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Classification algorithms using multiple
MRI features in mild traumatic brain
injury

ABSTRACT

Objective: The purpose of this study was to develop an algorithm incorporating MRI metrics to
classify patients with mild traumatic brain injury (mTBI) and controls.

Methods: This was an institutional review board–approved, Health Insurance Portability and
Accountability Act–compliant prospective study. We recruited patients with mTBI and healthy
controls through the emergency department and general population. We acquired data on a 3.0T
Siemens Trio magnet including conventional brain imaging, resting-state fMRI, diffusion-
weighted imaging, and magnetic field correlation (MFC), and performed multifeature analysis
using the following MRI metrics: mean kurtosis (MK) of thalamus, MFC of thalamus and frontal
white matter, thalamocortical resting-state networks, and 5 regional gray matter and white mat-
ter volumes including the anterior cingulum and left frontal and temporal poles. Feature selection
was performed using minimal-redundancy maximal-relevance. We used classifiers including sup-
port vector machine, naive Bayesian, Bayesian network, radial basis network, and multilayer
perceptron to test maximal accuracy.

Results: We studied 24 patients with mTBI and 26 controls. Best single-feature classification
uses thalamic MK yielding 74% accuracy. Multifeature analysis yields 80% accuracy using the
full feature set, and up to 86% accuracy using minimal-redundancy maximal-relevance feature
selection (MK thalamus, right anterior cingulate volume, thalamic thickness, thalamocortical
resting-state network, thalamic microscopic MFC, and sex).

Conclusion: Multifeature analysis using diffusion-weighted imaging, MFC, fMRI, and volumetrics
may aid in the classification of patients with mTBI compared with controls based on optimal fea-
ture selection and classification methods.

Classification of evidence: This study provides Class III evidence that classification algorithms
using multiple MRI features accurately identifies patients with mTBI as defined by American Con-
gress of Rehabilitation Medicine criteria compared with healthy controls. Neurology®

2014;83:1235–1240

GLOSSARY
ACRM 5 American Congress of Rehabilitation Medicine; MFC 5 magnetic field correlation; MK 5 mean kurtosis; mRMR 5
minimal-redundancy maximal-relevance; mTBI 5 mild traumatic brain injury; SVM 5 support vector machine.

Mild traumatic brain injury (mTBI) is a growing public health problem.1 Twenty to thirty
percent of patients have persistent symptoms after injury resulting in substantial disability.2 One
of the major obstacles in development of appropriate treatment strategies is the lack of an
accurate and objective means to establish diagnosis.

Currently, several different definitions of mTBI exist (World Health Organization,3 Ameri-
can Congress of Rehabilitation Medicine [ACRM],4 Centers for Disease Control and Preven-
tion,5 Department of Defense, and Department of Veteran Affairs6). There is universal
agreement that a unified, objective definition is needed.7,8 Furthermore, most classification
schemes rely on Glasgow Coma Scale score,9 which was recently deemed insufficient as a single
classifier for traumatic brain injury by the National Institute for Neurological Disorders and
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Stroke, which proposed that neuroimaging
have a larger role in the classification scheme
for mTBI.10 Recent work using MRI revealed
that there are areas of subtle brain injury after
mTBI11223; however, no single imaging metric
has thus far been shown to be useful as an
independent biomarker.

In the machine learning community, it is well
known that using multiple features can improve
classification performance compared with a sin-
gle feature alone. The purpose of this work is to
develop a computational tool for the classifica-
tion of mTBI using minimal-redundancy
maximal-relevance (mRMR) feature selection24

from a larger set of features that includes imag-
ing metrics we have previously investigated and
shown to be different between subject and con-
trol groups, and use 10-fold cross-validation to
test the performance of classification algorithms
in this cohort.

METHODS Methodology informing classification of
evidence. We seek to answer the following research question:

Can we develop a computational tool that accurately classifies

subjects with mTBI as defined by ACRM criteria compared with

healthy controls? Class III level of evidence is assigned to this

question.

Standard protocol approvals, registrations, and patient
consents. This work is part of an institutional review board–

approved and Health Insurance Portability and Accountability

Act–compliant prospective study, and written informed consent

was obtained from all participants.

Participants. We recruited subjects with mTBI fulfilling

ACRM criteria,4 which were used as a gold standard for classifi-

cation. Mean interval between MRI and trauma was 23 days (3–

56 days). Mechanism of injury varied, including 7 motor vehicle

accidents, 5 falls, 4 assaults, 3 sports-related, 2 bicycle collisions,

and 2 other. Patients were excluded if there was prior head injury,

known neurologic or psychiatric disorder, and if there was a

contraindication to MRI. Healthy control subjects matched for

age, sex, and educational level were also recruited from the general

population.

