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Abstract

The control of neuroprosthetic devices from the activity of motor cortex neurons benefits from

learning effects where the function of these neurons is adapted to the control task. It was recently

shown that tuning properties of neurons in monkey motor cortex are adapted selectively in order to

compensate for an erroneous interpretation of their activity. In particular, it was shown that the

tuning curves of those neurons whose preferred directions had been misinterpreted changed more

than those of other neurons. In this article, we show that the experimentally observed self-tuning

properties of the system can be explained on the basis of a simple learning rule. This learning rule

utilizes neuronal noise for exploration and performs Hebbian weight updates that are modulated

by a global reward signal. In contrast to most previously proposed reward-modulated Hebbian

learning rules, this rule does not require extraneous knowledge about what is noise and what is

signal. The learning rule is able to optimize the performance of the model system within

biologically realistic periods of time and under high noise levels. When the neuronal noise is fitted

to experimental data, the model produces learning effects similar to those found in monkey

experiments.

1 Introduction

It is a commonly accepted hypothesis that adaptation of behavior results from changes in

synaptic efficacies in the nervous system. However, there exists little knowledge about how

changes in synaptic efficacies change behavior and about the learning principles that

underlie such changes. Recently, one important hint has been provided in the experimental

study [1] of a monkey controlling a neuroprostethic device. The monkey’s intended

movement velocity vector can be extracted from the firing rates of a group of recorded units

by the population vector algorithm, i.e., by computing the weighted sum of their PDs, where

each weight is the unit’s normalized firing rate [2].1 In [1], this velocity vector was used to

control a cursor in a 3D virtual reality environment. The task for the monkey was to move

*To whom correspondence should be addressed: robert.legenstein@igi.tugraz.at.
1In general, a unit is not necessarily equal to a neuron in the experiments. Since the spikes of a unit are determined by a spike sorting
algorithm, a unit may represent the mixed activity of several neurons.
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the cursor from the center of an imaginary cube to a target appearing at one of its corners. It

is well known that performance increases with practice when monkeys are trained to move

to targets in similar experimental setups, i.e., the function of recorded neurons is adapted

such that control over the new artificial “limb” is improved [3]. In [1], it was systematically

studied how such reorganization changes the tuning properties of recorded neurons. The

authors manipulated the interpretation of recorded firing rates by the readout system (i.e.,

the system that converts firing rates of recorded neurons into cursor movements). When the

interpretation was altered for a subset of neurons, the tuning properties of the neurons in this

subset changed significantly stronger than those of neurons for which the interpretation of

the readout system was not changed. Hence, the experiment showed that motor cortical

neurons can change their activity specifically and selectively to compensate for an altered

interpretation of their activity within some task. Such adjustment strategy is quite surprising,

since it is not clear how the cortical adaption mechanism is able to determine for which

subset of neurons the interpretation was altered. We refer to this learning effect as the

“credit assignment” effect.

In this article, we propose a simple synaptic learning rule and apply it to a model neural

network. This learning rule is capable of optimizing performance in a 3D reaching task and

it can explain the learning effects described in [1]. It is biologically realistic since weight

changes are based exclusively on local variables and a global scalar reward signal R(t). The

learning rule is reward-modulated Hebbian in the following sense: Weight changes at

synapses are driven by the correlation between a global reward signal, the presynaptic

activity, and the difference of the postsynaptic potential from its recent mean (see [4] for a

similar approach). Several reward-modulated Hebbian learning rules have been studied for

quite some time both in the context of rate-based [5, 6, 7, 8, 4] and spiking models [9, 10,

11, 12, 13, 14, 15, 16]. They turn out to be viable learning mechanisms in many contexts and

constitute a biologically plausible alternative [17, 18] to backpropagation based mechanisms

preferentially used in artificial neural networks. One important feature of the learning rule

proposed in this article is that noisy neuronal output is used for exploration to improve

performance. It was often hypothesized that neuronal variability can optimize motor

performance. For example in songbirds, syllable variability results in part from variations in

the motor command, i. e. the variability of neuronal activity [19]. Furthermore, there exists

evidence for the songbird system that motor variability reflects meaningful motor

exploration that can support continuous learning [20]. We show that relatively high amounts

of noise are beneficial for the adaptation process but not problematic for the readout system.

