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Alterations of the Ca2+ signaling pathway
in pancreatic beta-cells isolated from db/db
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ABSTRACT

Upon glucose elevation, pancreatic beta-cells secrete
insulin in a Ca2+-dependent manner. In diabetic animal
models, different aspects of the calcium signaling path-
way in beta-cells are altered, but there is no consensus
regarding their relative contributions to the development
of beta-cell dysfunction. In this study, we compared the
increase in cytosolic Ca2+ ([Ca2+]i) via Ca2+ influx, Ca2+

mobilization from endoplasmic reticulum (ER) calcium
stores, and the removal of Ca2+ via multiple mechanisms
in beta-cells from both diabetic db/db mice and non-
diabetic C57BL/6J mice. We refined our previous quan-
titative model to describe the slow [Ca2+]i recovery after
depolarization in beta-cells from db/db mice. According
to themodel, the activity levels of the two subtypes of the
sarco-endoplasmic reticulum Ca2+-ATPase (SERCA)
pump, SERCA2 and SERCA3, were severely down-reg-
ulated in diabetic cells to 65% and 0% of the levels in
normal cells. This down-regulation may lead to a reduc-
tion in the Ca2+ concentration in the ER, a compensatory
up-regulation of the plasma membrane Na+/Ca2+

exchanger (NCX) and a reduction in depolarization-
evoked Ca2+ influx. As a result, the patterns of glucose-
stimulated calcium oscillations were significantly differ-
ent in db/db diabetic beta-cells compared with normal

cells. Overall, quantifying the changes in the calcium
signaling pathway in db/db diabetic beta-cells will aid in
the development of a disease model that could provide
insight into the adaptive transformations of beta-cell
function during diabetes development.
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INTRODUCTION

Diabetes affects millions of people and exacts a significant
toll on both individual health and society as a whole.
Because diabetes is associated with both genetic and
environmental factors, the etiology of the disease is com-
plicated and unclear. Interestingly, different Ca2+ signaling
components are disturbed in a wide range of organelles in
diabetic animals and patients, suggesting a pivotal role for
the dysregulation of Ca2+ signaling in the development of
diabetes (Bergsten 2000).

Upon blood glucose elevation, pancreatic beta-cells
secrete insulin in an intracellular Ca2+ concentration ([Ca2+]i)-
dependent manner, which acts on downstream target tissues
to facilitate glucose uptake. This process involves different
components of the Ca2+ signaling pathways. For example,
depolarization triggered by glucose metabolism opens
L-type voltage-gated Ca2+ channels, leading to an initial
extracellular Ca2+ influx (Rorsman 1997) and the sub-
sequent mobilization of Ca2+ stores via pathways such as
the IP3 and ryanodine receptors (Islam 2002; Duman et al.
2006). Simultaneously, clearance mechanisms such as the
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sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), the
plasma membrane Ca2+-ATPase (PMCA) and the sodium
calcium exchanger (NCX) are activated to reduce elevated
[Ca2+]i to the physiological resting level (Chen et al. 2003;
Hughes et al. 2006). Altered Ca2+ signaling is consistently
observed in pancreatic beta-cells in diabetic animal models.
For example, the L-type calcium channel was up-regulated
in both neonatally streptozocin-induced and Goto-Kakizaki
(GK) diabetic rats (Kato et al. 1996; Kato et al. 1994) but was
down-regulated in islets from other rat models of type II
diabetes (Iwashima et al. 2001; Roe et al. 1996). An altered
release of endoplasmic reticulum (ER) Ca2+ stores via the
ryanodine receptor has also been hypothesized to occur
during diabetes development (Islam 2002).

SERCA is the major Ca2+ extrusion mechanism in mouse
and rat pancreatic beta-cells (Chen et al. 2003; Hughes et al.
2006). SERCA pump activity could not be detected in db/db
islets (Roe et al. 1994), whereas a selective down-regulation
of SERCA3 sub-type mRNA has been reported in GK rats
(Varadi et al. 1996). Missense mutations in human SERCA3
have been associated with type II diabetes (Varadi et al.
1999), suggesting a crucial role for SERCA3 in the etiology
of diabetes. However, SERCA3-specific knockout (KO) mice
are normoglycemic and have normal insulinemia (Arredou-
ani et al. 2002). PMCA activity is down-regulated in certain
types of diabetic islets (Roe et al. 1994; Hoenig et al. 1990;
Levy et al. 1998), in contrast to beta-cells cultured under high
glucose conditions, which exhibited enhanced NCX tran-
scription (Ximenes et al. 2003). These controversies can
only be resolved if the functions of different Ca2+ signaling
proteins in normal and diabetic beta-cells are systematically
compared under identical experimental conditions.

