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Sensory Gain Outperforms Efficient Readout Mechanisms in
Predicting Attention-Related Improvements in Behavior
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Spatial attention has been postulated to facilitate perceptual processing via several different mechanisms. For instance, attention can
amplify neural responses in sensory areas (sensory gain), mediate neural variability (noise modulation), or alter the manner in which
sensory signals are selectively read out by postsensory decision mechanisms (efficient readout). Even in the context of simple behavioral
tasks, it is unclear how well each of these mechanisms can account for the relationship between attention-modulated changes in behavior
and neural activity because few studies have systematically mapped changes between stimulus intensity, attentional focus, neural
activity, and behavioral performance. Here, we used a combination of psychophysics, event-related potentials (ERPs), and quantitative
modeling to explicitly link attention-related changes in perceptual sensitivity with changes in the ERP amplitudes recorded from human
observers. Spatial attention led to a multiplicative increase in the amplitude of an early sensory ERP component (the P1, peaking
�80 –130 ms poststimulus) and in the amplitude of the late positive deflection component (peaking �230 –330 ms poststimulus). A
simple model based on signal detection theory demonstrates that these multiplicative gain changes were sufficient to account for
attention-related improvements in perceptual sensitivity, without a need to invoke noise modulation. Moreover, combining the observed
multiplicative gain with a postsensory readout mechanism resulted in a significantly poorer description of the observed behavioral data.
We conclude that, at least in the context of relatively simple visual discrimination tasks, spatial attention modulates perceptual sensitivity
primarily by modulating the gain of neural responses during early sensory processing
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Introduction
Spatial attention has been postulated to facilitate perceptual sen-
sitivity via several mechanisms, including sensory gain (Moran
and Desimone, 1985; Motter, 1993; Luck et al., 1997), noise mod-
ulation (Mitchell et al., 2007, 2009; Cohen and Maunsell, 2009)
and the efficient “readout” of sensory representations (Palmer et
al., 2000; Pestilli et al., 2011). However, it is unclear how much
each of these mechanisms contributes to the relationship be-
tween attention-modulated changes in behavior and neural
activity.

Sensory gain models (Fig. 1A) postulate that attention ampli-
fies sensory signals evoked by attended stimuli. In a typical study,

the magnitude of sensory responses is assessed as a function of
stimulus contrast, yielding a contrast response function (CRF).
Using this approach, attention has been shown to modulate the
CRF in several ways: response gain, contrast gain, or a combina-
tion of both (Fig. 1B–D; Reynolds et al., 2000; Martínez-Trujillo
and Treue, 2002; Williford and Maunsell, 2006; Buracas and Boy-
nton, 2007; Kim et al., 2007; Murray, 2008; Lauritzen et al., 2010;
Lee and Maunsell, 2010; Itthipuripat et al., 2014). The relation-
ship between attention-related CRF and behavioral changes can
then be assessed using simple linking hypotheses. For example,
signal detection theory predicts that increasing the slope of CRFs,
which would happen with multiplicative gain, should amplify the
differential response evoked by stimuli rendered at slightly differ-
ent contrast levels and lead to better discriminability (Fig. 1A).
Similarly, regardless of the nature of gain modulations, a reduc-
tion in the trial-to-trial variability of neural responses should also
lead to better discriminability (Fig. 1E).

In contrast to sensory gain and noise modulation accounts, a
recent fMRI study reported that linking modulations of the fMRI
response to behavior required an efficient readout mechanism
that adaptively amplified the differential response evoked by tar-
get and nontarget stimuli (Fig. 1F). However, the generality of
these findings is unclear as fMRI measures of attentional modu-
lation are largely independent of stimulus intensity (Buracas and
Boynton, 2007; Murray, 2008), and may be strongly influenced
by the magnitude of top-down input to a region as opposed to
changes in local spiking activity (Logothetis and Wandell, 2004).
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Here, we quantitatively linked attention-related changes in
contrast discrimination thresholds with changes in neural activ-
ity measured using electroencephalography (EEG). We focus on
attention-related changes in the amplitude of two event-related
potentials (ERPs): the P1, an early component thought to reflect
sensory processing in early visual cortex (Van Voorhis and Hilly-
ard, 1977; Woldorff et al., 1997), and the late positive deflection
(LPD) component, which is thought to reflect decision-related
processing (Hillyard et al., 1971; Squires et al., 1973, 1975a,
1975b). Consistent with sensory gain models, we found that in-
creases in the amplitude of the P1 and LPD components were
sufficient to explain attention-induced changes in psychophysi-
cal contrast discrimination thresholds, without a need to invoke
noise modulation. In contrast, models that incorporated an effi-
cient readout mechanism did not accurately capture the link be-
tween ERP modulations and behavior. The results suggest that, at
least in relatively simple visual discrimination tasks, attention-
related improvements in perceptual sensitivity are more closely
linked to sensory gain.

Materials and Methods
Subjects. Seventeen neurologically healthy human observers (18 –31
years old, nine females, two left-handed) with normal or corrected-to-
normal vision were recruited from the University of California, San Di-
ego (UCSD). All participants provided written informed consent as
required by the local institutional review board at UCSD. All participants
first underwent a 2.5 h behavioral training session where contrast dis-
crimination thresholds were estimated using a staircase procedure (see
below). Next, each subject participated in multiple sessions of the main
EEG experiment (4 – 6 d over a period of 2–3 weeks). Each EEG session
lasted �3.5– 4 h, including EEG preparation, data acquisition, and
breaks. Data from one subject were discarded due to a failure to complete
the experimental protocol (the subject withdrew after the second EEG ses-
sion). Of the remaining 16 subjects, two subjects completed six EEG sessions
(126 blocks, 7056 trials) and the rest completed four EEG sessions (84 blocks,
4704 trials).

Stimuli and task. Stimuli were presented on a PC running Windows XP
using Matlab (Mathworks) and the Psychophysics Toolbox (version
3.0.8; Brainard, 1997; Pelli, 1997). Participants were seated 60 cm from
the CRT monitor (which had a gray background of 34.51 cd/m 2, 85 Hz
refresh rate) in a sound-attenuated and electromagnetically shielded
room (ETS-Lindgren).

Participants performed a two-interval forced-choice contrast discrim-
ination task (Fig. 2) similar to a procedure described by Pestilli et al.
(2011). Each trial started with a red, green, or blue cue that instructed the
subject to either covertly attend to the lower left or the lower right quad-
rant, or to attend to both quadrants. The relationship between cue color
and attention condition was counterbalanced across participants. Trials
in which the subject attended to either the left or the right quadrant were
termed focused-attention trials, and trials in which the subject attended
to both quadrants were termed divided-attention trials. The precue was
100% valid for the focused-attention trials, whereas the target was equally
likely to appear in the left or right hemifield on divided-attention trials.
The attention cue was presented for 500 ms and followed by a 400 – 600
ms blank interstimulus-interval (ISI). This ISI was followed by two suc-
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Figure 1. Competing theories of selective spatial attention. A, The sensory gain model pre-
dicts that focused spatial attention amplifies neural responses evoked by visual stimuli of dif-
fering contrasts. According to the sensory gain model, increasing the slope of neural CRFs with
attention will result in a reduction of the contrast increment (�C) that is required in the
focused-attention condition, compared with the divided-attention condition. Importantly, this
model makes an explicit assumption that neural gain in early sensory areas is sufficient to
account for attention-related improvements in perceptual performance. B–D, Note that many
past studies have reported that spatial attention leads to a variety of gain patterns in the neural
CRF: a multiplicative response gain (B), a contrast gain (C), or an additive baseline shift (D). Note
that we use the term additive shift instead of additive gain here since gain is multiplicative by
definition. E, The noise modulation model predicts that focused spatial attention reduces trial-
by-trial variability of neuronal responses and/or decreases correlated noises across neuronal
populations. Under this scenario, if sensory gain modulations are insufficient to explain changes
in psychophysical thresholds, changes in the noise parameter could be estimated to account for

4

the observed behavioral changes. F, The efficient readout model argues that attention does not
strongly modulate responses in early sensory areas and neither sensory gain nor noise modu-
lation could sufficiently account for attention-induced improvements in behavioral perfor-
mance. Instead, attentional modulation is driven primarily by the efficient selection or readout
of sensory signals in a manner that preferentially weights informative as opposed to noninfor-
mative sensory signals (Eq. 10, a max-pooling rule). In brief, the model will preferentially
weight the stimulus that evokes a relatively large response compared with a stimulus that
evokes a relatively small response, and consequently the stimulus evoking the larger response
will increasingly influence downstream decision mechanisms.

