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14.1 Background

The mapping of disease incidence and prevalence has long been a part of public health,

epidemiology, and the study of disease in human populations (Koch, 2005). In this chapter,

we focus on the challenge of obtaining reliable statistical estimates of local disease risk

based on counts of observed cases within small administrative districts or regions coupled

with potentially relevant background information (e.g., the number of individuals at risk

and, possibly, covariate information, such as the regional age distribution, measures of

socioeconomic status, or ambient levels of pollution). Our goals are twofold: we want

statistically precise (i.e., low variance) local estimates of disease risk for each region, and

we also want the regions to be “small” in order to maintain geographic resolution (i.e., we

want the map to show local detail as well as broad trends). The fundamental problem in

meeting both goals is that they are directly at odds with one another: the areas are not only

“small” in geographic area (relative to the area of the full spatial domain of interest)

resulting in a detailed map, but also “small” in terms of local sample size, resulting in

deteriorated local statistical precision.

Classical design-based solutions to this problem are often infeasible since the local sample

sizes within each region required for desired levels of statistical precision are often

unavailable or unattainable. For example, large national or state health surveys in the United

States such as the National Health Interview Survey, the National Health and Nutrition

Examination Survey, or the Behavioral Risk Factor Surveillance System provide design-

based estimates of aggregate or average values at the national or possibly the state level.

But, even as large as they are, such surveys often do not include sufficient sample sizes at

smaller geographic levels to allow accurate, local, design-based estimation everywhere

(Schlaible, 1996).

In contrast, model-based approaches offer a mechanism to “borrow strength” across small

areas to improve local estimates, resulting in the smoothing of extreme rates based on small

local sample sizes. Such approaches often are expressed as mixed effects models and trace

back to the work of Fay and Herriot (1979), who proposed the use of random intercepts to

pool information and provide subgroup-level estimated rates. Their model forms the basis of

a considerable literature in small area estimation (Ghosh and Rao, 1994; Ghosh et al. 1998,
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Rao, 2003) which sees wide application in the analysis of statistical surveys, including the

aforementioned health surveys (Raghunathan et al., 2007).

While addressing the fundamental problem of analyzing data from subsets with small

sample sizes, most traditional approaches to small area estimation are non-spatial; the

methods essentially borrow information equally across all small areas without regard to their

relative spatial locations and smoothing estimates toward a global mean. In the statistical

literature, “disease mapping” refers to a collection of methods extending small area

estimation to directly utilize the spatial setting and assumed positive spatial correlation

between observations, essentially borrowing more information from neighboring areas than

from areas far away and smoothing local rates toward local, neighboring values. The term

“disease mapping” itself derives from Clayton and Kaldor (1987), who defined empirical

Bayesian methods building from Poisson regression with random intercepts defined with

spatial correlation. This hierarchical approach provides a convenient conceptual framework

wherein one induces (positive) spatial correlation across the estimated local disease rates via

a conditionally autoregressive (CAR; Besag, 1974 and Chapter 13, this volume) random

effects distribution assigned to the area-specific intercepts. The models were extended to a

fully Bayesian setting by Besag, York, and Mollié (1991) and are readily implemented via

Markov chain Monte Carlo (MCMC) algorithms (Chapter 13, this volume). The framework

is inherently hierarchical and almost custom-made for MCMC, allowing straightforward

extensions to allow for model-based estimation of covariate effects (in spatially correlated

outcomes), prediction of missing data (e.g., if a county neglects to report the number of new

cases for a particular month when reports are available for neighboring counties), and

spatio-temporal covariance structures.

In both the non-spatial and spatial settings, the amount of smoothing is determined by the

data and the formulation of the model. This smoothing permits easy visualization of the

underlying geographic pattern of disease. We remark, however, that such smoothing may

not be appropriate if the goal is instead to identify boundaries or regions of rapid change in

the response surface, since smoothing is antithetic to this purpose. For more on this area,

called boundary analysis or wombling, see Banerjee and Gelfand (2006), Ma et al. (2009),

and Banerjee (Chapter 30, this volume).

