small circles on top of the protein symbols indicate up-regulation (red) or down-regulation (blue).
doi:10.1371/journal.pone.0108046.g005
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of our results by using well matched patient groups and by

reducing within-tumor heterogeneity via the use of laser micro-

dissected tumor tissue lysates. In addition we used strict

experimental protocols, extensive quality control and state-of-

the-art bioinformatics analyses to control for false positive results.

Our study revealed a large number of changes in protein

expression in serum and tissue from patients suffering from benign

and malignant ovarian tumors. Some proteins were already known

to play a role in ovarian cancer, others are new candidates, which

may provide new insights into the etiology of the disease or act as

potential new disease markers. For a large subset of proteins

identified in this study, literature searches confirmed their role in

ovarian cancer. For example, Dieplinger et. al. also measured

decreased plasma concentrations of Afamin and APOA4 in

patients with ovarian cancer, with APOA4 adding independent

diagnostic information to CA125 and age for differentiating

ovarian cancer from benign and healthy samples [30]. The

observed reduction in serum of PON1, that usually mediates

enzymatic protection against oxidative stress, may lead to

increasing DNA damage and consequently to malignant transfor-

mation. It has been suggested before, that SNPs reducing PON1

activity may be associated with an increased risk of epithelial

ovarian cancer [31]. In addition, we found a significant decrease of

APOA1 in serum of ovarian cancer patients as has been shown

before in various studies [32,33] and in tissue. To our knowledge

this significant decrease in tumor tissue samples has not been

described yet. The altered serum signature, which is also enriched

for other proteins involved in cholesterol and lipid metabolism,

suggests that an alteration of these pathways may be beneficial for

the cancer cells.

Although substantial efforts have been devoted to detect new

serum biomarkers for ovarian cancer, we are the first to describe

proteomic analysis in both serum and tissue. This approach may

lead to detection of serum proteins directly derived from the

tumor, which can give new insights in the pathways active in

T
a

b
le

2
.

In
te

ra
ct

io
n

s
b

y
p

ro
te

in
fu

n
ct

io
n

.

P
ro

te
in

A
ct

u
a

l
n

R
N

E
x

p
e

ct
e

d
R

a
ti

o
p

-v
a

lu
e

z
-s

co
re

P
C

B
P

-1
1

1
1

0
8

1
3

2
9

6
4

.7
4

3
2

.3
1

9
0

.0
0

0
4

0
2

3
.6

8

A
lp

h
a-

ac
ti

n
in

4
1

4
1

0
8

1
9

2
9

6
6

.9
3

2
2

.0
1

9
0

.0
0

0
7

5
4

3
.4

7
6

H
SP

6
0

1
7

1
0

8
2

7
2

9
6

9
.8

5
1

1
.7

2
6

0
.0

0
3

1
2

2
2

.9
9

3

1
4

-3
-3

b
e

ta
/a

lp
h

a
3

4
1

0
8

5
6

2
9

6
2

0
.4

3
1

.6
6

4
3

.7
1

E-
0

5
4

.1
7

6

1
4

-3
-3

ze
ta

/d
e

lt
a

5
5

1
0

8
9

7
2

9
6

3
5

.3
9

1
.5

5
4

5
.3

3
E-

0
7

5
.0

3
5

In
te

ra
ct

io
n

s
b

y
p

ro
te

in
fu

n
ct

io
n

b
as

e
d

o
n

th
e

co
n

n
e

ct
iv

it
y

w
it

h
th

e
tu

m
o

r
ti

ss
u

e
si

g
n

at
u

re
s

an
d

w
it

h
p

ro
te

in
s

fr
o

m
th

e
h

u
m

an
p

ro
te

o
m

e
M

e
ta

C
o

re
d

at
ab

as
e

.
T

h
e

p
ro

te
in

s
w

e
re

co
n

si
d

e
re

d
o

ve
r-

co
n

n
e

ct
e

d
w

h
e

n
th

e
n

u
m

b
e

r
o

f
o

b
se

rv
e

d
in

te
ra

ct
io

n
s

e
xc

e
e

d
e

d
th

e
n

u
m

b
e

r
o

f
e

xp
e

ct
e

d
in

te
ra

ct
io

n
s.