Itthipuripat et al. • Sensory Gain Versus Efficient Readout J. Neurosci., October 1, 2014 • 34(40):13384 –13398 • 13385



cessive stimulus presentations, with each presentation consisting of two
sinusoidal Gabor patches (spatial frequency, 1.04 cycles/°; SD of a Gauss-
ian window, 1.90°) located in the lower left and right quadrants (�8.58
and �7.63° from the horizontal and vertical meridians, respectively).
Each stimulus pair was presented for 300 ms, followed by a 600 – 800 ms
ISI. The pedestal contrasts of the two Gabor patches in each interval were
randomly selected from seven possible values (0, 2.04, 4.26, 8.90, 18.61,
38.90, and 81.13% Michelson contrast). The stimulus contrast at each
pedestal contrast level, except for the 0% contrast value, was jittered
�0.01 log contrast from the mean contrast value. For each trial, the
orientations of the left and right Gabor stimuli were yoked and the ori-
entation value was randomly drawn from a uniform distribution. During
one of the two stimulus intervals, a small contrast increment (�c) was
added to one of the Gabors for the entire interval. After the offset of the
second stimulus array, a postcue appeared to inform subjects which of
the two stimuli contained this increment, and subjects reported whether
the increment occurred during the first or second stimulus interval. Par-
ticipants were instructed to prioritize accuracy, and no response deadline
was imposed.

Each EEG session contained a total of 21 experimental blocks, which
were broken up into three minisessions consisting of seven blocks each.
Each minisession contained 392 trials across which all experimental con-
ditions were counterbalanced—i.e., 2 (attention cues: focused, di-
vided) � 2 (target locations: left, right) � 2 (target intervals: first,
second) � 7 (pedestal contrast levels of target) � 7 (pedestal contrast
levels of nontarget). Critically, �c for each target pedestal contrast and
each attention condition were adjusted after each minisession so that
accuracy was maintained at 76% across all experimental conditions. Note
that the contrast thresholds used in the first EEG minisession were ob-
tained from the thresholds initially estimated in the 2.5 h behavioral
training session using a staircase procedure that was applied indepen-

dently for each attention condition and each pedestal contrast level. Spe-
cifically, three successive correct responses led to a 0.5% decrease in the
�c that defined the target stimulus, while one incorrect response led to a
0.5% increase in �c. Trials from the first five reversals were excluded and
the mean values of the contrast increments from remaining trials were
used as contrast discrimination thresholds in the first EEG minisession.

Psychophysical analysis. To examine relationships between stimulus
contrast and attention condition (i.e., focused vs distributed) we gener-
ated a set of threshold-versus-contrast (TvC) functions by plotting �c as
a function of pedestal contrast separately for each attention condition.
We focused on data from the first six pedestal contrasts (0 –38.90%) as we
could not obtain stable �c estimates at the highest pedestal contrast, due
to scaling factors (i.e., the maximum contrast cannot be increased be-
yond 100%, so �c was too small at the highest pedestal value).

Following previous studies (Nachmias and Sansbury, 1974; Legge and
Foley, 1980; Ross et al., 1993; Boynton et al., 1999; Gorea and Sagi, 2001;
Huang and Dobkins, 2005; Pestilli et al., 2011), we assumed that percep-
tual sensitivity (indexed via d�) is limited by the differential neural re-
sponse amplitude [R(c � �c) � R(c), or �R] divided by the magnitude of
sensory noise (�), as expressed in the following equation (Eq. 1):

d� �
�R

�
�

R	c � �c	c

 � R	c


�

where R is a hypothetical CRF that was estimated using the following
Naka-Rushton equation (Eq. 2) (Geisler and Albrecht, 1997; Reynolds et
al., 2000; Pestilli et al., 2011):

R	c
 � Gr

cs�q

cq � Gc
q � b

Here, Gr is a multiplicative response gain factor that determines the
highest response amplitude of the CRF, Gc is a contrast gain factor that
determines the horizontal position of the CRF, b is the baseline offset at
0% contrast, and s and q are exponents controlling how quickly the CRF
rises and reaches an asymptote. Since Gr, �R, and � are codependent (i.e.,
they all control the vertical shift of the TvC), we set �R and � to 1. We also
set b to zero since changing b would not affect the shape of the TvC. With
the combination of the d� (Eq. 1) and Naka-Rushton (Eq. 2) equations,
the contrast discrimination thresholds can be estimated based on the
derivative (i.e., slope) of the hypothetical underlying CRF, as expressed in
the following equation (Eq. 3):

�c �
�R

dR/dc

where dR/dc is the derivative of the underlying CRF (Boynton et al.,
1999).

We fit the TvC functions with Equations 1–3 with Matlab’s fminsearch
function (Nelder–Mead method; nonlinear least squares) to estimate a
multiplicative response gain factor (Gr), a contrast gain factor (Gc), and
two exponents (s and q) that describe the hypothetical CRF that best
accounts for the observed TvC functions derived from the focused-
attention and divided-attention conditions in each subject. Paired t tests
were performed to examine the effects of focused and divided attention
on the Gr, Gc, s, and q parameters. Note that this analysis attempts to
recover the shape of the hypothetical CRF that best explains attention-
related changes in contrast discrimination thresholds under the assump-
tion that the behavioral data can be predicted by the differential response
evoked by target and pedestal stimuli divided by the variability of re-
sponses at each pedestal level (and that variability is constant across all
response levels).

EEG recording. EEG data were recorded with a 64 � 8-channel Biosemi
ActiveTwo system (Biosemi Instrumentation) at a sampling rate of 512
Hz. The 64 channels were equally spaced across the EEG cap and covered
the whole head from above the eyebrows to slightly below the inion. Two
reference electrodes were placed at the mastoids. Vertical eye movements
and blinks were monitored via four extra electrodes placed below and
above the eyes. Horizontal eye movements were detected by another pair
of electrodes, placed near the outer canthi of the eyes. Electrode imped-
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Figure 2. Experimental design. The two-interval forced-choice contrast discrimination task.
Each trial started with an attention cue (a color cue, first column) instructing subjects to covertly
attend to the lower left (a red cue) or right (a blue cue) quadrant (focused-attention conditions),
or to both quadrants (a green cue, divided-attention condition). The white dotted rings in the
second and third columns represent the spatial positions of the stimuli that the subjects were
supposed to attend to (although they were not shown in the actual display). The attention cue
was followed by two successive stimulus presentations, each consisting of two sinusoidal Gabor
patches located in the lower left and right quadrants. The pedestal contrasts for each of the
Gabor patches were randomly chosen from seven possible values (0 – 81.13% Michelson con-
trast). During one of the two stimulus intervals, a Gabor patch (either left or right) had a contrast
increment (�c) added to its pedestal contrast. After the second stimulus interval, a target cue
appeared, informing subjects of the exact location of the target stimulus. Subjects reported
whether the first or second stimulus presentation contained the target stimulus of higher
contrast.
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ances were kept �20 k�, which is standard for this active-electrode
system.