We find that under realistic noise conditions, the learning rule produces effects surprisingly

similar to those found in the experiments of [1]. Furthermore, the version of the reward-

modulated Hebbian learning rule that we propose does not require extraneous information

about what is noise and what is signal. Thus, we show in this study that reward-modulated

learning is a possible explaination for experimental results about neuronal tuning changes in

monkey pre-motor cortex. This suggests that reward-modulated learning is an important

plasticity mechanism for the acquisition of goal-directed behavior.
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2 Learning effects in monkey motor cortex

In this section, we briefly describe the experimental results of [1] as well as the network that

we used to model learning in motor cortex. Neurons in motor and premotor cortex of

primates are broadly tuned to intended arm movement direction [21, 3].2 This sets the basis

for the ability to extract intended arm movement from recorded neuronal activity in in these

areas. The tuning curve of a direction tuned neuron is given by its firing rate as a function of

movement direction. This curve can be fitted reasonably well by a cosine function. The

preferred direction  of a neuron i is defined as the direction in which the

cosine fit to its firing rate is maximal, and the modulation depth is defined as the difference

in firing rate between the maximum of the cosine fit and the baseline (mean). The

experiments in [1] consisted of a sequence of four brain control sessions: Calibration,

Control, Perturbation, and Washout. The tuning functions of an average of 40 recorded

neurons were obtained in the Calibration session where the monkey moved its hand in a

center out reaching task. Those PDs (or manipulated versions of them) were later used for

decoding neural trajectories. We refer to PDs used for decoding as “decoding PDs” (dPDs)

in order to distinguish them from measured PDs. In Control, Perturbation, and Washout

sessions the monkey had to perform a cursor control task in a 3D virtual reality environment

(see Figure 1B). The cursor was initially positioned in the center of an imaginary cube, a

target position on one of the corners of the cube was randomly selected and made visible.

When the monkey managed to hit the target position with the cursor or a 3s time period

expired, the cursor position was reset to the origin and a new target position was randomly

selected from the eight corners of the imaginary cube. In the Control session, the measured

PDs were used as dPDs for cursor control. In the Perturbation session, the dPDs of a

randomly selected subset of neurons (25% or 50% of the recorded neurons) were altered.

This was achieved by rotating the measured PDs by 90 degrees around the x, y, or z axes (all

PDs were rotated around a single common axis in each experiment). We term these neurons

rotated neurons. Other dPDs remained the same as in the Control session (non-rotated

neurons). The measured PDs were used for cursor control in the subsequent Washout

session. In the Perturbation session, neurons adapted their firing behavior to compensate for

the altered dPDs. The authors observed differential effects of learning for the two groups of

non-rotated neurons and rotated neurons. Rotated neurons tended to shift their PDs in the

direction of dPD rotation, thus compensating for the perturbation. For non-rotated neurons,

the change of the preferred directions was weaker and significantly less strongly biased

towards the rotation direction. We refer to this differential behavior of rotated and non-

rotated neurons as the “credit assignment effect”.

Network and neuron model

Our aim in this article is to explain the described effects in the simplest possible model. The

model consisted of two populations of neurons, see Figure 1A. The input population

modeled those neurons which provide input to the neurons in motor cortex. It consisted of m

= 100 neurons with activities . Another population modeled neurons

in motor cortex which receive inputs from the input population. It consisted of ntotal = 340

2Arm movement refers to movement of the endpoint of the arm.

Legenstein et al. Page 3

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



neurons with activities s1(t), … , sntotal(t).3 All modeled motor cortex neurons were used to

determine the monkey arm movement in our model. A small number of them (n = 40)

modeled recorded neurons used for cursor control. We denote the activities of this subset as

s1(t), … , sn(t).

The total synaptic input ai(t) for neuron i at time t was modeled as a noisy weighted sum of

its inputs:

(1)

where wij is the synaptic efficacy from input neuron j to neuron i. These weights were set

randomly from a uniform distribution in the interval [−0.5, 0.5] at the beginning of each

simulation. ξi(t) models some exploratory signal needed to explore possibly better network

behaviors. In cortical neurons, this exploratory signal could for example result from

neuronal or synpatic noise, or it could be spontaneous activity of the neuron. An

independent sample from the zero mean distribution  was drawn as the exploratory

signal ξi(t) at each time step. The parameter ν (exploration level) determines the variance of

the distribution and hence the amount of noise in the neuron. A nonlinear function was

applied to the total synaptic input, si(t) = σ (ai(t)), to obtain the activity si(t) of neuron i at

time t. We used  is the piecewise linear activation function σ(x) = max{x, 0} in

order to guarantee non-negative firing rates.