In the sections below, we describe in detail the basic model structure of the CAR models

typically used in disease mapping, their implementation via MCMC, and various extensions

to handle more complex data structures (e.g., spatiotemporal data, multiple diseases, etc.).

We also illustrate the methods using real-data examples, and comment on related issues in

software availability and usage.

14.2 Hierarchical Models for Disease Mapping

In this section, we outline the essential elements and structure of the CAR-based family of

hierarchical disease mapping models. Additional detailed development and further

illustrations of the models appear in several texts and book chapters, including Mollié

(1996), Best et al. (1999), Lawson (2001), Wakefield et al. (2000), Banerjee et al. (2004,
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Sec. 5.4), Waller and Gotway (2004, Sec. 9.5), Waller (2005), Carlin and Louis (2009, Sec.

7.7.2).

14.2.1 The generalized linear model

To begin, suppose we observe counts of disease cases Yi for a set of regions i = 1,…,I

partitioning our study domain . We model the counts as either Poisson or binomial random

variables in generalized linear models, using a log or logit link function, respectively. In

some cases we may also have observed values of region-specific covariates xi with

associated parameters β. Other data often include either the local number of individuals at

risk ni or a local number of cases “expected” under some null model of disease transmission

(e.g., constant risk for all individuals), denoted Ei. We assume the ni (alternatively, the Ei)

values are fixed and known.

We typically justify the use of a Poisson model as an approximation to a binomial model

when the disease is rare (i.e., the binomial probability is small). We focus on Poisson models

here, based on the relative rarity of the diseases in our examples, and refer readers to

Wakefield (2001, 2003, 2004, Chapter 29, this volume) for a full discussion of the binomial

approach, as well as related concerns about the ecological fallacy, i.e., the tendency of

correlations obtained from fitting at an aggregate (say, regional) level to overstate those that

would be obtained if the data allowed fitting of models based on individual levels of risk.

Our Poisson model in its most basic, fixed effects-only form is

Here we define the expected number of events in the absence of covariate effects as Ei. This

expected number is often expressed as the number of cases defined by an epidemiologic

“null model” of incidence, i.e., the product of ni, the number of individuals at risk in region

i, and r, a constant “baseline” risk per individual. This individual-level risk is often

estimated from the aggregate population data via , the global observed

disease rate. The resulting Poisson GLM models the natural logarithm of the mean count as

with an offset Ei and multiplicative impacts on the model-based expected observation counts

for each covariate, resulting in a region-specific relative risk of .

Some discussion of the expected counts Ei, i = 1,…,I is in order. The estimated baseline risk

defined above, known as internal standardization, is a bit of a “cheat” since we continue to

think of the Ei as known, even though they now depend on our estimate of r. But since the

impact of this choice fades within increasing numbers of regions I, and noting that our

definition of r serves only to set the relatively uninteresting grand intercept β0, this seems a

minor concern. In addition, one may wish to further standardize the risks and expectations to

account for spatial variation in the distribution of known risk factors (such as age), rather
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than adjust for such risk factors in the region-specific covariates. Waller and Gotway (2004,

Chapter 2) provide an overview of the mechanisms of and arguments for and against

standardization in spatial epidemiology.

14.2.2 Exchangeable random effects

In order to borrow information across regions, we next define the random effects version of

the model, but for the moment we describe the model without covariates for simplicity. In

other words, consider an intercept-only GLM with offset Ei, but allow a random intercept υi

associated with each region, i.e.,

The hierarchical structure allows us to build the overall (marginal) distribution of the Yi in

two stages. At the first stage, observations Yi are conditionally independent given the values

of the random effects, υi. The second stage (the distribution of the random effects) allows a

mechanism for inducing extra-Poisson variability in the marginal distribution of the Yis.

Other options exist for introducing different types of excess variability or overdispersion

into generalized linear models of counts (e.g., McCullagh and Nelder 1989, Gelfand and

Dalal 1990). Here, we focus on the exchangeable random intercept approach due to its

similarity to the approach proposed for spatial random effects in the sections below.