EEG preprocessing and analysis. The EEG data were preprocessed using
a combination of EEGlab11.0.3.1b (Delorme and Makeig, 2004) and
custom Matlab scripts. The continuous EEG data were first rereferenced
to the algebraic mean of the two mastoid electrodes and then filtered by
applying 0.25 Hz high-pass and 55 Hz low-pass Butterworth filters (third
order). The data were then segmented into epochs extending from 195
ms before to 3437 ms after the trial onset (i.e., the attention cue onset).
Artifact rejection was performed off-line by discarding epochs contami-
nated by eye blinks and vertical eye movements (
�80 –150 �V devia-
tion from zero; exact thresholds were determined on a subject-by-subject
basis due to differences in amplitudes of eye blink and vertical eye move-
ment artifacts), horizontal eye movements (
�75 �V deviation from
zero), excessive muscle activity, or drifts using threshold rejection and
visual inspection on trial-by-trial basis, which resulted in the removal of
17.46% (SD, 6.44%) of trials across all subjects.

Next, the artifact-free data were time-locked to the onset of the first
and second stimulus presentations and the algebraic mean of the pre-
stimulus baseline (�100 – 0 ms preceding stimulus onset) was subtracted
from each epoch. The data were then sorted into 112 different bins: 2
(attention conditions: focused, divided) � 2 (stimulus intervals: first,
second) � 2 (types of the stimulus of interest: target, nontarget) � 2
(locations of the stimulus of interest: left, right) � 7 (pedestal contrast
levels). We arranged the electrode labels so that the electrodes that were
contralateral and ipsilateral to the stimulus of interest were on the right
and left hemispheres of the head model, respectively. Accordingly, we
collapsed trials across target position and averaged all epoched EEG data

to obtain ERPs. To subtract out the evoked potentials associated with the
stimulus that was paired with the stimulus of interest and to minimize the
potential effects of anticipatory ERPs, we subtracted the ERP evoked by a
contralateral 0%-contrast stimulus in each stimulus-cue condition (fo-
cused target, focused nontarget, divided target, divided nontarget) from
the ERPs elicited by stimuli of all other contrast levels in each condition
(Fig. 3, schematic illustrating all signal processing steps; Talsma and
Woldorff, 2005). Finally, we collapsed across ERPs evoked by the first
and second stimulus presentations.

Previous work has shown that attentional modulation of N1 ampli-
tudes (an early negative-going waveform in ERPs) can be confounded by
modulations of the nearby P1 and LPD components (especially when
bilateral displays are used; Mangun et al., 1987; Heinze et al., 1990; Luck
et al., 1990; Lange et al., 1999; Störmer et al., 2009). Thus, our analyses
focus on attention-related modulations of P1 and LPD component am-
plitudes. The P1 component is thought to index sensory gain in early
visual cortex based on its timing (�80 –130 ms poststimulus) and its
putative origin in extrastriate visual cortex (Van Voorhis and Hillyard,
1977; Woldorff et al., 1997; Hillyard and Anllo-Vento, 1998). The LPD
component, which is maximal above the parietal lobe, has been linked to
the accumulation of sensory evidence and perceptual decision mecha-
nisms (Hillyard et al., 1971; Squires et al., 1973, 1975a, 1975b; O’Connell
et al., 2012). If early sensory gain is sufficient to explain attention-
induced changes in behavior, we should be able to use signal detection
theory to link attention-induced changes in P1 component amplitude with
changes in psychophysical contrast discrimination thresholds. The predic-
tive relationship between LPD component amplitude and behavior might
also be expected if early sensory gain cascades to later processing stages.
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the ERP response evoked by the left focused-attention nontarget stimulus of 0% contrast (A, right; B, top, black traces) was subtracted from the ERP response evoked by the left focused-attention
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To examine the pattern of attentional gain of
the P1 component amplitude, we calculated the
mean amplitude of the early positive P1 compo-
nent across three contiguous contralateral
posterior-occipital electrodes (PO3, P5, and P7
for right stimuli; PO4, P6, and P8 for left stimuli)
across a 80 –130 ms poststimulus window.
These analyses were performed separately for
each contrast level, attention condition, and
stimulus type. We also identified and exam-
ined the mean amplitude of LPD components
across three focal central posterior electrodes
(P1, Pz, and P2) across a 230 –330 ms post-
stimulus window. Next, the mean amplitudes
of the P1 and LPD components for each atten-
tion condition were averaged across subjects
and plotted as a function of stimulus contrast
(for nontarget stimuli, the contrast value was
the pedestal contrast; for target stimuli, the
contrast value was the average between the
pedestal contrast and the contrast value of the
stimulus that contained the contrast incre-
ment, corresponding to the averaged physical
contrast of the stimulus of interest across the
two stimulus intervals). We then fit these func-
tions with the Naka-Rushton equation (Eq. 2)
to estimate the baseline (b), the maximum re-
sponse (Rmax), and the semisaturation [the
contrast value at half the Rmax (C50)] parame-
ters using Matlab’s fminsearch function. In this
fitting routine, there were a total of 28 observed
data points (seven contrast levels times four
attention/stimulus-type conditions) and 14
free parameters (four attention/stimulus-type
conditions times three free parameters Gr, Gc,
and b), plus s and q exponents that were iden-
tical across all conditions. Since the Gr and Gc

parameters control the response and contrast
gain of the function where the contrast axis
ranges from zero to �, the Gr and Gc parame-
ters could in principle exceed the realistic range
of stimulus contrast (0 –100% contrast). Thus,
instead of directly comparing Gr and Gc param-
eters across conditions, we obtained Rmax and
C50 parameters as they respectively capture re-
sponse gain and contrast gain of the CRFs over
the realistic range of stimulus contrast values.

Next, a bootstrapping procedure was used to
assess differences between parameter estimates
in each condition and to establish confidence
intervals on the best fitting model parameters.
First, we resampled subject labels with replacement. Next, we averaged
the mean amplitudes of P1 and LPD components across the resampled
subject labels to generate ERP CRFs for each experimental condition, and
then we fit the grand-averaged ERP CRFs to estimate b, Rmax, and C50

parameters. This resampling and fitting procedure was then repeated
10,000 times to create bootstrap distributions from which confidence
intervals associated with each parameter were computed. To evaluate the
main effect of attention condition (focused/divided), we compiled the
bootstrap distribution of the differences between the estimated fit pa-
rameters in the focused-attention and distributed-attention condi-
tions—i.e., focused (target plus nontarget) minus divided (target plus
nontarget)—and computed the percentage of values in the tail of this
distribution that were �0. Similarly, we tested the main effect of stimulus
type (target/nontarget) by compiling the bootstrap distributions of the
differences between the estimated fit parameters in the target and the
nontarget conditions—i.e., target (focused plus divided) minus nontar-
get (focused plus divided). The interaction between attention condition
and stimulus type was examined by comparing the bootstrap distribu-

tions of focused (target minus nontarget) minus divided (target minus
nontarget). Finally, post hoc comparisons were performed to test for
additional differences between pairs of conditions by evaluating boot-
strap distributions of differences and then computing the percentage of
the values in the tails of these distributions that were 
0 or �0. We used
two-tailed statistical tests to be conservative and all p values associated
with post hoc comparisons were corrected by the Holm-Bonferroni
method.