To address these questions, we compared calcium
clearance in age-matched pancreatic beta-cells that were
isolated from both C57BL/6J control mice and db/db mice, a
widely used type II diabetic mouse model. The changes can
be quantitatively modeled as a 35% reduction in SERCA2
activity, a full inhibition of the SERCA3 pump, a 30%
increase in the NCX capacity and a 27% reduction in Ca2+

influx. Despite the severely compromised SERCA function,
the Ca2+ concentration in the ER ([Ca2+]ER) was reduced
only slightly, to 89% of the control, while the ER mobilization
pathways remained unchanged. Overall, these changes led
to significant alterations in the glucose-induced calcium
oscillations in the beta-cells of the db/db mice relative to the
control.

RESULTS

Ca2+ clearance after depolarization stimulated Ca2+

influx in normal and db/db beta-cells

We have previously dissected the contributions of multiple
clearance mechanisms in pancreatic beta-cells isolated from
Balb/c mice through pharmacological manipulation (Chen
et al. 2003). In this work, we used this method to compare

the clearance mechanisms in beta-cells isolated from age-
matched db/db and C57BL/6J mice. To quantitatively eval-
uate Ca2+ clearance after depolarization, control and db/db
cells were stimulated with 70 mmol/L KCl for 3 s and then
switched to normal extracellular solution (Fig. 1A and 1B).
Compared with normal beta-cells, the db/db cells exhibited a
reduced depolarization-triggered [Ca2+]i elevation, and [Ca2+]i
returned to the basal level in normal extracellular solution at a
significantly slower rate. In cells that had been pre-treated
with thapsigargin (TG), an irreversible inhibitor of the SERCA
pump, the increase in [Ca2+]i remained smaller, but the
clearance was faster in db/db cells than it was in the control
cells (Fig. 1C and 1D). This result suggested not only an
impairment of the SERCA pump but also a possible up-reg-
ulation of clearance mechanisms other than the SERCA
pump in db/db beta-cells. To dissect the contributions of NCX
and PMCA in clearance, we switched to a Na+-free solution
(Li7.4) or a high pH extracellular solution (Na8.8) after depo-
larization in cells pretreated with TG (Chen et al. 2003).
Compared with the control cells, Ca2+ clearance in db/db cells
was much faster in the presence of SERCA and PMCA
inhibition (TG + Na8.8). In contrast, [Ca2+]i returned to the
basal level with the same kinetics in db/db and control cells
when only the PMCA pump was functioning (TG + Li7.4).
Taken together, these results indicate the selective down-
regulation of depolarization-induced Ca2+ influx and the
SERCA pump and the up-regulation of NCX in db/db cells.

Reduced function of the SERCA pump in db/db beta-
cells compared with the control

The relative expression levels of the SERCA pump in normal
and db/db islets were studied using a SERCA-specific anti-
body that recognizes all three isoforms of SERCA. In
agreement with previous experiments (Roe et al. 1994; Va-
radi et al. 1996), the SERCA protein levels were severely
reduced in db/db islets compared with normal islets
(Fig. 2A). Because the Western blotting experiments were
performed using whole islets that contain alpha- and beta-
cells, it is difficult to determine the specific reduction in
SERCA in beta-cells. Therefore, we took a direct approach
to measure SERCA function in live beta-cells (Duman et al.
2006; Albrecht et al. 2002). The application of a high con-
centration of a rapid inhibitor of the SERCA pump, BHQ (100
μmol/L), in resting cells (Fig. 2B) or in cells that were stim-
ulated with a short (3 s, Fig. 2C) or long (30 s, Fig. 2D)
depolarization, produced an upstroke in the [Ca2+]i trace.
The difference between the BHQ-induced rate of change in
[Ca2+]i (J2) and the initial slope of the [Ca2+]i trace immedi-
ately before BHQ application (J1) represented the SERCA-
dependent uptake of cytosolic Ca2+, which was correlated
with different [Ca2+]i levels (Duman et al. 2006; Albrecht et al.
2002). SERCA activity was inhibited at [Ca2+]i ranging from
200 nm to 1000 nm, with increased inhibition at higher [Ca2+]i
(Fig. 2D).
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Quantitative modeling of the alterations in Ca2+ influx
and clearance in db/db beta-cells