From a Bayesian perspective, the first stage of the model defines the likelihood and the

second stage a set of exchangeable prior distributions for the random effects, which are

estimable provided  is known or is assigned a proper hyperprior. To complete the model

specification, we assign a vague (perhaps even improper uniform, or “flat”) prior to the

“fixed” effect β0, which is well identified by the likelihood.

The hierarchical structure allows a wide variety of options for shaping the random effects

and resulting marginal correlations among the Yis. This feature of maintaining a

conditionally independent framework for observations given the random effects and

defining a second-stage distribution for the random effects represents one of the primary

advantages of hierarchical models, and has led to their widespread use in statistical analyses

with complex correlation patterns (e.g., spatial, temporal, longitudinal, repeated measures,

and so on), particularly for non-Gaussian data such as our small area counts.

The addition of the random effects addresses the small area estimation problem by inducing

a connection among the local relative risks (the ζis) through the random effects distribution,

and transforming the estimation of I local relative risks to the estimation of only two

parameters: the overall mean effect β0, and the random effects variance . The approach

provides a local estimate defined by a weighted average of the observed data in location i

and the global overall mean. Clayton and Kaldor (1987), Marshall (1991), and Waller and

Gotway (2004, Section 4.4.3) provide details of an empirical Bayes approach using data-

based estimates of β0 and . In a fully Bayesian approach we assign a hyperprior
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distribution to  (e.g., a conjugate inverse gamma distribution) and summarize the full

posterior distribution for statistical inference.

Extending the model to include region-specific fixed-effect covariates simply involves

replacing β0 above by  (including the fixed intercept β0 within β) and assigning vague

priors to the elements of β. As with β0 above, the fixed-effect parameters are well-identified

by the likelihood and provide baseline (pre-smoothing) estimates of each local relative risk

ζi.

14.2.3 Spatial random effects

To this point, the model induces some correlation, but does not specifically induce spatial

correlation among the observations. All local estimates are compromises between the local

data and a global weighted average based on all of the data, with weights based on the

relative variances observed in the local and global estimates. Clayton and Kaldor (1987)

introduced the idea of replacing the set of exchangeable priors at the second stage with a

spatially structured prior distribution, leading to empirical Bayes estimates wherein local

estimates are a weighted average of the regional data value and an average of observations

in nearby or neighboring regions. This approach borrows strength locally, rather than

globally. Besag et al. (1991) extended the approach to a fully Bayesian formulation, clarified

some technical points regarding the spatial prior distribution, and proposed the use of

MCMC algorithms for fitting such models.

In this vein, suppose we modify the model to

Here, ∑u denotes a spatial covariance matrix and we distinguish between the exchangeable

random effects υi above and a vector u = (u1,…,uI) of spatially correlated random effects.

Fixed effect covariates may be added in the same manner as before. In practice, the spatial

covariance matrix typically consists of parametric functions defining covariance as a

function of the relative locations of any pair of observations (e.g., geostatistical covariance

functions and variograms). Cressie (1993, Sections 2.3–2.6) and Waller and Gotway (2004,

Section 8.2) provide introductions to such covariance functions, and Diggle et al. (1998),

Banerjee et al. (2004, Sec. 2.1) and Diggle and Ribeiro (2007) illustrate their use within

hierarchical models such as that above.

The model based on a multivariate Gaussian random effects distribution represents a

relatively minor conceptual change from the small area estimation literature, and ties the

field to parametric covariance models from geostatistics (Matheron, 1963, Cressie, 1993,

Chapter 3, Waller and Gotway, Chapter 8). However, the goals of disease mapping

(statistically stable local estimation) and geostatistics (statistical prediction at locations with

no observations) differ and such models currently represent a relatively small fraction of the

disease mapping literature. An alternative formulation built from Clayton and Kaldor’s

(1987) CAR formulation sees much broader application in the spatial analysis of regional
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disease rates, largely thanks to the computational advantages it offers over the multivariate

Gaussian model. But since the spatial structure induced by the CAR model is less

immediately apparent, we now consider it in some detail.