MRI. The methodologic details for MRI and analysis techniques,

including structural magnetization-prepared rapid-acquisition

gradient echo,25,26 resting-state fMRI,19,27 magnetic field correlation

(MFC),28,29 and diffusion techniques,16,17,19,30 have been previously

described. In summary, experiments used 3T Trio MRI scanner

(Siemens Medical Solutions, Erlangen, Germany), body coil for

transmission, and 12-element SENSE receive head coil. We

selected MRI metrics based on their ability to detect subtle

differences between subjects with mTBI and controls, some

of which have been previously published in an overlapping

cohort.16–19,25

Feature selection. We selected features from 15 imaging met-

rics (table 1): 2 general demographic features, 3 global brain

volumetric features, and 10 regional brain MRI metrics based

on previously demonstrated differences between mTBI and control

cohorts.16–19,25 All original features are normalized by removing the

mean of each feature and dividing by its SD. We used the feature

selection procedure, mRMR,24 to incrementally choose the most

representative subset of imaging features, to increase relevance, and

decrease redundancy. The mRMR algorithm was chosen because it

selects a subset of features that are not only significant, but unique

from one another. This ensures that the feature space is maximally

informative with the smallest dimensionality. The mRMR algo-

rithm chooses features from the full set one at a time. At each

iteration, the mRMR evaluates the mutual information of a candi-

date feature from the pool of remaining features with the desired

output and the average mutual information with the chosen fea-

tures, and selects the candidate feature that yields maximal differ-

ence between the 2 mutual information measures. In our

implementation, the mRMR iteration stops when this mutual

information difference is #0. The mRMR algorithm is based on

established methodology24 and implemented using a MATLAB

Toolbox function (The MathWorks Inc., Natick, MA).

Classification algorithms. We used 5 types of mainstream

classifiers on the features chosen by mRMR: support vector

machine (SVM), naive Bayesian, Bayesian network, radial basis

network, and multilayer perceptron. A detailed description of

each classifier and its parameters is found in table 2. To prevent

overfitting, given the limited training set available, and to maxi-

mize generalizability, we trained classifiers using 10-fold cross-

validation. The entire dataset is randomly divided into 10

equally numbered, nonoverlapping subsets, each called a fold.

Nine of 10 folds are then used as the training set and the

remaining tenth as the validation set. Each classifier is first

trained using a training set, and then tested on the validation

set. The above procedure is repeated 10 times using each of the

10 folds as a validation set. Finally, this computational method

averages recorded error rates for each trial to arrive at an average

cross-validation error rate, used to assess the classification

algorithm. For each classifier, we found the optimal parameters

by evaluating the average cross-validation error associated with

each possible parameter value over a chosen search space, and

using the ones leading to the minimal cross-validation error.

We also applied the above methodology to evaluate the

achievable performance of different classifiers using the single best

feature alone and for mRMR selected features.

Note that the cross-validation procedure is to provide a per-

formance measure that is expected for unseen data. To apply

the best performing classifier identified from this research in

future nontraining data, one should retrain the classifier using

all available training data, and use the resulting classifier weights

as the final classifier.

Table 1 Full and selected features using mRMR

Full feature set Age, sex, ICV, GM, WM, BP, left and right AC, left frontal
pole, thalamic thickness, thalamic MK, thalamocortical
RSN, thalamic MFCmicro, thalamic MFCtotal, frontal WM
MFCmicro

Selected features (in order of
importance as determined by mRMR)

MK thalamus, right ACC, thalamic thickness,
thalamocortical RSN, thalamic MFCmicro, sex

Abbreviations: AC 5 anterior cingulate white matter volume; ACC 5 anterior cingulate cor-
tex; BP 5 brain-parenchyma ratio; GM 5 gray matter volume; ICV 5 intracranial volume;
MFCmicro 5 microscopic magnetic field correlation; MFCtotal 5 total magnetic field correla-
tion; MK 5 mean kurtosis; mRMR 5 minimal-redundancy maximal-relevance; RSN 5 resting-
state networks; WM 5 white matter volume.
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Of note, using the classification algorithms described, there

are no specific thresholds for individual features. An iterative pro-

cess arrives at an algorithm that gives each of the features differing

weights to optimize accuracy.