Previously, we built a mathematical model to simulate cal-
cium clearance in normal beta-cells that used the Kd for
SERCA2 for SERCA in the simulation (Chen et al. 2003).
However, pancreatic beta-cells also express the SERCA3
subtype (Varadi et al. 1996), which has a much lower affinity
for Ca2+ (1100 nmol/L) than does SERCA2 (270 nmol/L)
(Lytton et al. 1992). We therefore revised our model to
accommodate two SERCA subtypes and manipulated the
maximal flux rates through the influx and clearance mech-
anisms to best simulate the peaks of transient [Ca2+]i and the

time constants following depolarization in normal cells under
different conditions (Fig. 3A). This simulation yielded a
VmaxSERCA2:VmaxSERCA3 ratio of approximately 1.2:1, and
the total SERCA activity correlated well with the experi-
mental data throughout a wide range of [Ca2+]i (Fig. 2D, dark
dashed lines). By comparing the experimental depolariza-
tion-evoked peak [Ca2+]i elevations in the control and db/db
beta-cells pretreated with TG, we determined that a 27%
decrease in Ca2+ influx from db/db cells was required to
account for the decrease in amplitude triggered by depolar-
ization. Based on the clearance dynamics in normal and
db/db cells treated with TG + Li7.4 and TG + Na8.8, we
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Figure 1. Ca2+ recoveries after short depolarizations in normal and db/db diabetic beta-cells. (A) Averaged clearances in

normal beta-cells pretreated with 1 μmol/L TG in control solution (n = 42, red), Li7.4 solution (n = 21, blue) and Na8.8 solution (n = 22,

purple) and in cells that were not pretreated with TG (n = 25, dark). (B) Averaged clearances in db/db beta-cells pretreated with

1 μmol/L TG in control solution (n = 32, red), Li7.4 solution (n = 16, blue) and Na8.8 solution (n = 16, purple) and in cells that were not

pretreated with TG (n = 34, dark). (C) Summary of the recovery time constants in different solutions from normal and db/db beta-cells.

Individual calcium recovery traces were fitted with single-exponential functions. (D) Summary of KCl-triggered [Ca2+]i elevations ([Ca
2+]i)

in different solutions from normal and db/db beta-cells.
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Figure 2. Impaired SERCA function in beta-cells from db/db mice. (A) Reduced total SERCA protein levels in islets from db/db

mice compared to those from normal mice. Beta-actin was used as an internal control, and the figure is representative of three

independent repeats. (B–D) BHQ (100 μmol/L) was acutely applied to resting cells (B) and cells that had been previously stimulated

with KCl for 3 s (C) or 30 s (D). The total cellular Ca2+ flux (defined as –d[Ca2+]i/dt) before (J1) and after (J2) BHQ application was

plotted on each figure. (E) JSERCA from normal beta-cells (open circle, n = 256) and from db/db diabetic beta-cells (filled circle,

n = 119) as a function of [Ca2+]i. The line indicates the total SERCA activity in normal beta-cells (including both SERCA2 and

SERCA3 activity) according to the model, whereas the dashed line represents the activity in db/db cells.
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determined that the NCX activity in db/db cells was up-reg-
ulated 130% relative to control cells. The residual activity
levels of SERCA2 and SERCA3 in db/db beta-cells were
65% and 0% of their respective levels in the control cells,
which approximated the experimental data nicely (Fig. 2D,
red dashed line). With these altered parameters, the simu-
lated [Ca2+]i elevation and the clearance dynamics after
depolarization fit the experimental data relatively well
(Fig. 3B–D). With the parameters chosen, we reproduced the
relative flux rates of the model for normal and beta-cells from
db/db mice (Fig. 3E and 3F). The total Ca2+ extrusion rate in
db/db beta-cells was ∼66% of the control, and the relative
role of SERCA was also reduced (from ∼66%–71% of the
total flux to ∼41%–56%). In contrast, the relative contribution
of the NCX increased, especially at high [Ca2+]i (>900 nm),
indicating that NCX hyper-activity may compensate for the
loss of the SERCA3 subtype.