Task model

We modeled the cursor control task as shown in Figure 1B. Eight possible cursor target

positions were located at the corners of a unit cube in 3D space which had its center at the

origin of the coordinate system. At each time step t the desired direction of cursor movement

y*(t) was computed from the current cursor and target position. By convention, the desired

direction y*(t) had unit Euclidean norm. From the desired movement direction y*(t), the

activities x1(t), … , xm(t) of the neurons that provide input to the motor cortex neurons were

computed and the activities s1(t), … , sn(t) of the recorded neurons were used to determine

the cursor velocity via their population activity vector (see below).

In order to model the cursor control experiment, we had to determine the PDs of recorded

neurons. Obviously, to determine PDs, one needs a model for monkey arm movement. In

monkeys, the transformation from motor cortical activity to arm movements involves a

complicated system of several synaptic stages. In our model, we treated this transformation

as a black box. Experimental findings suggest that monkey arm movements can be predicted

quite well by a linear model based on the activities of a small number of motor cortex

neurons [3]. We therefore assumed that the direction of the monkey arm movement yarm(t)

at time t can be modeled in a linear way, using the activities of the total population of the

3The distinction between these two layers is purely functional. Input neurons may be situated in extracortical areas, in other cortical
areas, or even in motor cortex itself. The functional feature of these two populations in our model is that learning takes place solely in
synapses of projections between these population since the aim of this article is to explain the learning effects in the simplest model.
But in principle the same learning is applicable to multilayer networks.
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ntotal cortical neurons s1(t), … , sntotal(t) in our simple model and a fixed randomly chosen

3 × ntotal linear mapping Q (see [23]). With the transformation from motor cortex neurons to

monkey arm movements being defined, the input to the network for a given desired direction

y* should be chosen such that motor cortex neurons produce a monkey arm movement close

to the desired movement direction. We therefore calculated from the desired movement

direction input activities x(t) = crate(Wtotal)†Q†y*(t), where Q† denotes the pseudo-inverse of

Q, Wtotal denotes the matrix of weights wij before learning, and crate scales the input activity

such that the activities of the neurons in the simulated motor cortex could directly be

interpreted as rates in Hz [23]. This transformation from desired directions to input neuron

activities was defined initially and held fixed during each simulation because learning took

place in our model in a single synaptic stage from neurons of the input population to neurons

in the motor cortex population in our model and therefore the coding of desired directions

did not change in the input population.

As described above, a subset of the motor cortex population was chosen to model recorded

neurons that were used for cursor control. For each modeled recorded neuron i ∈ {1, … , n},

we determined the preferred direction  as well as the baseline activity βi and the

modulation depth αi by fitting a cosine tuning on the basis of simulated monkey arm

movements [1, 23]. In the simulation of a Perturbation session, dPDs p̃i of rotated neurons

were rotated versions of the measured PDs pi (as in [1], one of the x, y, or z axis was chosen

and the PDs were rotated by 90 degrees around this axis), whereas the dPDs of non-rotated

neurons were identical to their measured PDs. The dPDs were then used to determine the

movement velocity y(t) of the cursor by the population vector algorithm [1, 2, 23]. This

decoding strategy is consistent with an interpretation of the neural activity which codes for

the velocity of the movement.

3 Adaptation with an online learning rule

Adaptation of synaptic efficacies wij from input neurons to neurons in motor cortex is

necessary if the actual decoding PDs p̃i do not produce optimal cursor trajectories. Assume

that suboptimal dPDs p̃1, … , p̃n are used for decoding. Then for some input x(t), the

movement of the cursor is not in the desired direction y*(t). The weights wij should therefore

be adapted such that at every time step t the direction of movement y(t) is close to the

desired direction y*(t). We can quantify the angular match Rang(t) at time t by the cosine of

the angle between movement direction y(t) and desired direction

. This measure has a value of 1 if the cursor moves

exactly in the desired direction, it is 0 if the cursor moves perpendicular to the desired

direction, and it is −1 if the cursor movement is in the opposite direction.

We assume in our model that all synapses receive information about a global reward R(t).