Specifically, the CAR formulation replaces the multivariate Gaussian second stage above

with a collection of conditional Gaussian priors for each ui wherein the prior mean is a

weighted average of the other uj, j ≠ i,

(14.1)

Here, the cijs are user-defined spatial dependence parameters defining which regions j are

“neighbors” to region i, or more generally weights defining the influence of region uj on the

prior mean of ui. The parameter τCAR denotes a hyperparameter related to the conditional

variance of ui given the values of the other elements of u. By convention, one sets cii = 0 for

all i, so no region is its own neighbor. Many applications consider adjacency-based weights,

where cij = 1 if region j is adjacent to region i, and cij = 0 otherwise. Other weighting

options also are available (e.g., Best et al., 1999) but are much less widely applied. Weights

are typically assumed to be fixed, but see Lu, Reilly, Banerjee, and Carlin (2007) for a

spatial boundary analysis application where the weights are estimated from the data.

To define the connection between the autoregressive spatial dependence parameters {cij}

and the joint spatial covariance matrix ∑u, Besag and Kooperberg (1995) note that, if u
follows a multivariate Gaussian distribution with covariance ∑u, then the density, f(u), takes

the form

(14.2)

Standard multivariate Gaussian theory defines the associated conditional distributions as

(14.3)

where  denotes the (i, j)th element of the precision matrix . Note the conditional

mean for ui is a weighted sum of uj, j ≠ i, and the conditional variance is inversely

proportional to the diagonal of the inverse of ∑u, just as it is in the CAR specification above.

Reversing direction and going from a set of conditional Gaussian distributions to the

associated joint distribution is more involved, requiring constraints on the {cij} to ensure,

first, a Gaussian joint distribution and, second, a symmetric and valid covariance matrix ∑u

(c.f. Besag, 1974; Besag and Kooperberg, 1995; Arnold et al., 1999). Results in Besag

(1974) indicate the set of CAR priors defined in equation (14.1) uniquely defines a

corresponding multivariate normal joint distribution with mean zero, , and
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. However, for symmetric cijs, the sum of any row of the matrix  is zero,

indicating  is singular, and the corresponding covariance matrix ∑u is not well-defined.

This holds for any symmetric set of spatial dependence parameters cij (including the

adjacency-based cijs appearing in many applications). Remarkably, the singular covariance

does not preclude application of the model with such weight matrices, since pairwise

contrasts ui − uj are well-identified even though the individual uis are not (Besag et al.,

1995). These distributions are improper priors since they define contrasts between pairs of

values ui − uj, j ≠ i, but they do not identify an overall mean value for the elements of u
(since such distributions define the value of each ui relative to the values of the others). In

this case, any likelihood function based on data allowing estimation of an overall mean also

allows the class of improper pairwise difference priors to generate proper posterior

distributions. In practice, one often assures this by the ad-hoc addition of the constraint

(14.4)

While the addition of the constraint slightly complicates formal implementation of equation

(14.1), Gelfand and Sahu (1999) note that the constraint can be imposed “on the fly” within

an MCMC algorithm simply by replacing ui by ui − ū for all i following each MCMC

iteration. These authors also provide additional theoretical justification, and note that the

constraint maintains attractive full conditional distributions for most CAR models in the

literature while avoiding awkward reduction to (I − 1)-dimensional space. In contrast, Rue

and Held (2005, Section 2.3.3) avoid the constraint altogether through block updates of the

entire set of random effects. See also Richardson et al. (2004), Knorr-Held and Rue (2002),

and Chapter 13 (this volume) for important algorithmic advances related to this model.