No alterations in ER Ca2+ permeability in db/db beta-
cells compared to the control

SERCA pump defects combined with an up-regulation of
NCX function often result in reduced uptake of Ca2+ to ER
calcium stores (Ximenes et al. 2003), and alterations in ER
permeability during diabetes have been suggested (Islam
2002). To quantitatively evaluate the Ca2+ content in the
ER and its permeability, we modified a protocol from a
previous study conducted in sympathetic neurons (Albrecht
et al. 2002). Cells were initially bathed in an extracellular
solution that did not contain Ca2+ or Na+ (Li7.4) to block
the NCX and Ca2+ influx and were then perfused with BHQ
to trigger Ca2+ release from the ER calcium stores
(Fig. 4A). After [Ca2+]i returned to the basal level, the cells
were depolarized for 3 s in the presence of 4 mmol/L Ca2+

to boost the Ca2+ influx. Finally, the extracellular solution
was changed back to the Ca2+- and Na+-free solution with
BHQ. The rate of Ca2+ extrusion after KCl depolarization
was therefore due solely to the PMCA (JPMCA) and could
be described by a Hill function that correlated with the
different [Ca2+]i levels (Fig. 4B). Because the calcium-flux
changes induced by the first BHQ application (JBHQ(t))

were a result of both the release from the ER (Jrelease) and
Ca2+ extrusion via the PMCA, the Jrelease(t) was calculated
as the difference between JBHQ and JPMCA at each time
point (Fig. 4C). The drop in the ER Ca2+ concentration
([Ca2+]ER) at different time points was calculated based on
the following equation:

Δ Ca2+
� �

ER(t) = --
vi

vER κER

Zend

t

Jrelease κ idt =
vi

vER κER
Δ Ca2 +
� �(i)

ER(t) ,

(Albrecht et al. 2002), in which vi and vER are the volumes of
the cytoplasm and the ER, respectively, and κi and κER are
the calcium buffering ratios of the cytoplasm and the ER,

respectively. The minus of the integral (Δ Ca2 +
� �(i)

ER(t)) was

the change in total cytoplasmic Ca2+ concentration that
would occur if from time t onward, Jrelease were deposited
into a closed compartment that has the same volume as the
cytoplasm. Assuming that [Ca2+]ER equilibrates with [Ca2+]i
after BHQ application, we calculated the initial content in the
ER according to the following equation:

Δ Ca2+
� �i

ER(0) = Ca2 +
� �

i , endκ i +
Zend

0

Jrelease κ idt

Therefore, the time course of Δ Ca2+
� �(i)

ER(t) was shown in

Fig. 4D, and the relative permeability of the ER was
estimated according to the equation

PER(t)
vi

vERκER

h i
� -- Jrelease(t)

Δ Ca2+½ �(i)ER(t)
(Fig. 4E) (Albrecht et al. 2002).

In beta-cells from db/db mice, the BHQ-triggered [Ca2+]i
transient was significantly lower than in the control cells

(Fig. 5A). Based on the calculations, the average Ca2 +
� �i

ER

in the db/db beta-cells was approximately 89% of the value
in the normal cells (Fig. 5C, P < 0.05). Although the time
courses of Jrelease were apparently different in different cell
types (Fig. 5B), the relative permeabilities of the ER were
approximately the same (Fig. 5D), suggesting that the dif-
ference in ER release was due to a difference in the initial
[Ca2+]ER.