RESULTS We studied 23 patients (mean age
33.65 6 11.21 years; 6 female and 17 male) and
25 healthy controls matched for age, sex, and educa-
tion (mean age 36.686 11.5 years; 13 female and 12
male) recruited prospectively from the emergency

department of a level I trauma center. All patients
had data on all features. Regarding feature selection,
the subset of nonredundant, informative features
identified using mRMR are listed in table 1 in order
of importance. The first feature chosen by mRMR is
thalamic mean kurtosis. This feature is considered the
most informative among all features considered,
because it has the highest mutual information with
the target classification outcome. The results for clas-
sification using the different standard classifiers are
shown in table 3 based on highest performance and
consistency with all parameters for the classifiers indi-
cated. Using the single best (most informative) feature,
thalamic mean kurtosis, the highest classification
accuracy was achieved using the radial basis network
classification algorithm. Classification using all features
achieved highest accuracy using the Bayesian net clas-
sification algorithm. Using mRMR selected features,
the highest accuracy was achieved using the multilayer
perceptron classification algorithm (table 4).

DISCUSSION In this study, we developed a classifi-
cation algorithm using multifeature analysis for iden-
tifying subjects with mTBI by incorporating multiple
features including demographic, global, and regional
imaging MRI metrics. Multifeature classification
improved accuracy using a subset of most relevant fea-
tures obtained via mRMR feature selection by 12%
over using the single most significant metric alone
and 6% over using all metrics.

Table 3 Summary of classification algorithm accuracy (averaged over all validation sets in 10-fold cross-
validation)

Classifier SVM Naive Bayesian Bayesian network RBN
Multilayer
perceptron

Single feature

Accuracy, % 70 70 68 74 66

Sensitivity 0.8333 0.7917 0.9583 0.8333 0.8333

Specificity 0.5769 0.6154 0.4231 0.6538 0.5000

Parameters c 5 1; g 5 1.2 NA NA d 5 2; g 5 0.9 k 5 1; l 5 2

All features

Accuracy, % 78 70 80 72 66

Sensitivity 0.7917 0.5417 0.7500 0.5833 0.5833

Specificity 0.7692 0.8462 0.8462 0.8462 0.7308

Parameters c 5 10; g 5 0.3 NA NA d 5 2; g 5 0.5 k 5 1; l 5 2

mRMR features

Accuracy, % 76 78 82 84 86

Sensitivity 0.6667 0.6667 0.8333 0.7917 0.8750

Specificity 0.8462 0.8846 0.8077 0.8846 0.8462

Parameters c 5 1.2; g 5 0.5 NA NA d 5 2; g 5 0.65 k 5 1; l 5 4

Abbreviations: mRMR 5 minimal-redundancy maximal-relevance; NA 5 not applicable; RBN 5 radial basis network; SVM 5

support vector machine.
Parameters c, d, and g are defined for different classifiers in table 2.

Table 2 Description of classifiers

Classifier Description Parameters

SVM33 SVM with gaussian kernel Kernel width g and the
inverse of margin width c

Naive Bayesian34 Bayesian interference assuming
conditional independent among
the features

NA

Bayesian network35 Learn a directed acyclic graph
to represent the relation
between features and output

NA

Radial basis network33,36 Use unsupervised clustering to
learn the centroid of radial basis
units, and a fully connected
feedforward neural network
with logistic output

No. of clusters d, kernel
width g

Multilayer perceptron37 A feedforward neural network
with sigmoid transfer units in
hidden layers and linear units in
output layer, trained by
backpropagation

No. of hidden layers k, no. of
neurons in each layer l

Abbreviations: NA 5 not applicable; SVM 5 support vector machine.
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Throughout the medical community, there is grow-
ing interest in using machine learning techniques to
understand and use medical data in an informative
way including as applied to mTBI.31 Our results pro-
vide a preliminary step toward developing a diagnostic
tool for classification of patients with mTBI based on
objective metrics that could complement qualitative
clinical assessment, the current standard of care.

The features selected by mRMR represent a truly
distinct sample of the full feature set and, when re-
viewed, are certainly unique from one another. Global
brain morphologic features, such as intracranial vol-
ume, gray matter, and white matter, are eschewed for
more targeted regional brain volumes, such as right
anterior cingulate cortex, an area implicated in depres-
sion. Furthermore, it is not surprising that thalamic
microscopic MFC was chosen at the exclusion of total
MFC, despite both metrics showing differences
between the 2 populations as these 2 metrics are math-
ematically related to one another: microscopic MFC
quantifies magnetic field inhomogeneities at a subvoxel
level, reflecting what is believed to be important
cellular-level iron content, whereas total MFC also
contains contributions from macroscopic field inho-
mogeneities, which may relate to artifact. Across classi-
fiers, mRMR feature selection improves overall
classification performance compared with using one
feature alone and also improves classification perfor-
mance in all classifiers except SVM when compared
with using all features. This supports the use of mRMR
feature selection.