The general idea that a neuromodulatory signal gates local synaptic plasticity was studied in

[4]. In that study, the idea was implemented by learning rules where the weight changes are

proportional to the covariance between the reward signal R and some measure of neuronal

activity N at the synapse. Here, N could correspond to the presynaptic activity, the
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postsynaptic activity, or the product of both. The authors showed that such learning rules

can explain a phenomenon called Herrnstein’s matching law. Interestingly, for the analysis

in [4] the specific implementation of this correlation based adaptation mechanism is not

important. We investigate in this article a learning rule of this type:

(2)

where  and  denote the low-pass filtered version of ai(t) and R(t) with an

exponential kernel4. We refer to this rule as the exploratory Hebb rule (EH rule) in this

article. The important feature of this learning rule is that apart from variables which are

locally available for each neuron (xj(t), ai(t), ), only a single scalar signal, R(t), is needed

to evaluate performance.5 The reward signal R(t) is provided by some neural circuit which

evaluates performance of the system. In our simulations, we simply used the angular match

Rang(t) as this reward signal. Weight updates of the rule are based on correlations between

deviations of the reward signal R(t) and the activation ai(t) from their means. It adjusts

weights such that rewards above mean are reinforced. The EH rule (2) approximates

gradient ascent on the reward signal by exploring alternatives to the actual behavior with the

help of some exploratory signal ξ(t). The deviation of the activation from the recent mean

 is an estimate of the exploratory term ξi(t) at time t if the mean  is based

on neuron activations  which are similar to the activation  at time

t. Here we make use of (1) the fact that weights are changing very slowly and (2) the

continuity of the task (inputs x at successive time points are similar). Then, (2) can be seen

as an approximation of

(3)

This rule is a typical node-perturbation learning rule [6, 7, 22, 10] which can be shown to

approximate gradient ascent, see e.g. [10]. A simple derivation that shows the link between

the EH rule (2) and gradient ascent is given in [23].

The EH learning rule differs from other node-perturbation rules in an important aspect. In

many node-perturbation learning rules, the noise needs to be accessible to the learning

mechanism separately from the output signal. For example, in [6] and [7] binary neurons

were used. The weight updates there depend on the probability of the neuron to output 1. In

[10] the noise term is directly incorporated in the learning rule. The EH rule does not

directly need the noise signal. Instead a temporally filtered version of the neurons activation

is used to estimate the noise signal. Obviously, this estimate is only sufficiently accurate if

the input to the neuron is temporally stable on small time scales.

4We used  and 
5A rule where the activation ai is replaced by the output si and obtained very similar results.
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4 Comparison with experimentally observed learning effects

In this section, we explore the EH rule (2) in a cursor control task that was modeled to

closely match the experimental setup in [1]. Each simulated session consisted of a sequence

of movements from the center to a target position at one of the corners of the imaginary

cube, with online weight updates during the movements. In monkey experiments,

perturbation of decoding PDs lead to retuning of PDs with the above described credit

assignment effect [1]. In order to obtain biologically plausible values for the noise

distribution in our neuron model, the noise in our model was fitted to data from experiments

(see [23]). Analysis of the neuronal responses in the experiments showed that the variance of

the response for a given desired direction scaled roughly linearly with the mean firing rate of

that neuron for this direction. We obtained this behavior with our neuron model with noise

that is a mixture of an activation-independent noise source and a noise source where the

variance scales linearly with the activation of the neuron. In particular, the noise term ξi(t) of

neuron i was drawn from the uniform distribution in [−νi(x(t)), νi(x(t))] with an exploration

level νi given by . The constants where chosen fit

neuron behavior in the data. We note that in all simulations with the EH rule, the input

activities xj(t) were scaled in such a way that the output of the neuron at time t could be

interpreted directly as the firing rate of the neuron at time t. With such scaling, we obtained

output values of the neurons without the exploratory signal in the range of 0 to 120Hz with a

roughly exponential distribution. Having estimated the variability of neuronal response, the

learning rate η remained the last free parameter of the model. To constrain this parameter, η

was chosen such that the performance in the 25% perturbation task approximately matched

the monkey performance.