A
ct

u
al

:n
u

m
b

e
r

o
f

n
e

tw
o

rk
o

b
je

ct
s

in
th

e
si

g
n

at
u

re
w

h
ic

h
in

te
ra

ct
w

it
h

th
e

ch
o

se
n

o
b

je
ct

;n
:n

u
m

b
e

r
o

f
n

e
tw

o
rk

o
b

je
ct

s
in

th
e

si
g

n
at

u
re

;R
:n

u
m

b
e

r
o

f
n

e
tw

o
rk

o
b

je
ct

s
in

th
e

b
ac

kg
ro

u
n

d
lis

t
w

h
ic

h
in

te
ra

ct
w

it
h

th
e

ch
o

se
n

o
b

je
ct

;
N

:
to

ta
l

n
u

m
b

e
r

o
f

p
ro

te
in

-b
as

e
d

o
b

je
ct

s
in

th
e

b
ac

kg
ro

u
n

d
lis

t;
Ex

p
e

ct
e

d
:

m
e

an
o

f
h

yp
e

rg
e

o
m

e
tr

ic
d

is
tr

ib
u

ti
o

n
.

R
at

io
:

co
n

n
e

ct
iv

it
y

ra
ti

o
(A

ct
u

al
/E

xp
e

ct
e

d
);

z-
sc

o
re

:
(A

ct
u

al
-E

xp
e

ct
e

d
)/

(s
ta

n
d

ar
d

d
e

vi
at

io
n

);
p

-v
al

u
e

:
p

ro
b

ab
ili

ty
to

h
av

e
th

e
va

lu
e

o
f

A
ct

u
al

o
r

h
ig

h
e

r
(l

o
w

e
r

fo
r

n
e

g
at

iv
e

z-
sc

o
re

)
b

y
ch

an
ce

u
n

d
e

r
n

u
ll

h
yp

o
th

e
si

s
o

f
n

o
o

ve
r-

o
r

u
n

d
e

r-
co

n
n

e
ct

iv
it

y.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
8

0
4

6
.t

0
0

2

Figure 6. PCBP1 expression in serous ovarian cancer. Expression
of PCBP1 (probeset 208620_at) in serous tumors of low malignant
potential (LMP) versus malignant serous ovarian tumors [28]. PCBP1 was
significantly up-regulated (p = 0.003, Welch’s t-test) in malignant
tumors. Squares represent the individual samples used in the
microarray experiment. Boxplots are overlaid with the lower and upper
ends of a box indicating the 25th and 75th percentiles, respectively. The
solid black line inside a box indicates the median.
doi:10.1371/journal.pone.0108046.g006
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benign and malignant disease. Only 16 proteins were identified in

both serum and tissue, however, with only Apolipoprotein A-I and

Serotransferrin being significantly differentially expressed in both.

This limited overlap is probably due to the fact that we only detect

abundant proteins in both serum and tissue and that abundant

tissue proteins have a different concentration in serum and vice

versa. Some of the detected proteins are also compartment

specific, and therefore only detectable in serum or tissue.

In order to see whether there might be similarities in

significantly enriched processes or altered transcription factors

within the serum and tissue datasets we performed enrichment

analyses using MetaCore. This analysis revealed that 9 out of the

top-20 transcription factors associated with key transcriptional

regulatory networks in serum were also found in the top-20 of

tumor tissue. These results indicate that although the detected

proteins only overlap to a limited extent between the 2 datasets,

the detected tumor cancer proteome is reflected by the serum

proteome at the molecular subnetwork level. This approach may

provide another strategy for biomarker discovery.

Amongst others Sp1 and GCR-alpha were detected as potential

key transcription factors of the key transcriptional regulatory

networks underlying the proteomic signatures in both tissue and

serum. The protein encoded by the Sp1 gene is a zinc finger

transcription factor that binds to GC-rich motifs of many

promoters. It is involved in many cellular processes, including

cell differentiation, cell growth, apoptosis, immune response,

response to DNA damage, and chromatin remodeling [34]. Post-

translational modifications such as phosphorylation, acetylation,

glycosylation, and proteolytic processing significantly affect the

activity of this protein, which can be an activator or a repressor.