We tackled potential overfitting for this relatively
small dataset in the following 3 ways: (1) by selecting
features, we effectively narrow the number of param-
eters used to classify, (2) cross-validation repeatedly
trains and tests on nonoverlapped subsets to evaluate
the classifier performance on unseen data, and (3) for
each classifier, we impose the constraint that the
number of trainable parameters be strictly below the
number of training samples, which is considered a
threshold to avoid overfitting. Note that when search-
ing for the optimal configurations for a given classifier

type (e.g., the number of layers and the number of
nodes per layer in the neural net classifier), we also
restrict our search range reflecting the above consider-
ation.32 In addition, the best classifiers radial basis
network and multilayer perceptron performed well
using 10-fold cross-validation, confirming no gross
overfitting to be present.

Using all features, no performance improvement is
achieved over using one feature with the radial basis
network and multilayer perceptron classification algo-
rithms. This is likely attributable to insufficient train-
ing, because the number of trainable parameters in
both classifiers is proportional to the number of fea-
tures. With limited training data available for evalua-
tion using all features, we were not able to derive
reliable parameters from 9 of 10 of the total available
training data, that can classify accurately remaining
1 of 10 of the available training data, in our 10-fold
cross-validation study. We observed that in this case,
SVM yielded improved accuracy with all features
compared with mRMR selected features, a unique
finding among the classifiers. This can be attributed
to the fact that the number of parameters in SVM
is determined by the number of training samples
and independent of the number of features. Increas-
ing the number of features does not increase the
dimensionality using this particular classifier. On
the contrary, having a higher dimensional feature
space seems to provide a better separating hyperplane
for this problem. We also point out that the optimal
performance for SVM is obtained with a c value sig-
nificantly larger than other cases, effectively restrict-
ing the allowable support vectors.

Overall, our study is limited by a relatively small
training dataset. The optimal feature set and classifica-
tion algorithm need to be validated over a larger
dataset. Instead of using the mRMR feature selection
method, future research could compare all possible fea-
ture combinations for a given classifier using an
exhaustive search, and it is possible that an even better
classification performance could be achieved. Another
limitation is that the original feature set studied
included primarily MRI metrics selected from our pre-
vious work based on differences we observed between
study and control populations. It would be instructive
to use additional features, such as fractional anisotropy
and susceptibility-weighted imaging findings, as well as
clinical characteristics, to enrich the feature selection
and classification algorithms. We did not incorporate
clinical and cognitive data here in order to avoid com-
plications with higher dimensionality. Future work
incorporating clinical features and imaging such as dif-
fusion tensor imaging and susceptibility-weighted
imaging could potentially achieve even greater classifi-
cation accuracy. In addition, automated extraction of
features using data mining techniques could be

Table 4 Accuracy and confusion matrices for best classifiers

Features Classifier Accuracy,a % Confusion matrixb

MK thalamus Radial basis network 74

All features Bayesian network 80

mRMR features Multilayer perceptron 86

Abbreviations: MK 5 mean kurtosis; mRMR 5 minimal-redundancy maximal-relevance.
aAccuracy using 10-fold cross-validation, which is the average accuracy over all 10
validation sets.
bConfusion matrices in standard format with true positives and false negatives in the top
row and false positives and true negatives in the bottom row, from left to right, using
American Congress of Rehabilitation Medicine criteria for mild traumatic brain injury as the
gold standard.4
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considered with a larger dataset. The results of this
pilot study should be considered provisional, and cor-
relation with clinical characteristics is needed to vali-
date the approach. Our future goal is to recruit a
unique cohort to test validity and reproducibility of
classifiers.

This work serves as a pilot study showing that a
combination of features including MRI metrics can
classify patients with mTBI and controls with 86%
accuracy, up from 74% for the best single feature
alone. Furthermore, mRMR feature selection opti-
mizes this process by selecting relevant and nonre-
dundant features. These results show that there is
promise for use of multifeature classification as a via-
ble tool to aid in the objective diagnosis of mTBI.
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