Fit procedure for the sensory gain model. To quantitatively evaluate
whether gain in the ERP response amplitudes in the P1 and LPD compo-
nent windows could sufficiently account for attention-induced changes
in contrast discrimination thresholds, we simulated the P1 and LPD
component CRFs using the combination of the d� (Eq. 1) and Naka-
Rushton (Eq. 2) equations (Fig. 4). The main parameters of interest were
the baseline parameter of the simulated CRFs (b) and the noise parameter
in the d� equation (�; see similar method in Pestilli et al., 2011). Specifi-
cally, the TvC functions in the focused-attention and divided-attention
conditions were first estimated using Equations 1–3. Then, we estimated

R(C0) = b
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Figure 4. Testing the sensory gain model. To quantitatively evaluate whether the observed sensory gain in the ERP CRFs could
sufficiently account for attention-induced changes in the contrast-discrimination thresholds, the TvC functions from the focused-
attention and divided-attention conditions were interpolated (A, C, and E) and the ERP CRF (B, D, F) was estimated based on the
interpolated TvC function using the combination of the signal-detection theory (Eq. 1) and Naka-Rushton functions (Eq. 2), given
that d� � 1 (accuracy, �76%; see step-by-step details in Materials and Methods).

13388 • J. Neurosci., October 1, 2014 • 34(40):13384 –13398 Itthipuripat et al. • Sensory Gain Versus Efficient Readout



the P1 and LPD component CRFs for the divided condition based on the
TvC function of the divided-attention condition. The fit routine started
by setting the first point on the estimated CRF (c0 � 0% contrast) to be a
baseline parameter (b), for any given values of b and � (Fig. 4 A, B), as
shown in the following equation (Eq. 4): R(c0) � b.

The next contrast (c1) for which a response was estimated was taken
from the TvC function shown in the following equation (Eq. 5): c1 � c0 �
�c0, where �c0 is the threshold at c0 (Fig. 4C). Then, the response at c1 was
estimated using the d� equation (Eq. 1) as shown in the following equa-
tion (Eq. 6): R(c1) � b � �, given that d� � 1 (Fig. 4D). The next contrast
was selected in the same way, shown in the following equation (Eq. 7):
c

i
� ci � 1 � �ci � 1, where i is the number of the current iteration that is


1. Accordingly, the response at ci was estimated as the following equa-
tion (Eq. 8): R(ci) � R(ci � 1) � �. This procedure was continued until the
entire CRF was estimated (Fig. 4 E, F ). Finally, the b and � parameters
were optimized by minimizing the least-squares error between the sim-
ulated CRFs and the observed P1 and LPD component CRFs in the
divided-attention condition (the average between divided-attention
target and nontarget conditions) using Matlab’s fminsearch function.
To test whether the multiplicative response gain of the ERP CRFs
alone could account for changes in the TvC function, we estimated
the P1 and LPD component CRFs for the focused-attention target,
using the modeling routine described above with the b and � param-
eters that are identical to those obtained from in the divided-attention
condition.

To test whether allowing changes in the noise (�) and baseline (b)
parameters across the focused-attention and divided-attention condi-
tions could significantly improve the fit of the P1 and LPD component
responses, we estimated the P1 and LPD component CRFs derived from
the focused-attention condition as we did above except that we allowed �
and b parameters to vary freely to find the best fit. The R 2 value obtained
from the model with fixed � and b parameters (reduced model) was then
compared with the R 2 value from the model with free � and b parameters
in the focused-attention condition (full model), using an F test statistic as
shown in the following equation (Eq. 9):

F	Df1,Df2
 �
Rfull

2 � Rred
2

Df1
�1 � Rfull

2

Df2

where Rfull
2 and Rred

2 are obtained from the best fits of the full and reduced
models, respectively. Df1 is the number of parameters in the full model
(four free parameters: � and b for the divided-attention condition, and �
and b for the focused-attention condition) minus the number of the
parameters in the reduced model (two free parameters: � and b, shared
across the divided-attention and focused-attention conditions). Df2 is
the number of observations (seven contrast levels times two attention
conditions) minus the number of the free parameters in the full model
minus one. The F distribution was then used to estimate the probability
that the full model differed significantly from the reduced model.

To determine whether allowing the optimization of � and b in the
focused-attention condition led to a significant change in these parame-
ters in the divided-attention condition, we used a bootstrapping proce-
dure to establish confidence intervals on the best fitting model
parameters (� and b for the divided-attention condition, and � and b for
the focused-attention condition). First, we resampled subject labels with
replacement. Next, we averaged the psychophysical contrast discrimina-
tion thresholds and the mean amplitudes of P1 and LPD components
across the resampled subject labels to generate new TvC and ERP CRF
functions for each experimental condition. Then, the TvC functions were
interpolated using Equations 1–3. In turn, the interpolated TvC func-
tions were used to estimate the ERP CRFs via the model as described in
Figure 4 and � and b for each of the attention conditions were optimized
using Matlab’s fminsearch function. To test the difference between �
parameters obtained from the divided-attention and focused-attention
conditions, we compiled the bootstrap distribution of the differences
between the estimated fit parameters in the focused-attention and the
distributed-attention conditions, and computed the percentage of values
in the tail of this distribution that were different from zero. An identical
analysis was then performed for b parameters.

In addition, to examine the variability of the P1 and LPD component
amplitudes across focused-target and divided-target conditions, we resa-
mpled half of the trials for each pedestal contrast level and each attention
condition (focused-target and divided-target conditions) separately for
individual subjects. The ERP for each pedestal contrast and each atten-
tion condition was obtained by averaging the stimulus-locked EEG data
across these resampled trials and applying the subtraction method (Fig.
3). This resampling method was repeated 1000 times and the SEM am-
plitudes of these resampled and subtracted ERPs (P1 component from 80
to 130 ms and LPD component from 230 to 330) was obtained for each
subject.

Fit procedure for the efficient readout model. First, we estimated the
three CRFs (focused target, focused nontarget, and the average between
divided target and nontarget) using the Naka-Rushton equation (Eq. 2),
with Gr and Gc as free parameters for each of the three CRFs and q, s, and
b parameters that were shared across the three CRFs. Since a max-
pooling rule (Eq. 10; see below) requires overall response amplitudes to
be positive values, the baseline values of the P1 and LPD component
CRFs, which were slightly negative, were subtracted out from the CRFs so
that all values on the CRFs were converted to positive numbers. This was
done separately for the P1 and LPD component CRFs, and the resulting
values formed the basis of the efficient readout model. Next, we simu-
lated the performance of an ideal observer in 60,018 randomly generated
trials (Fig. 5). These trials include 10,003 trials of each of the six trial types
where the target contrast was 0, 2.04, 4.26, 8.90, 18.61, and 38.90% con-
trast, respectively (this ensures that the simulated performance of an
ideal observer did not vary more than �0.01% for each pedestal contrast
level). Note that we focused on these six contrast levels where the accu-
racy was successfully equated across subjects (Fig. 2B). From these 10,003
trials, there were 1429 trials each where the nontarget contrast was 0,
2.04, 4.26, 8.90, 18.61, 38.90, and 81.13%, respectively. Then, for each
simulated trial, we set the response of each stimulus type (target or non-
target) and stimulus interval (the interval that contains the contrast in-
crement target) as a random draw from a Gaussian distribution whose
mean was given by the mean amplitude of the interpolated P1 and LPD
component CRFs at the corresponding contrast value and whose SD was
the � parameter in the d� equation (Eq. 1). The target (Rtg) and nontarget
evoked responses (Rntg) were then pooled into a single value (Rp) using
the max-pooling equation expressed as follows (Eq. 10):

Rp �
1

2
�k Rtg

k � Rntg
k

where k is an exponent that weights each of the responses to individual
stimuli (k ranges from 1 to �). Next, we searched for the contrast incre-
ment value (�c) that yielded 76% (or d� � 1) across the 10,003 simulated
trials at each target contrast, assuming that an ideal observer would
choose the interval that contained a larger pooled response as the interval
that contained the target. To test how well we could estimate the TvCs
based solely on the multiplicative response gain increase of the P1 and
LPD component CRFs, we fixed k at 1 (i.e., equivalent to no differential
weighting) and we optimized the � parameter to find the best fit by
minimizing the least-square error (this essentially amounts to the sen-
sory gain model). To examine whether the max-pooling rule (k 
 1)
improves our ability to estimate attention-induced changes in behavior,
we then allowed k to increase from 2 to 70 (the range of k used in this
fitting routine is based on the best fit value (k � �68) recently reported
by Pestilli et al. (2011).