As a computational aside, note that both the conditional mean and the conditional variance

in equation (14.3) depend on elements of the inverse of the covariance matrix ∑u. As a

result, MCMC algorithms applied to the joint specification based on straightforward updates

from full conditional distributions will involve some sort of matrix inversion at each update

of the covariance parameters. This reveals a computational advantage of the CAR prior

formulation: it effectively limits modeling to the elements of , avoiding inversion and

we focus attention on CAR models in the remainder of this chapter. We note, however, that

computational convenience carries considerable conceptual cost (parameterizing 

rather than ∑u). Recent algorithmic developments seek to ease this computational/conceptual

trade-off by using structured covariance matrices to reduce the computational burden of

directly modeling the joint distribution, an issue discussed in more detail in Chapter 13 (this

volume).

In addition to its (indirectly) defining the covariance structure of our model, the choice of

cijs also has direct impact on the posterior variances. In the usual case where τCAR is

unknown, it is conventionally assigned a conjugate gamma hyperprior distribution (see e.g.
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Carlin and Louis, 2009, p.424), since this leads to a closed form for the τCAR full conditional

distribution needed by the MCMC algorithm. However, even here there is some controversy,

since the impropriety of the standard CAR means that, despite our use of the proportionality

sign in (14.2), the joint distribution of the uis really has no normalizing constant. Knorr-Held

(2002) advocated k = (n − 1)/2 for Gaussian Markov random fields (a set containing the

CAR-specified model above) based on the rank of the resulting precision matrix. Hodges et

al. (2003) argue that the most sensible joint density to use in this case is

(14.5)

where Q is I × I with non-diagonal entries qij = − 1 if i ~ j and 0 otherwise, and diagonal

entries qii equal to the number of region i’s neighbors, and k is the number of disconnected

“islands” in the spatial structure. Thus in the usual case where every county is connected to

every other by some chain of neighbors, the exponent on τCAR is (I − 1)/2, as advocated

earlier by Knorr-Held (2002), and not I/2, as originally suggested by Besag et al. (1991). In

the case of multiple islands in the spatial map, this exponent drops further (reflecting the

greater rank deficiency in Q), and the sum-to-zero constraint (14.4) must be applied to each

island separately. See Lu, Hodges and Carlin (2007) for extensions of these ideas that enable

“counting” degrees of freedom in spatial models that are distinct from but related to those

given by Spiegelhalter et al. (2002).

14.2.4 Convolution priors

Further extending disease mapping models, Besag et al. (1991) point out that we could

include both global and local borrowing of information within the same model via a

convolution prior including both exchangeable and CAR random effects for each region, as

follows:

To complete the model, we assign hyperpriors to the hyperparameters τCAR and .

Again, fixed-effect covariates may be added if desired. As mentioned above, typical

applications define conjugate gamma hyperpriors, and Ghosh et al. (1999) and Sun et al.

(1999) define conditions on these distributions necessary to ensure proper posterior

distributions. When we include both u and v in the model some care is required to avoid

assigning “unfair” excess prior weight to either global or local smoothing, since τCAR is

related to the conditional variance of ui|uj≠i but τυ is related to the marginal variance of each

υi. This issue is explored by Bernardinelli et al. (1995a), who, based on their empirical

example, suggest taking the prior marginal standard deviation of υi to be roughly equal to

the conditional standard deviation of ui|uj≠i divided by 0.7. We stress that this is only a “rule

of thumb” and merits closer scrutiny (Eberly and Carlin, 2000; Banerjee et al., 2004, p.164).
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In any given application, a simple yet “fair” approach might be to first run the MCMC

algorithm without including the data (e.g., by commenting the Poisson likelihood terms out

of the WinBUGS code), and then choose hyperpriors that produce no-data “posteriors” for

τCAR and τυ that are roughly equal. Another approach based on marginal variances induced

by the CAR prior appears in Rue and Held (2005, pp. 103–105). In any case, note that we

cannot take both of these hyperpriors to be noninformative, because then only the sum of the

random effects (ui + υi), and not their individual values, will be identified.