Glucose-induced calcium oscillations in normal
and db/db beta-cells

Finally, we directly monitored the calcium oscillations
induced by 15 mmol/L glucose in normal and db/db beta-
cells (Fig. 6A). Upon the application of glucose, [Ca2+]i often
decreased slightly before being elevated, which was sug-
gested to be due to the ATP-activated SERCA-dependent
sequestration of [Ca2+]i in the ER (Marie et al. 2001). Con-
sistent with a significant inhibition of SERCA2 activity
(Fig. 3), the initial decrease in [Ca2+]i was reduced signifi-
cantly in db/db cells (Fig. 6B). The maximal elevation in [Ca2+]i
triggered by glucose was also reduced in db/db cells compared

s Figure 3. Simulated Ca2+ recoveries after short depolari-

zations in normal and db/db diabetic beta-cells. (A and B)

Simulated clearances under different conditions obtained from

normal beta-cells (A) and db/db diabetic beta-cells (B). (C and

D) Simulated recovery time constants (C) and KCl-triggered

[Ca2+]i elevations (D) in beta-cells from normal and db/db mice.

(E and F) Simulated kinetic model for Ca2+ transport in normal

(E) and db/db (F) beta-cells. The flux rates were much higher

than the rates of [Ca2+]i change shown in Fig. 2E because the

model includes the effects of strong Ca2+ binding in the

cytoplasm by endogenous buffers and fluorescent indicators.
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course of Δ Ca2+
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ER(t) after BHQ application, which was calculated as stated in the main text (Albrecht et al. 2002). (E) Relationship of

PER[vi/(vERkER)] to different [Ca2+]i obtained during the BHQ-stimulated ER calcium release.
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with the control cells. However, the glucose-stimulated [Ca2+]i
increase was accelerated in the db/db cells, and the percent-
age of time the cells spent over the [Ca2+]i plateau was slightly,
but not significantly, different in the db/db cells. Overall, our
data suggest that multiple characteristics of the glucose-trig-
gered calcium transient are altered in db/db beta-cells.

DISCUSSION

In the current study, we showed that the PMCA activity in
islets from db/db mice was not significantly different com-
pared with that observed in normal mice, in contrast to the
previously reported down-regulation of PMCA function in
db/db islets and islets with insulin resistance (Roe et al. 1994;
Hoenig et al. 1990; Levy et al. 1998; Alzugaray et al. 2009).
The difference may be due to the different experimental
conditions tested and the different cell models used. How-
ever, because PMCA plays a minor role in calcium clearance
after depolarization in both mouse and rat pancreatic beta-
cells (Chen et al. 2003; Hughes et al. 2006), we believe that
PMCA may not be the primary target in the reshaping of
beta-cell calcium signaling pathways during the develop-
ment of diabetes. The functions of the SERCA2 and
SERCA3 subtypes were both impaired in db/db beta-cells,

as opposed to the selective impairment of SERCA3 function
in GK rats. This result partially explains the normoglycemic
phenotype of SERCA3 KO mice (Arredouani et al. 2002).
Because the high-affinity SERCA2 subtype functions in
basal [Ca2+]i regulation in beta-cells (Arredouani et al. 2002),
its down-regulation correlates with the reduction in the glu-
cose-stimulated initial decrease in [Ca2+]i in db/db beta-cells
(Fig. 6B), which may perturb glucose-stimulated insulin
secretion (Roe et al. 1994; Marie et al. 2001). In addition, we
report for the first time a 30% increase in NCX activity in
db/db beta-cells, which is consistent with the enhancement
of NCX transcription observed in islets cultured in high glu-
cose (Ximenes et al. 2003). Thus our data generally agree
with previous studies conducted in this field. In addition, by
fitting the experimental data to a modified mathematical
model, we obtained a quantitative description of all altera-
tions in the calcium signaling pathways in db/db mice, which
has not been previously reported.

Perturbed Ca2+ homeostasis has long been proposed as
a hallmark of diabetes (Bergsten 2000). Despite the many
alterations in the calcium signaling pathway in beta-cells
from db/db mice, we propose that the down-regulation of
SERCA is the earliest event. SERCA2 and SERCA3
expression levels are reduced in islets from both type I and
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type II diabetic mice at earlier stages (Varadi et al. 1996;
Liang et al. 2011), which may be due to increased levels of
glucose (Levy et al. 1998), saturated fatty acids (Cunha
et al. 2008), and cytokines (Dula et al. 2010; Cardozo et al.
2005) in the blood vessels and enhanced insulin resistance
in beta-cells (Borge et al. 2002). Because the SERCA
pump is the dominant clearance mechanism in beta-cells
that limits the amplitude of [Ca2+]i transients after depolar-
ization, SERCA pump inhibition dramatically enhances
depolarization-induced insulin secretion (Chen et al. 2003;
Hughes et al. 2006). Therefore, the down-regulation of