We simulated the two types of perturbation experiments reported in [1] in our model

network with 40 recorded neurons. In the first set of simulations, a random set of 25% of

recorded neurons were rotated neurons in Perturbation sessions. In the second set of

simulations, we chose 50 % of the recorded neurons to be rotated. In each simulation, 320

targets were presented to the model, which is similar to the number of target presentations in

[1]. Results for one example run are shown in Figure 2. The shifts in PDs of recorded

neurons induced by training in 20 independent trials were compiled and analyzed separately

for rotated neurons and non-rotated neurons. The results are in good agreement with the

experimental data, see Figure 3. In the simulated 25% perturbation experiment, the mean

shift of the PD for rotated neurons was 8.2 ± 4.8 degrees, whereas for non-rotated neurons, it

was 5.5 ± 1.6 degrees. This relatively small effect is similar to the effect observed in [1]

where the PD shift of rotated (non-rotated) units was 9.9 (5.2) degrees. The effect is more

pronounced in the 50% perturbation experiment (see below). We also compared the

deviation of the movement trajectory from the ideal straight line in rotation direction half

way to the target6 from early trials to the deviation of late trials, where we scaled the results

to a cube of 11cm side length in order to be able to compare the results directly to the results

in [1]. In early trials, the trajectory deviation was 9.2 ± 8.8mm, which was reduced by

6These deviations were computed as described in [1]
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learning to 2.4 ± 4.9mm. In the simulated 50% perturbation experiment, the mean shift of

the PD for rotated neurons was 18.1 ± 4.2 degrees, whereas for non-rotated neurons, it was

12.1 ± 2.6 degrees (in monkey experiments [1] this was 21.7 and 16.1 degrees respectively).

The trajectory deviation was 23.1 ± 7.5mm in early trials, and 4.8 ± 5.1mm in late trials.

Here, the early deviation was stronger than in the monkey experiment, while the late

deviation was smaller.

The EH rule (2) falls into the general class of correlation-based learning rules described in

[4]. In these rules the weight change is proportional to the covariance of the reward signal

and some measure of neuronal activity. We performed the same experiment with slightly

different correlation-based rules

(4)

(5)

(compare to (2)). The performance improvements were similar to those obtaint with the EH

rule. However, no credit assignment effect was observed with these rules. In the simulated

50% perturbation experiment, the mean shift of the PD of rotated neurons (non-rotated

neurons) was 12.8 ± 3.6 (12.0 ± 2.4) degrees for rule (4) and 25.5 ± 4 (26.8 ± 2.8) degrees

for rule (5).

In the monkey experiment, training in the Perturbation session also induced in a decrease of

the modulation depth of rotated neurons. This resulted in a decreased contribution of these

neurons to the cursor movement. We observed a qualitatively similar resultin our

simulations. In the 25% perturbation simulation, modulation depths decreased on average by

2.7±4.3Hz for rotated neurons. Modulation depths for non-rotated neurons increased on

average by 2.2 ± 3.9Hz (average over 20 independent simulations). In the 50% perturbation

simulation, the changes in modulation depths were −3, 6 ± 5.5Hz for rotated neurons and 5.4

± 6Hz for non-rotated neurons.7 Thus, the relative contribution of rotated neurons on cursor

movement decreased.

Comparing the results obtained by our simulations to those of monkey experiments

(compare Figure 3 to Figure 3 in [1]), it is interesting that quantitatively similar effects were

obtained when noise level and learning rate was constrained by the experimental data. One

should note here that tuning changes due to learning depend on the noise level. For small

exploration levels, PDs changed only slightly and the difference in PD change between

rotated and non-rotated neurons was small, while for large noise levels, PD change

differences can be quite drastic. Also the learning rate η influences the amount of PD shift

differences with higher learning rates leading to stronger credit assignment effects, see [23]

for details.

7When comparing these results to experimental results, one has to take into account the modulation depths in monkey experiments
were around 10Hz whereas in the simulations, they were around 25Hz
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The performance of the system before and after learning is shown in Figure 4. The neurons

in the network after training are subject to the same amount of noise as the neurons in the

network before training, but the angular match after training shows much less fluctuation

than before training. Hence, the network automatically suppresses jitter on the trajectory in

the presence of high exploration levels ν. We quantified this observation by computing the

standard deviation of the angle between the cursor velocity vector and the desired movement

direction for 100 randomly drawn noise samples.8 The mean standard deviation for 50

randomly drawn target directions was always decreased by learning. In the mean over the 20

simulations, the mean STD over 50 target directions was 7.9 degrees before learning and 6.3

degrees after learning. Hence, the network not only adapted its response to the input, it also

found a way to optimize its sensitivity to the exploratory signal.