Results
Focused attention reduces psychophysical contrast
discrimination thresholds
Figure 6A shows the mean response accuracy for each attention
condition and each pedestal contrast level. By design, the �c for
each pedestal contrast and each attention condition were ad-
justed every seven blocks (i.e., the minimum number of blocks
needed to ensure that all trial types were counterbalanced) to
equate accuracy at a fixed level across attention conditions and
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pedestal contrast levels. As a result, accu-
racy did not deviate significantly from
76% for the first six pedestal contrast lev-
els [accuracy, 76.11 � 0.64% (mean �
SEM across subjects)]. A 2 � 6 repeated-
measures ANOVA with attention condi-
tion and stimulus contrast as within-
subject factors revealed no effect of the
attention cue (F(1,15) � 0.08, p � 0.78), a
marginal effect of stimulus contrast
(F(5,75) � 2.28, p � 0.055), and no inter-
action between these two factors (F(5,75) �
1.30, p � 0.27). While these results suggest
that accuracy was successfully matched
across the first six contrast levels, the con-
trast increment at the highest pedestal
contrast reached ceiling in most subjects
(14 of 16 subjects), which prevented us
from accurately estimating contrast dis-
crimination thresholds (that is, when the
pedestal contrast plus �c reached 100%,
and we were unable to increase contrast
further). Thus, overall accuracy was lower
for the highest contrast pedestal com-
pared with lower contrast pedestals (t(15)

� 4.28, p � 0.0001). Because we were un-
able to equate the accuracy at the highest
pedestal contrast, we focused all subse-
quent behavioral analyses on the first six
pedestal contrast levels (0 –38.90% con-
trast) for which task difficulty was suc-
cessfully equated.

Given that accuracy was by design
equated across the first six pedestal levels,
the critical measure of the effects of atten-
tion on behavioral performance was the
�c required to achieve threshold perfor-
mance at each pedestal contrast. We thus
evaluated attention effects using a two-way
repeated-measures ANOVA with attention
condition and stimulus contrast as within-subject factors. Consis-
tent with many previous studies (Nachmias and Sansbury, 1974;
Legge and Foley, 1980; Ross et al., 1993; Gorea and Sagi, 2001;
Huang and Dobkins, 2005; Pestilli et al., 2011), �c significantly
increased as a function of pedestal contrast (Fig. 6B; F(5,75) �
106.15, p � 0.0001). Moreover, contrast discrimination thresholds
were significantly lower in the focused-attention condition com-
pared with the divided-attention condition (F(1,15) � 30.98, p �
0.0001), demonstrating that subjects were more sensitive to small
contrast changes in the focused-attention condition compared
with the divided-attention condition. Post hoc t tests revealed that
this pattern held across all six pedestal contrast levels that were
considered in the analysis (all t(15)’s �3.33, all p’s �0.0045,
Holm-Bonferroni corrected).

In addition, the combination of d� and Naka-Rushton equa-
tions (Eqs. 1–3) accurately predicted the observed contrast dis-
crimination thresholds (Fig. 6B) in both the focused-attention
[blue curve; R 2 � 0.98 � 0.0034 (mean � SEM)] and the divided-
attention conditions [green curve; R2 � 0.98 � 0.0034 (mean �
SEM)]. Importantly, the downward shift of the TvC curves with
focused attention was selectively driven by an increase in the
multiplicative response gain factor (Gr) of the Naka-Rushton
equation (t(15) � 4.92, p � 0.001), which reflects an increase in

the slope of the inferred CRFs in the focused-attention condition.
Other parameters of the Naka-Rushton equation, including the
contrast gain factor (Gc) and the exponents (q and s) did not
differ across the focused-attention and divided-attention condi-
tions (Gc: t(15) � 0.23, p � 0.82; q: t(15) � 0.72, p � 0.50; s: t(15) �
1.43, p � 0.17). These results suggest that the effects of focused
attention on the shape of the behavioral TvC curves can be best
explained via changes in the multiplicative response gain of the
hypothetical CRF. However, it is important to note that this effect
of focused attention that was inferred solely on the basis of be-
havior can also be explained by alternative neural models (Pelli,
1985; Palmer et al., 2000; Mitchell et al., 2007, 2009; Cohen and
Maunsell, 2009; Pestilli et al., 2011).

Focused attention enhances multiplicative response gain of
visually evoked responses
The grand average of stimulus-locked ERPs (see Materials and
Methods; Fig. 3) are shown in Figure 7A for each contrast level
and combination of attention condition and stimulus type. In the
posterior-occipital electrodes, we observed the lateralized P1 and
N1 components peaking at �80 –130 and �150 –200 ms, respec-
tively. These early components are followed by the LPD compo-
nent peaking at �230 –330 ms over centroparietal electrodes.
The timing (Fig. 7A) and topography (Fig. 7B) of each ERP com-

Focused Attention Divided Attention

N
um

be
r 

of
 

S
im

ul
at

ed
Tr

ia
ls

Amplitude

d’ =1 d’ =1

R
es

po
ns

e 
A

m
pl

itu
de

Contrast

Sensory responses evoked by individual stimuli

Max pooling

Rp    = k

2
Rtg         + Rntg

k k

RntgRtg

N
um

be
r 

of
 

S
im

ul
at

ed
T

ria
ls

Amplitude

1,429 trials 
each

target

non-target

target/
non-target

10,003 trials to 
estimate ΔC for each 

pedestal contrast

Rtg Rntg

ΔC ΔC

Figure 5. Testing the efficient readout model. Psychophysical contrast discrimination thresholds were estimated based on the
CRFs measured by ERP responses (P1 and LPD components) using the max-pooling rule (Eq. 10; yellow box in the figure). The
exponent of the max-pooling rule (k) determines the differential weight given to responses to target (Rtg) and nontarget stimuli
(Rntg) in each interval, which are later pooled into a single neural output (Rp). We used an ideal observer model that selected the
interval with the highest Rp to determine the contrast increment value (�c) that yielded 76% (or d�� 1) across 10,003 simulated
trials at each target contrast. We first set k � 1 to examine how well sensory gain alone can estimate changes in the observed
contrast thresholds. Finally, k was allowed to increase from 2 to 70 to determine whether the increase in differential weighting as
implemented by the max-pooling rule is better at predicting changes in the behavioral data.
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ponent is consistent with previous reports of the P1, N1, and LPD
components (Campbell and Kulikowski, 1972; Spekreijse et al.,
1973; Van Voorhis and Hillyard, 1977; Wright and Johnston,
1982; Mangun and Hillyard, 1987, 1988, 1990, 1991; Heinze et al.,
1990; Luck et al., 1990; Vassilev et al., 1994; Johannes et al., 1995;
Hillyard and Anllo-Vento, 1998; Hillyard et al., 1998; Mangun
and Buck, 1998; Lange et al., 1999; Noesselt et al., 2002; Schadow
et al., 2007; Zimmer et al., 2010; Cravo et al., 2013). Note that
previous work has shown that attentional modulation of N1 am-
plitudes can be confounded by modulations of the nearby P1 and
LPD components (especially when bilateral displays are used;
Mangun et al., 1987; Heinze et al., 1990; Luck et al., 1990; Lange et al.,
1999; Störmer et al., 2009). Thus our analyses focus on attention-
related modulations of P1 and LPD component amplitudes.