Sp1 has been suggested to be responsible for many features of

ovarian cancer cells like oncogenic transformation and epithelial to

mesenchymal transition for example through activation of KLF8

[35]. Expression of Sp1 is frequently increased in human epithelial

ovarian cancers and inhibitors of Sp1-dependent transcription

both in vitro and in tumor xenografts have been suggested as

interesting candidates for treatment [36].

Receptors for glucocorticoids, like GCR-alpha, are present in

tumor cells of almost 90% of ovarian cancer cells and mRNA of

GCR-alpha was detected in a wide range of ovarian cancer cell

lines [37]. In vitro studies suggests that glucocorticoids may have

an adverse effect on outcome in several cancers, including ovarian

[38]. However, other investigators have reported favorable effects

of GCs in vitro [39]. A study in GCR-positive patients gave no

evidence that GCR expression had any prognostic value nor was

there any evidence of poorer survival in a small subset of GCR-

positive patients who received GC treatment [40]. A recent study

has discovered a role for the glucocorticoid receptor within the

SLIT glycoprotein ligand and their ROBO receptor pathway.

This pathway plays a fundamental role in mammalian develop-

ment by promoting apoptosis and repulsing aberrant cell

migration. SLIT/ROBO expression could be increased by

reducing the expression of the glucocorticoid receptor using

siRNA. Their findings indicate that in the post-ovulatory phase a

role of cortisol may be to temporarily inhibit SLIT/ROBO

expression to facilitate regeneration of the ovarian surface

epithelium. Therefore this pathway may be a target to develop

strategies to manipulate the SLIT/ROBO system in ovarian

cancer [41].

Interactome analysis revealed 5 proteins that were significantly

overconnected in our tumor tissue signature, meaning they had

more connections within the tumor signature than expected by

chance and thus are potentially highly relevant in tumor

pathophysiology. Two of those, 14-3-3 beta/alpha and 14-3-3

zeta/delta, are members of the 14-3-3 protein family which have

been described in previous studies to promote cell survival through

suppression of apoptosis [42]. Due to its upregulation in a variety

of human tumors and its involvement in cancer progression and

treatment resistance, 14-3-3 zeta is currently undergoing extensive

investigation as a novel therapeutic target [43].

The other overconnected proteins were actinin-4, HSP60, and

PCBP1. Actinin-4 is an isoform of non-muscular-actinin, which

enhances cell motility by bundling the actin cytoskeleton [44].

Implications of actinin-4 have been demonstrated in some human

malignancies including ovarian cancer. Yamamoto et al. have

demonstrated high actinin-4 protein expression in 57% of the

primary ovarian carcinomas [45,46]. High expression was

associated with serous histology, high histological grade, and poor

patient outcome.

Heat shock proteins (HSPs), like HSP60, are important players

in protein homeostasis and cell and tissue physiology, as well as in

protection against stressors [47]. HSPs intervene not only in

protein folding, refolding, trafficking and degradation but also in

the regulation of cell growth and differentiation, apoptosis and

cell-to-cell crosstalk, inflammation, and tissue repair [47,48]. The

importance of HSPs has come into focus in the past few years

because it has been realized that they can be pathogenic factors in

a variety of conditions. Among these pathologies there are various

forms of cancer, in which the proteins are normal but work in

favor of the tumor rather than protect the patient [49]. In these

conditions, HSPs enhance tumor cell survival and growth by

inhibiting apoptosis and the anti-tumor immune response, or by

promoting neoangiogenesis [50]. In our study, several of the HSPs

had altered expression. Besides the overconnected HSP60, six

HSP family members were found to be upregulated in the

malignant tissue samples, further highlighting their importance in

ovarian cancer biology.