14.2.5 Alternative formulations

It is important to note that, while arguably the most popular, the formulation proposed by

Besag et al. (1991) is not the only mechanism for including both spatial and non-spatial

variance components within a single hierarchical disease mapping model. For example,

Leroux et al. (1999) and MacNab and Dean (2000) define spatially structured and

unstructured variation built on additive components of the precision matrix of a single

random intercept rather than via the sum of two additive random intercepts. To contrast the

approaches briefly, the Besag et al. (1991) formulation above defines a random intercept

consisting of the sum of two parameters (ui and υi) for each region, resulting in a variance-

covariance matrix for the multivariate normal sum u + v defined by

where I denotes the I-dimensional identity matrix and Q contains the number of neighbors

for each region along the diagonal, qij = − 1 if i ~ j, and 0 otherwise as in equation (14.5)

above. The Leroux et al. (1999) formulation defines a single random intercept wi for each

region where

Here, σ2 defines an overall dispersion parameter, and

with 0 ≤ λ ≤ 1 denoting a spatial dependence parameter where λ = 0 defines a non-spatial

model and the level of spatial dependence increases with λ. By defining the spatial and non-

spatial components for the inverse (or generalized inverse) of ∑w, Leroux et al. allow ready

definition of the conditional mean and variance for the random effects in terms of

parameters λ and σ2, i.e.,
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recalling qii denotes the number of neighbors for region i, i = 1,…,I. Leroux et al.’s

formulation also allows parameter estimation via penalized quasi-likelihood in the manner

of Breslow and Clayton (1993).

Another set of alternative approaches seeks to identify potential discontinuities in the risk

surface by loosening the rather strong amount of spatial smoothing often induced by the

Besag et al. (1991) general CAR formulation above. Besag et al. (1991) propose replacing

the squared pairwise differences, (ui − uj)2, inherent in the Gaussian CAR formulation, with

the L1-norm-based pairwise differences, |ui − uj|, resulting in shrinkage toward

neighborhood median rather than mean values, hence yielding relatively weaker amounts of

smoothing between neighboring values as illustrated in simulation studies by Best et al.

(1999).

Green and Richardson (2002) take a different approach based on a hidden Markov field,

thereby deferring spatial correlation to an additional, latent layer in the hierarchical model.

Their formulation draws from a spatial type of cluster analysis where each region belongs to

one of several classes and class assignments are allowed to be spatially correlated (Knorr-

Held and Rasser 2000, Denison and Holmes 2001). The number of classes and the regional

class assignments are unobserved, requiring careful MCMC implementation within the

variable dimensional parameter space. The approach allows for discontinuities between

latent class assignments and for spatially-varying amounts of spatial correlation (i.e.,

stronger correlation for some classes, weaker for others). The approach is not a direct

extension of the CAR models above, but rather utilizes a Potts model from statistical image

analysis and statistical physics to model spatial association in the regional labels. This

increased flexibility (at an increased computational cost) provides inference for both group

membership as well as very general types of spatial correlation. However, the advantages of

the added flexibility increase with the number of regions and the complexity of subgrouping

within the data. As a result, applications of the Green and Richardson (2002) approach

appear more often in the analysis of high-dimensional biomedical imaging and genetic

expression data than in disease mapping.

Simulation studies in Leroux et al. (1999), MacNab and Dean (2000), and Green and

Richardson (2002) identify the types of situations where these alternative model

formulations gain advantage over the CAR formulation. For example, the Leroux et al.

(1999) model shows gains in performance over the CAR model as spatial correlation

decreases to zero, and the Green and Richardson (2002) approach improves several

measures of model fit from those observed in CAR formulations, particularly in cases with

strong underlying discontinuities in risk. However, the near custom-fit between the Besag et

al. (1991) formulation and fairly standard MCMC implementation continues to fuel its

popularity in general disease mapping applications. As such, we focus on this model and its

extensions below.

14.2.6 Additional considerations

The WinBUGS software package (www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml) permits

ready fitting of the disease mapping models defined above with exchangeable, CAR, or

convolution prior distributions on the random intercepts. WinBUGS also allows mapping of
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the fitted spatial residuals E(ui|y) or the fitted region-specific relative risks, E(eβ0+ui+υi|y),

local estimates of the relative risk of being in region i compared to what was expected.