To assess the effect of attention on the gain pattern of neural
CRFs, the mean amplitudes of the P1 and LPD components were
plotted as a function of stimulus contrast (Fig. 8A,D). Overall,
the Naka-Rushton equation explained a large proportion of the
variance in the P1 (mean R 2, 0.92; 68% CI, 0.88 – 0.96) and LPD
component CRFs (mean R 2, 0.95; 68% CI, 0.94 – 0.97). Neither
attention (i.e., focused vs distributed) nor stimulus type (target vs
nontarget) had an effect on the baseline or the C50 parameters
(nor did these factors interact; Fig. 8B,E, left, right; baseline: all
p’s � 0.21; C50: all p’s � 0.15; note that all p values reported here
and elsewhere for the ERP data are based on bootstrapping at the
subject level). However, we did find that attention significantly
modulated the response gain of the P1 and LPD component CRFs
(the Rmax parameter; Fig. 8B,E, middle).

For the Rmax for the P1 component CRF (Fig. 8A–C), there
was a significant interaction between attention condition and
stimulus type (p � 0.0022). Post hoc pairwise comparisons (two-

tailed) with the Holm-Bonferroni correc-
tion revealed that this interaction was
driven by a higher Rmax for focused-
attention targets compared with focused-
attention nontargets (blue vs red lines;
p � 0.0026) and compared with divided-
attention targets (blue vs green lines; p �
0.015). In addition, the Rmax for divided-
attention nontargets was significantly
higher than the Rmax associated with
focused-attention nontargets (purple vs
red lines; p � 0.020). We did not find any
difference in Rmax between target and
nontarget stimuli in the divided-attention
condition (green vs purple lines; p �
0.35).

For the Rmax for the LPD component
CRF (Fig. 8D–F), we observed a signifi-
cant main effect of stimulus type (target/
nontarget; p � 0.0001) and a significant
interaction between attention condition
and stimulus type (p � 0.0001). Post hoc
pairwise comparisons (two-tailed) with
Holm-Bonferroni correction revealed
that this interaction was driven by a
higher Rmax for focused-attention targets
compared with focused-attention nontar-
gets (blue vs red lines; p � 0.0001) and
compared with divided-attention targets
(blue vs green lines; p � 0.0086). In addi-
tion, Rmax for divided-attention nontar-
gets was significantly higher than Rmax for

focused-attention nontargets (purple vs red lines; p � 0.0018)
and Rmax for divided-attention targets was significantly higher
than Rmax for divided-attention nontargets (green vs purple lines;
p � 0.017).

In sum, we observed that focused spatial attention primarily
increased the slope of P1 and LPD component CRFs via a multi-
plicative response gain as indexed by Rmax, and that there was no
significant impact on other parameters, such as the baseline offset
or the semisaturation constant. Importantly, the increases in
multiplicative response gain of the P1 and LPD component CRFs
with focused attention are qualitatively consistent with the effects
of focused attention on the psychophysically measured TvC func-
tions, which were also modulated in a manner that is suggestive of
a multiplicative response gain in the hypothetical CRFs (see psy-
chophysical results).

Sensory gain is sufficient to account for attention-related
behavioral improvements
Although both the psychophysical and the ERP data are consis-
tent with the sensory gain model depicted in Figure 1A, these two
independent sources of information must be formally linked to
directly test competing accounts of attentional selection. For ex-
ample, the magnitude of sensory gain that we observe in the ERP
data might be either too small or too large to accurately predict
the magnitude of psychophysically measured attention effects
(Cook and Maunsell, 2002; Cohen and Maunsell, 2009; Pestilli et
al., 2011). If this turns out to be the case, then we might need to
posit an additional readout mechanism to accurately characterize
the behavioral data (Pestilli et al., 2011). In contrast, if the sensory
gain model fits the data with a high degree of precision, then we
may not need to invoke any additional readout mechanism.
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Figure 6. Psychophysical results. A, Accuracy was successfully equated across attention conditions for the first six pedestal
contrast levels by systematically changing �c. Subjects performed poorly for the target of the highest contrast as we could not
make �c large enough at this pedestal (unconnected circles at 81.13% contrast). Thus, we focused the behavioral analysis on the
first six pedestal contrast levels. B, Psychophysical contrast discrimination thresholds at different pedestal contrast levels across
focused-attention (blue circles) and divided-attention conditions (green circles). Smooth curves represent the fits of the TvC
functions using a combination of signal detection theory (Eq. 1) and a Naka-Rushton equation (Eq. 2). Focused attention reduced
discrimination thresholds, leading to a downward shift of the TvC. In turn, this downward shift in the TvC curve is consistent with
a change in the multiplicative response gain parameter or the slope of the underlying CRF. Error bars in all figures indicate �SEM
across subjects.
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Thus, we then tested a series of nested
models that incorporate sensory gain
and/or efficient readout to determine
which model (or combination of models)
most parsimoniously links the ERP-
derived CRFs with the psychophysically
measured TvC functions. To assess
these models, we first estimated the con-
tribution of pure sensory gain to behav-
ioral performance using a quantitative
framework based on signal detection
theory, which assumes that behavioral
contrast discrimination thresholds are
directly related to the amplitude differ-
ence and the variability of stimulus-
evoked responses in early visual cortex.
Then, we combined this sensory gain
model with a recently developed efficient
readout model, which estimates the de-
gree to which early sensory responses are
differentially weighted by postperceptual
decision mechanisms (Pestilli et al., 2011).
This variant of a readout model is de-
signed to ensure that responses evoked by
attended stimuli contribute more to a de-
cision variable than responses associated
with irrelevant stimuli, even in situations
where attention-related sensory gain is
minimal.

To investigate the sensory gain model,
we first fit the psychophysical contrast
discrimination thresholds in the divided-
attention condition using a combination
of the d� (Eq. 1) and the Naka-Rushton
equations (Eq. 2) to obtain a continuous
TvC function (Fig. 9A, green curve).
Then, we optimized the sensory noise pa-
rameter (�) in Equation 1 and the baseline
(b) parameter in Equation 2 to find the
value of each parameter that best fit the P1
and LPD component CRFs using only
data from the divided-attention condi-
tion. This procedure resulted in an excel-
lent fit for both the P1 (Fig. 9B, green
curve; R 2 � 0.97, � � 0.15 �V, b � �0.13
�V) and LPD component CRFs (Fig. 9C,
green curve; R 2 � 0.89, � � 0.44 �V, b �
�0.57 �V). To examine how well changes in multiplicative re-
sponse gain of the P1 and LPD component CRFs (Fig. 8) could
account for the observed behavioral improvements with atten-
tion (i.e., the downward shift of the TvC curves; Fig. 6B), we then
estimated the P1 and LPD component CRFs for the focused-
attention target based on the continuous TvC function associated
with the focused-attention condition (Fig. 9D, blue curve). Im-
portantly, we used the � and b parameters that were previously
estimated using only the psychophysical TvC and ERP data from
the divided-attention conditions (Fig. 9A–C). We observed an
increase in the slope of the estimated ERP CRF in the focused-
attention conditions (Fig. 8E,F, blue solid curves) compared
with the divided-attention conditions (green dotted curves). This
slope increase of the estimated CRFs led to an excellent fit to the
real ERP CRFs in the focused-attention condition (Figs. 9E,F,
blue curves; P1 R 2 � 0.93; LPD R 2 � 0.94). These findings

strongly suggest that a simple change in multiplicative response
gain can sufficiently account for a high degree of attention-
induced changes in both the psychophysical and the ERP data.