SERCA is a beneficial adaptation mechanism that enables
beta-cells to secrete more insulin to compensate for the
loss of beta-cell mass in type I diabetes or to overcome
insulin resistance in type II diabetes. This explanation is
supported by the accelerated onset of the glucose-stimu-
lated Ca2+ transient in db/db diabetic beta-cells relative to
the control cells (Fig. 6B). Along with the reduction in
SERCA expression, fine-tuning of the voltage-gated cal-
cium channel currents is needed to generate suitable [Ca2+]i
transients that maximize the secretion response and
minimize the apoptosis triggered by high [Ca2+]i. Because
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the NCX contributes more to the total clearance mechanism
of beta-cells at relatively high [Ca2+]i (Chen et al. 2003), the
loss of low-affinity SERCA3 may lead to the adaptive up-
regulation of NCX observed here, which assists in calcium
clearance from the cytosol during the stimulation and
shaping of glucose-triggered calcium transients. Despite the
significant reduction in SERCA activity and the enhanced
NCX activity, the decrease in [Ca2+]ER (11%) in db/db beta-
cells was relatively small, in contrast to the severe reduction
in [Ca2+]ER from insulin-secreting cell lines treated acutely or
chronically with saturated fatty acids (Cunha et al. 2008;
Gwiazda et al. 2009). These results highlight the importance
of systematic investigations of calcium signaling pathways
alterations in primary beta-cells isolated from diabetic ani-
mals, rather than solely detecting alterations in beta-cells
cultured in conditions that mimic diabetes. Decreased [Ca2+]ER
is a susceptibility factor for ER stress (Cunha et al. 2008;
Cardozo et al. 2005). Therefore, in the long run, a prolonged
small decrease in [Ca2+]ER in combination with other ER
stress susceptibility factors, such as excessive insulin bio-
synthesis (Grill and Bjorklund 2001), may ultimately result in
beta-cell failure, apoptosis, and severe glucose intolerance.

In conclusion, we characterize changes in multiple
aspects of the calcium signaling pathway in beta-cells
isolated from db/db mice compared with the control. These
quantitative studies will help build better models to
describe glucose-induced Ca2+ oscillations in diabetic
beta-cells (Bertram et al. 2004), which will provide insights
into the development of insulin secretion dysfunction and
beta-cell failure in the development of diabetes.

MATERIALS AND METHODS

Cell culture and Western blotting experiments

Primary islets and beta-cells were isolated from age-matched

C57BL/6J and db/db mice (7–8 weeks) as previously described

(Chen et al. 2003). Mouse handling and experimental procedures

were conducted in accordance with the Committee for the Use of

Live Animals in Teaching and Research at Institute of Molecular

Medicine, Peking University. The protocol was approved by the

Committee on the Ethics of Animal Experiments of Peking Uni-

versity (Permit Number: IMM-ChenLY-1). All surgery was per-

formed under chloral hydrate anesthesia, and all efforts were

made to minimize suffering. At this age, db/db mice were over-

weight and glucose intolerant, as previously reported (Kobayashi

et al. 2000). The isolated cells were plated onto polyornithine-

coated glass coverslips and cultured at 37°C in 5% CO2 in RPMI

1640 culture medium containing 10 mmol/L glucose, 10% fetal

bovine serum, 100 µg/mL streptomycin and 100 IU/mL penicillin.

Pancreatic beta-cells were identified by size (Cho et al. 2010) and

generally used on culture day 2 or 3. For the Western blotting

experiments (Fig. 2), isolated islets were homogenized using

homogenate buffer to obtain total proteins. Equal amounts of

proteins (approximately 30 µg/lane) were loaded to SDS-PAGE

and analyzed by Western blotting using anti-SERCA1/2/3 (SANTA

CRUZ, 1:800) and anti-beta actin antibody (Sigma, St. Louis, MO,

1:2000). The incubation with the antibodies was followed by the

application of rabbit anti-mouse IgG peroxidase conjugate (Sigma,

St. Louis, MO, 1:5000) and goat anti-rabbit IgG (Perkin Elmer,

1:5000). The blots were then probed with Western Lighting plus-

ECL (Perkin Elmer, Inc.) (He et al. 2008).