While hierarchical models with CAR and/or convolution priors see broad application for

parameter estimation and associated small area estimation for regional data, they certainly

are not the only models for such data, nor necessarily optimal in any particular way. In

addition, CAR-based hierarchical models are defined only for the given set of regions and

do not aggregate or disaggregate sensibly into CAR models on larger or smaller regions,

respectively. Furthermore, regions on the edges of the study domain often have fewer

neighbors and hence less information to draw from for borrowing strength locally than

interior regions resulting in “edge effects” of reduced performance. The dependence on the

given set of regions also implies that adjacency-based neighborhoods can correspond to very

different ranges of spatial similarity around geographically large regions than around

geographically small regions. For these reasons, the CAR prior cannot be viewed as a simple

“discretized” version of some latent, smooth random process; see e.g. Banerjee et al. (2004,

Sec. 5.6). However, Besag and Mondal (2005) provide some connections between CAR-

based models and latent de Wijs processes on smaller scales that may allow rescaling of

distance-based correlation structures across zonal systems.

Finally, it is important to keep in mind that the CAR structure is applied to the random

effects at the second stage of the hierarchy, not directly to the observed data themselves.

Generally speaking, this ensures a proper posterior distribution for the random effects for a

broad variety of likelihood structures. In applications where one assumes a Gaussian first

stage, CAR random effects are especially attractive with closed form full conditional

distributions. In a generalized linear model setting (as in most disease mapping

applications), the hierarchical structure allows us to maintain use of Gaussian CAR random

variables within the link function, rather than attempting to work with Poisson (or binomial)

CAR distributions for the counts themselves. For Poisson outcomes, the Gaussian-CAR-

within-the-link-function structure avoids extreme and unfortunate restrictions (e.g., negative

spatial correlation and normalizing constants defined by awkward functions of model

parameters) imposed by CAR-based “autoPoisson” models (Besag, 1974). The hierarchical

modeling approaches based on the CAR and convolution priors described above allow us to

incorporate spatial correlation into generalized linear models of local disease rates, as well

as conveniently defer such correlation to the second level of the model. That is, the

formulation avoids analytical complications inherent in modeling spatial correlation within

non-Gaussian distributions with inter-related mean and variance structures.

14.3 Example: Sasquatch Reports in Oregon and Washington

To illustrate the disease mapping models above, we consider an admittedly unconventional

(and a bit whimsical) data set, namely the number of reported encounters with the legendary

North American creature Sasquatch (Bigfoot) for each county in the U.S. states of

Washington and Oregon. These data were obtained in May 2008 from the website of the

Bigfoot Field Research Organization, www.bfro.net. For those unfamiliar with the story,

Sasquatch is said to be a large, bipedal hominoid primarily purported to reside in remote

areas in the Pacific Northwest. While reported encounters do not reflect a “disease” per se
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and we do not necessarily expect all individuals residing in a given county to experience the

same “risk” of reporting an encounter, cryptozoologists and Sasquatch enthusiasts alike may

be interested in identifying areas with higher-than expected local per-person rates of

reported encounters. For our purposes, the data serve as a general example of the type we

have described; namely, regional counts of a (thankfully) rare event standardized by the

local population size and with associated regional covariates. The models above allow us to

explore region-specific relative risks of reporting in order to explore any underlying

geographic patterns and identify where reports are higher or lower than expected if every

individual were equally likely to file a report. While the null model of equal per-person risk

of reporting is unlikely to be true, it nevertheless forms a point of reference for our region-

to-region comparisons. As we shall see, the data also offer an opportunity to explore in some

detail the behavior of the methods in the presence of a single, large outlying observation.

While the data provide a template for illustrating the models, readers in search of more

traditional applications of CAR-based disease mapping models may find detailed examples

in Mollié (1996), Best et al. (1999), Wakefield et al. (2000), Banerjee et al. (2004), and

Waller and Gotway (2004, Chapter 9).