In addition, we evaluated a more complex model in which the
sensory noise (�) and baseline parameters (b) were also allowed
to vary freely between the divided-attention and the focused-
attention conditions (yielding four free parameters: � for divided
attention, � for focused attention, b for divided attention, and b
for divided attention). We followed the same procedure outlined
above in Figure 9D–F except that we now optimized the � and b
parameters to find the best fit to the P1 and LPD component
CRFs obtained in the focused-attention condition. This more
complex model led to a slight improvement in the fit to the P1
component CRF (Fig. 9G, blue curve; R 2 � 0.96, � � 0.15 �V,
b � �0.07 �V) and to the LPD component CRF (Fig. 9H, blue
curve; R 2 � 0.94, � � 0.45 �V, b � �0.52 �V). However, this
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bright colors represent low-contrast and high-contrast stimuli, respectively). The ERPs evoked by contralateral 0%-contrast stimuli
in each condition were subtracted from the ERPs evoked by contralateral stimuli of all other contrast levels (Fig. 3). This subtraction
was done to subtract out the evoked potentials associated with variable contrast ipsilateral stimuli paired with all other contralat-
eral stimuli. We found early sensory positive (P1) and negative potentials (N1) peaking at the contralateral posterior-occipital
electrodes in �80 –130 and �150 –200 ms temporal windows, respectively. These early components were followed by an LPD
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ipsilateral and contralateral to the stimulus of interest, respectively.

13392 • J. Neurosci., October 1, 2014 • 34(40):13384 –13398 Itthipuripat et al. • Sensory Gain Versus Efficient Readout



improvement was not statistically signifi-
cant (P1, F(2,9) � 2.29, p � 0.16; LPD,
F(2,9) � 0.85, p � 0.92, nested F test) so the
added complexity of the model with the
increased number of free parameters was
not justified. An additional bootstrapping
analysis with resampled subject labels also
revealed that this more complex model
did not significantly change the values of
the � (Fig. 9I) or the b parameters (Fig.
9J) across the divided-attention and
focused-attention conditions (� of P1,
p � 0.92; � of LPD, p � 0.98; b of P1, p �
0.46; b of LPD, p � 0.83). This analysis
suggests that changes in the sensory noise
parameter and the baseline parameter are
not necessary for explaining changes in
behavior. Consistent with this notion, an
additional analysis revealed no significant
main effect of attention on the SD of the
bootstrapping distribution of P1 (F(1,15) �
1.19, p � 0.29) and LPD component ampli-
tudes (F(1,15) � 0.0040, p � 0.60; See Mate-
rials and Methods).

Sensory gain outperforms
efficient readout
Thus far, a model in which only sensory
gain varies between attention condi-
tions can effectively link attention-
related changes in behavioral TvCs and
neural CRFs. However, we also asked
whether a recently developed efficient
readout model (Pestilli et al., 2011) could
provide an even better account of the link
between attention-related changes in neu-
ral CRFs and behavioral TvC curves. The
model is based on the notion that the sub-
ject’s task is to select the interval with the
higher overall contrast. Thus, an ideal ob-
server could compute the overall contrast
across both stimuli in each interval and
then select the interval associated with the
higher mean contrast. To evaluate this
model, we estimated the TvCs in the
focused-attention and divided-attention
conditions using a max-pooling equation
(Eq. 10). In this equation, k is an exponent
that weights each of the responses to indi-
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4

and divided-attention nontargets (purple) were fit with a
Naka-Rushton equation (Eq. 2). B, E, A bootstrapping analysis
showed that the attentional enhancement on the P1 and LPD
components was selectively driven by changes in the response
amplitude parameter (Rmax; B, E, middle), and the baseline (b,
left) and the semisaturation contrast parameters (C50, right)
did not significantly change. Error bars in A and D indicate
�SEM across subjects. Error bars in B and E represent 68%
confidence intervals from the bootstrapping analysis. *, **,
and *** Indicate significance based on post hoc pairwise com-
parisons corrected by the Holm-Bonferroni method at p �
0.05, p � 0.01, p � 0.001, respectively.
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vidual stimuli (k ranges from 1 to �). When k � 1, the responses
are unmodified and are equal to the magnitude of their evoked
responses (simple mean) and the model reduces to the standard
sensory gain model described in the previous section. However,
when k 
 1, the stimulus that evokes a relatively large response

will be overweighted compared with a stimulus that evokes a
relatively small response, and consequently the stimulus evoking
the larger response will increasingly influence downstream deci-
sion mechanisms (and as k approaches �, only the stimulus that
evokes the largest response will contribute). Therefore, if a target-
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evoked response on a given trial is higher than a nontarget-evoked
response, the pooling model will exacerbate this differential re-
sponse in favor of the target response, and the interval containing
the target will tend to be selected correctly. However, if a
nontarget-evoked response on a given trial is higher than a target-
evoked response, then this model will overweight the nontarget-
evoked response and the probability of a correct response will
decrease.

As shown in Figure 10A–D, without the max-pooling rule (i.e.,
k � 1), the model provided a good description of the observed be-
havioral data (striped curves) for both focused-attention and
divided-attention conditions (R2 of 0.82 and 0.87; � of 0.15 and 0.53
�V for the P1 and LPD components, respectively). Conversely, the
addition of the max-pooling rule (i.e., allowing k to adopt values
1)
led to increasingly poor model performance that did not closely
track the behavioral data (Fig. 10A–D; darker solid color curves for

higher values of k). Under these circumstances (k 
 1), the selection
model overweights responses generated by any high-contrast stim-
ulus in the display, and this degrades performance given that higher
contrast stimuli may or may not be the target on a given trial.

Discussion
Several studies have demonstrated that spatial attention amplifies
neural responses in early sensory areas (Haenny et al., 1988; Mot-
ter, 1993; Connor et al., 1997; Luck et al., 1997; McAdams and
Maunsell, 1999; Reynolds et al., 2000; Martínez-Trujillo and
Treue, 2002; Lee and Maunsell, 2009, 2010; Pooresmaeili et al.,
2010; Sprague and Serences, 2013); however, very few of them
have quantitatively linked these gain modulations with behav-
ioral changes. As a result, almost all documented links between
attention and behavior can be explained equally well by theories that
invoke either noise modulation (Mitchell et al., 2007, 2009) or post-
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sensory readout mechanisms (Pelli, 1985; Palmer et al., 2000; al-
though see Cohen and Maunsell, 2009; Pestilli et al., 2011). Here,
we examined the relative contributions of sensory gain, noise
modulation, and readout to attention-dependent changes in per-
ceptual sensitivity by simultaneously linking psychophysical and
neurophysiological data using quantitative frameworks based on
either signal detection theory or a combination of signal detec-
tion theory and efficient readout. We find that a model based
solely on a multiplicative increase in the amplitude of the P1 and
the LPD component-evoked potentials captures nearly all the
variance in behavior, even in an absence of noise modulation.
Moreover, this sensory gain model outperforms models that also
incorporate an efficient readout mechanism.