Experimental set-up and Ca2+ photometry

Cells were loaded with fura-2-AM (10 µmol/L) in modified Ringer’s

solution (130 mmol/L NaCl, 2.5 mmol/L KCl, 1 mmol/L MgCl2, 2

mmol/L CaCl2, 4 mmol/L glucose, and 10 mmol/L HEPES, pH 7.3) at

room temperature for 20–25 min. The modified Ringer’s solution was

also used as the extracellular solution for basal recording in the

glucose-induced calcium oscillation experiments, in which 15 mmol/L

glucose replaced 4 mmol/L glucose as the stimulus. For the Ca2+

clearance/[Ca2+]ER evaluation experiment, the cells were perfused

with the modified Ringer’s solution containing 15 mmol/L (instead of

4 mmol/L) glucose and 250 µmol/L diazoxide, and various reagents

were added to this solution to inhibit clearance mechanisms, as

described in the individual experiments. The depolarization solution

(KCl) consisted of 70 mmol/L KCl, 67 mmol/L NaCl, 4 mmol/L CaCl2,

1 mmol/L MgCl2, 15 mmol/L glucose, 250 µmol/L diazoxide, and 10

mmol/L HEPES, pH 7.3. To inhibit the NCX, we used a Na+-free

solution in which Li+ replaced Na+ (Li7.4) and raised the pH of the

solution to 8.8 (Na8.8) to slow the PMCA pump (Chen et al. 2003).

Rapid solution changes (<500 ms) were digitally controlled by a fast

local perfusion system (Chen et al. 2003).

For photometry, the cells were excited by sequential 340 and

380 nm light generated by a computer-controlled PolyChrome

IV (TILL Photonics) light source, and the emission at 505 nm

was collected by a photodiode. The PULSE software was used to

coordinate protocols and collect data, which were analyzed

using IGOR Pro. The standard calibration parameters Rmin, Rmax

and K* were determined as previously described (Chen et al. 2003).

Measurement of JSERCA and Jrelease activity at different [Ca2+]i in live

beta-cells

Following previously published reports (Duman et al. 2006; Albrecht

et al. 2002), we applied a high dose of tert-butylhydroquinone (BHQ,

100 μmol/L) to abruptly stop the uptake of Ca2+ by the ER via the

SERCA pump. The total cellular Ca2+ flux can be calculated as the

rate of change of [Ca2+]i (defined as –d[Ca2+]i/dt). Prior to the

application of BHQ, the total cellular Ca2+ flux (J1) can be described

by the equation

J1 = JSERCA + Jrelease + JPM ðEq:1Þ
JSERCA is the Ca2+ flux due to the BHQ-sensitive pumping of Ca2+

into the ER; Jrelease is the flux into the cytosol from intracellular stores;

and JPM is the flux across the plasmamembrane. The acute application

of BHQ changes the new total cellular Ca2+ flux (J1) according to

J2 = Jrelease + JPM ðEq:2Þ
Therefore, the value of JSERCA was calculated as the difference

between J1 and J2. In Fig. 4, we briefly treated the beta-cells with

High K+ solution containing BHQ to obtain Ca2+ clearance by the
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PMCA pump alone, and JPMCA was fitted to a Hill equation to

describe its relationship to different [Ca2+]i levels. Therefore, a

different Jrelease(t) was calculated based on Eq. 2, and the

appropriate value of JPMCA was inserted.

Data analysis

All data were analyzed using the Igor Pro software (Wavemetrics,

Lake Oswego, OR). The averaged results are presented as the

mean value ± SEM of the number of experiments indicated. The

statistical significance was evaluated using either Student’s t-test for

single Gaussian distributed datasets or the Mann-Whitney rank sum

test for non-single Gaussian-distributed datasets. The asterisks *, **,

and *** denote statistical significances with P values less than 0.05,

0.01, and 0.001, respectively.
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