5 Discussion

Jarosiewicz et al. [1] discussed three strategies that could potentially be used by the monkey

to compensate for the errors caused by perturbations: re-aiming, re-weighting, and re-

mapping. Using the re-aiming strategy, the monkey compensates for perturbations by aiming

for a virtual target located in the direction that offsets the visuomotor rotation. The authors

identified a global change in the activity level of all neurons. This indicates a re-aiming

strategy of the monkey. Re-weighting would suppress the use of rotated units, leading to a

reduction of their modulation depths. A reduction of modulation depths of rotated neurons

was also identified in the experimentals. A re-mapping strategy would selectively change the

directional tunings of rotated units. Rotated neurons shifted their PDs more than the non-

rotated population in the experiments. Hence, the authors found elements of all three

strategies in their data. These three elements of neuronal adaptation were also identified in

our model: a global change in activity of neurons (all neurons changed their tuning

properties; reaiming), a reduction of modulation depths for rotated neurons (re-weighting),

and a selective change of the directional tunings of rotated units (re-mapping). This

modeling study therefore suggests that all three elements can be explained by a single

synaptic adaptation strategy that relies on noisy neuronal activity and visual feedback that is

made accessible to all synapses in the network by a global reward signal. It is noteworthy

that the credit assignment phenomenon is an emergent feature of the learning rule rather

than implemented in some direct way. Intuitively, this behavior can be explained in the

following way. The output of non-rotated neurons is consistent with the interpretation of the

readout system. So if this output is strongly altered, performance will likely drop. On the

other hand, if the output of a rotated neuron is radically different, this will often improve

performance. Hence, the relatively high noise levels measured in experiments are probably

important for the credit assignment phenomenon. Under such realistic noise conditions, our

model produced effects surprisingly similar to those found in the monkey experiments.

Thus, this study shows that reward-modulated learning can explain detailed experimental

results about neuronal adaptation in motor cortex and therefore suggests that reward-

modulated learning is an essential plasticity mechanism in cortex.

8This effect is not caused by a larger norm of the weight vectors. The comparison was done with weight vectors after training
normalized to their L2 norm before training.
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The results of this modeling paper also support the hypotheses introduced in [24]. The

authors presented data which suggests that neural representations change randomly

(background changes) even without obvious learning, while systematic task-correlated

representational changes occur within a learning task.

Reward-modulated Hebbian learning rules are currently the most promising candidate for a

learning mechanism that can support goal-directed behavior by local synaptic changes in

combination with a global performance signal. The EH rule (2) is one particularly simple

instance of such rules that exploits temporal continuity of inputs and an exploration signal -

a signal which would show up as “noise” in neuronal recordings. We showed that large

exploration levels are beneficial for learning while they do not interfere with the

performance of the system because of pooling effects of readout elements. This study

therefore provides a hypothesis about the role of “noise” or ongoing activity in cortical

circuits as a source for exploration utilized by local learning rules.
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Figure 1.
Description of the 3D cursor control task and network model for cursor control. A)

Schematic of the network model. A set of m neurons project to ntotal noisy neurons in motor

cortex. The monkey arm movement was modeled by a fixed linear mapping from the

activities of the modeled motor cortex neurons to the 3D velocity vector of the monkey arm.

A subset of n neurons in the simulated motor cortex was recorded for cursor control. The

cursor velocity was given by the population vector. B) The task was to move the cursor from

the center of an imaginary cube to one of its eight corners.
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Figure 2.
One example simulation of the 50% perturbation experiment with the EH rule and data-

derived network parameters. A) Angular match Rang as a function of learning time. Every

100th time point is plotted. B) PD shifts drawn on the unit sphere (arbitrary units) for non-

rotated (black traces) and rotated (light cyan traces) neurons from their initial values (light)

to their values after training (dark, these PDs are connected by the shortest path on the unit

sphere). The straight line indicates the rotation axis. C) Same as B, but the view was altered

such that the rotation axis is directed towards the reader. The PDs of rotated neurons are

consistently rotated in order to compensate for the perturbation.
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Figure 3.
PD shifts in simulated Perturbation sessions are in good agreement with experimental

results (compare to Figure 3A,B in [1]). Shift in the PDs measured after simulated

perturbation sessions relative to initial PDs for all units in 20 simulated experiments where

25% (A) or 50% (B) of the units were rotated. Dots represent individual data points and

black circled dots represent the means of rotated (light gray) and non-rotated (dark gray)

units.
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Figure 4.
Network performance before and after learning for 50% perturbation. Angular match Rang(t)

of the cursor movements in one reaching trial before (gray) and after (black) learning as a

function of the time since the target was first made visible. The black curve ends

prematurely because the target was reached faster. After learning temporal jitter of the

performance was reduced, indicating reduced sensitivity to noise.
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