Our results stand in contrast with a recent fMRI study (Pestilli
et al., 2011), which found that attention induced an additive shift
in hemodynamic CRFs. This additive shift cannot explain
attention-related changes in TvCs via a sensory gain model, as
changes in behavioral sensitivity are only predicted if the CRF
slope changes. Note that we use the term additive “shift” instead
of additive “gain” here since gain is multiplicative by definition.
Alternatively, Pestilli et al. (2011) adopted a readout mechanism
based on a max-pooling rule that uses exponentiation to increase
differential responses evoked by pedestal and target stimuli. Un-
like our study, the nontarget contrast values in Pestilli et al.
(2011) by design were very close to the target contrast value.
Thus, the additive shift in hemodynamic CRFs ensures that
target-related responses will be higher than nontarget-related re-
sponses. As the exponent of the max-pooling rule increases, the
contrast increment that defines the target will elicit a larger dif-
ferential response and an ideal observer will more accurately dis-
cern the interval that contained the target. Accordingly, this
max-pooling rule enabled them to accurately predict the rela-
tionship between attention-induced changes in TvCs and hemo-
dynamic CRFs even without changes in slopes of the CRFs.

It is possible that a lack of quantitative evidence for sensory
gain in Pestilli et al. (2011) may be due to the insensitivity of fMRI
to detect attention-induced sensory gain changes. For example, it
is known that attention-related additive increases in hemody-
namic CRFs are independent of stimulus intensity (Buracas and
Boynton, 2007; Murray, 2008), which is not typically observed in
electrophysiological data (Reynolds et al., 2000; Di Russo et al.,
2001; Martínez-Trujillo and Treue, 2002; but see Williford and
Maunsell, 2006; Kim et al., 2007; Lauritzen et al., 2010; Lee and
Maunsell, 2010; Itthipuripat et al., 2014). The stimulus-independent
nature of hemodynamic responses is consistent with other reports
showing large anticipatory/top-down effects of spatial attention
on fMRI signals (Kastner et al., 1999; Ress et al., 2000; Serences et
al., 2004; McMains et al., 2007; Sylvester et al., 2009) and this
anticipatory/top-down modulation may not always be tightly as-
sociated with local neuronal activity (Sirotin and Das, 2009; Car-
doso et al., 2012). Moreover, there is evidence from the clinical
literature suggesting that fMRI may be insensitive to local
changes in sensory gain, as presumed deficits in sensory gain in
schizophrenic patients could be captured by EEG but not by
fMRI (Calderone et al., 2013).

In contrast to fMRI studies (Buracas and Boynton, 2007; Mur-
ray, 2008; Pestilli et al., 2011), studies using EEG (Di Russo et al.,
2001; Kim et al., 2007; Lauritzen et al., 2010; Wang and Wade,
2011; Itthipuripat et al., 2014) have shown various gain patterns
resembling those measured using single-unit recording (Reyn-
olds et al., 2000; Martínez-Trujillo and Treue, 2002; Lee and
Maunsell, 2010). Among these studies, EEG does not typically
exhibit an additive offset with attention and it appears to be sen-

sitive to changes in sensory-evoked responses. This sensitivity to
sensory responses enables us to assess the interaction of attention
and stimulus-evoked responses to evaluate how well a model
based on sensory gain can account for behavioral changes. We
found that a multiplicative response gain of the ERP-based CRFs
was sufficient to explain attention-related changes in behavior.
As a result of this strong predictive relationship between ERP gain
profiles and behavior, the implementation of a max-pooling rule
impaired model fits, as little variance was left to be explained.
Also note that by design, target and nontarget pedestal contrasts
were fully crossed and independent. Thus a max-pooling rule
would not always give more weight to the target-evoked response
(e.g., when a low-contrast target paired with a high-contrast
nontarget).

One resolution to the discrepancies between different mea-
surements is offered by Hara et al. (2014), who argue that
population-based metrics that index the activity from broadly
tuned neurons will give rise to additive shifts with attention as
observed in hemodynamic CRFs. In contrast, well-tuned cells, as
is the case in most single-unit electrophysiology, will exhibit ei-
ther response or contrast gain, which is thought to be determined
by the relative size of the stimulus with respect to the scope of
spatial attention as predicted by the normalization model of at-
tention (Reynolds and Heeger, 2009; Herrmann et al., 2010; It-
thipuripat et al., 2014). However, this possibility does not by itself
offer a clear account for differences between fMRI and EEG, as
EEG also provides a broad population-based activity. Further
complicating matters, recent work using voltage-sensitive dye
imaging (VSDI) also reported additive attention effects in mon-
key V1 (Chen and Seidemann, 2012). As suggested by Hara et al.
(2014), each of these population-level measures (EEG, fMRI, and
VSDI) might be differentially sensitive to well tuned and broadly
tuned neurons, with EEG perhaps dominated more by responses
from well tuned neurons. However, as mentioned above, it is also
possible that EEG may be more sensitive to attentional modula-
tions of local stimulus-evoked spiking activity, whereas fMRI and
VSDI may be more sensitive to top-down signals. Consistent with
this idea, fMRI has been suggested to be sensitive to capture syn-
aptic inputs to particular cortical areas instead of spiking outputs
from the areas (Logothetis, 2002, 2008; Logothetis and Wandell,
2004; Viswanathan and Freeman, 2007). Similarly, VSDI primar-
ily captures the top-down inputs to V1 rather than the local mod-
ulations of spiking in V1 (Chen and Seidemann, 2012). In
contrast to fMRI and VSDI, EEG has been closely associated with
spiking activity in visual cortex (Whittingstall and Logothetis,
2009) and tightly linked to the perceived appearance of a stimulus
(Campbell and Kulikowski, 1972; Störmer et al., 2009). Thus, it is
possible that attentional modulation of stimulus-evoked spiking
activity, which might be better captured by EEG, is more closely
related to perceptual experience and its behavioral outcomes.
Nonetheless, these attention-related changes in stimulus-evoked
sensory responses are presumably being modulated by top-down
attention signals, so understanding how different metrics of brain
activity index different aspects of attentional modulation is cru-
cial to develop a more complete understanding of cortical infor-
mation processing.

Contrary to the sensory gain and efficient readout accounts,
recent studies in monkeys have demonstrated that attention
modulates neural noise. Attention has been shown to modulate
the trial-by-trial variability of single neuron spike rates as well as
pairwise correlations between neurons in early visual areas
(Mitchell et al., 2007, 2009; Cohen and Maunsell, 2009; Nieber-
gall et al., 2011; Herrero et al., 2013). These noise modulations
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have been hypothesized to lead to a larger improvement in the
signal-to-noise ratio (SNR) of neural populations compared with
pure changes in sensory gain (Cohen and Maunsell, 2009; Mitch-
ell et al., 2009). In our study, we found that sensory gain in ERPs
could satisfactorily account for the observed behavioral improve-
ments, even under the assumption that the trial-by-trial variabil-
ity of ERP amplitudes is unaltered across attention conditions.
Note, however, that our results are not necessarily inconsistent
with observations from monkey data showing that attention does
modulate neural noise, because EEG measures do not provide
direct estimates of single-unit variability or population-level co-
variance measures (and the same limitation also applies for fMRI
measures). Indeed, it is possible that attention-related modula-
tions in neural noise might contribute to changes in ERP ampli-
tudes. For example, if sensory neurons fire more consistently, and
if changes in noise correlation improve the SNR of pooled neu-
ronal signals, then these noise modulations may strengthen the
synchronization across local neural populations and thus amplify
the electrical dipole that generates an ERP on the scalp (Cooper et
al., 1965; Gloor, 1985; Makeig et al., 2002; Murakami and Okada,
2006). Therefore, it is also possible that changes in the noise
characteristics of underlying neural generators might influence
attentional modulation of the P1 and LPD components.
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