The fifth overconnected protein, PCBP1, was originally

discovered as an RNA-binding protein, which participates in

mRNA processing at multiple steps. Subsequent studies showed

that PCBP1 possesses multiple functions in transcription, splicing,

and translation. The protein is capable of switching among its

various functions depending upon its state of phosphorylation as

well as its cellular localization, and can therefore act as a

corepressor and a coactivator in response to different environ-

mental signals [51]. In the cBioPortal database, almost all

neighboring genes connected to PCBP1 have altered expression

in more than 20% of the serous ovarian cancer samples (data not

shown) providing further evidence of a critical role for PCBP1 in

the pathophysiological processes underlying malignant ovarian

tumors. Importantly, we further implicated PCBP1 within ovarian

tumor biology by the fact that the network built in MetaCore using

the 5 overconnected proteins as seed notes and their nearest

neighbors, generated a network highly interconnecting all 5 seed

nodes. The results of this network analysis also revealed an

interesting connection to the androgen receptor-signaling pathway

(Figure 7). As PCBP1 has been previously found to regulate the

androgen receptor in androgen-responsive cells, like the prostate

cancer LNCaP cells [52], this connection might be underlying the

function of PCBP1 in ovarian tumor biology as well. Overall this

network analysis, which attempts to reconstruct the biological

mechanism underlying the proteomics profile, provides further

mechanistic insights for future validation as well as potential

targets of intervention.

In summary, by quantifying protein expression in serum and

tissue we found proteins differentially expressed between benign

and malignant samples. These included proteins previously

identified to play a role in ovarian cancer, but also candidates
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that had not been implicated in the disease process before. We

observed not only a significant decrease in serum APOAI and

Serotransferrin, as previously reported, but provide evidence for

decreased expression in the tumor site as well. Although the serum

and tissue signatures had only 16 proteins in common, we

highlighted common transcription factors potentially relevant for

changes in both the serum and tumor proteome through in-silico

analyses. Important roles are suggested for GCR-alpha and Sp1.

In addition, our results implicate an as yet unknown role for

PCBP1 in ovarian cancer. We hypothesize that the protein

network including PCBP1 contributes to the malignant properties

of ovarian tumors, possibly through regulation of the androgen

receptor. Further experiments are warranted to unravel the precise

mechanism of PCBP1 in ovarian cancer.

Supporting Information

Table S1 List of proteins identified in serum and tissue
of ovarian cancer vs. benign patients. List of file names as

reported in ProteomeXchange with the corresponding sample

annotation in worksheet named ‘Filenames’. List of all the

measured samples with a complete list of protein identifications

in worksheet named ‘Raw data’ together with separate worksheets

containing the filtered data named ‘Serum (filtered)’ and ‘Tissue

(filtered)’. Detailed information on the annotation of the proteins

and the outcome of the differential expression analysis is provided.

(XLS)

Table S2 Protein set enrichment analysis using the
Cytoscape plugin ‘‘ClueGO’’. The proteins associated with

significant GO categories are displayed as well as the p-value

associated with the GO term. The first four categories are mostly

specific to the serum proteome signature while the other categories

represent biological processes that are mainly specific to the tissue

proteome signature.

(XLS)

Table S3 Serum and tissue transcriptional regulation
network list. The column ‘GO processes’ states the different

biological processes associated with the network. The total number

Figure 7. Interactions between overconnected proteins in tumor tissue. A network built in MetaCore using the 5 overconnected proteins,
PCBP-1, Alpha-actinin 4, HSP60, 14-3-3 beta/alpha and 14-3-3 zeta/delta as seed nodes yielded a highly interconnected network amongst the seed
nodes and implicated a role for androgen receptor signaling.
doi:10.1371/journal.pone.0108046.g007
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of objects in the network is indicated in the ‘Total nodes’ column.

The p-values represent the probability of intersection between the

experimental signature and the prebuilt content in MetaCore. The

column ‘zScore’ gives the level of saturation of the networks taking

into account the size of the database, the number of objects in the

subnetwork and the number of objects in the signature used to

construct the network. The higher the z-score the more saturated a

subnetwork is. The transcriptional regulation networks are ranked

according to p-value.

(XLS)

Text S1 Batch effect and batch correction for the tissue
samples.
(DOC)
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