Figure 14.1, created by linking our data to maps of U.S. county boundaries using ArcGIS

(ESRI, Redlands, CA), displays the data. The map in the upper left shows the number of

reports per county ranging from zero (light grey) to a high of 51 in Skamania County in

Washington, on the border with Oregon. The map in the upper right displays the local “rate”

of reporting defined as the number of reports divided by the county population as reported

by the 2000 U.S. Census, displayed in intervals defined by Jenks’ “natural breaks” method

(Jenks, 1977; MacEachren, 1995, Chapter 4). The population adjustment is somewhat

contrived as some reports in the data set can date back to the 1970s and a few back to the

1950s, but the 2000 population counts offer a crude form of standardization. The adjustment

from counts to rates is most dramatic in the counties surrounding Puget Sound, revealing

that the numbers of reports in this area are quite small when computed on a roughly per-

person basis. The shift is particularly striking in King County, home to much of the Seattle

metropolitan area. In contrast, Skamania County is extreme for both counts and rates and

clearly of interest as our analysis continues. Finally, the lower left map shows the

geographic distribution of a potential covariate, the population density based on the number

of residents per square mile (again, from the 2000 Census and classified by Jenks’ natural

breaks method). We note that rural Skamania County, while high in both number and rate of

reporting, is in the lowest category of (log) population density.

Our model begins with the simple Poisson regression,

with xi denoting the natural logarithm of population density and Ei the internally

standardized expected count ni(∑i Yi/∑i ni), i.e., the number of reports expected if each

resident is equally likely to file a report. Figure 14.2 shows a scatterplot of the observed and

expected counts, revealing (not surprisingly) a great deal of heterogeneity about the line of
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equality, with Skamania and King counties again standing out for reporting considerably

more and less than expected, respectively.

Figure 14.3 motivates our choice of covariate by illustrating how the county-specific rate of

reporting decreases with increasing population density, with Skamania county remaining a

obvious outlier. The extreme variation displayed suggests potential local instability in rates

and suggests the use of random effects to adjust for the excess heterogeneity present in the

data. However, we note that in most disease mapping applications unstable high local rates

are often due to very low expected numbers of cases (e.g., Ei << 1) and a single observed

case, while here the high rate in Skamania is apparently due to an extremely high number of

local reports (51).

We fit four models to the data, first a simple fixed effect model, then models with random

intercepts following exchangeable (non-spatial), CAR (spatial), and convolution (both)

priors. We used the program maps2WinBUGS (sourceforge.net/projects/maps2winbugs) to

transfer the map data from ArcGIS format to WinBUGS format, then used GeoBUGS (the

spatial analysis and mapping tool within WinBUGS) define our adjacency matrix. We note

that the adjacency matrix defines cij = 1 for any regions i and j sharing a common boundary,

but also includes some counties falling very close to one another; for example, Wasco

County is included among the neighbors of Skamania County. Each model was fit using

MCMC within WinBUGS using 100,000 iterations. To reduce correlation between

parameters β0 and β1, we centered our covariate by subtracting the overall mean (log)

population density from each value. Our MCMC samples provide posterior inference for

model parameters and for county-specific relative risks (e.g., RRi = exp(β0+β1xi+ui+υi) for

the convolution model).

In all four models, the estimated effect of population density (β1) was negative and

significantly different from 0; in the convolution model we obtained a 95% equal-tail

credible interval of (−0.68, −0.35). Thus Bigfoot sightings are significantly more likely to

arise in more thinly populated counties. One might speculate that this is due to Bigfoot’s

preference for habitats with fewer humans per unit area, or simply a tendency of Bigfoot

afficionados to live and work in such regions. Effective model size (pD) and DIC scores

(Spiegelhalter et al., 2002) do not differ appreciably across the 3 random effects models.

This is confirmed by Figure 14.4, which shows the local relative risk (RRi) for each county

based on the maps. Counties are shaded by the same intervals to ease comparisons between

maps. We note that the model with no random effects (top left) does a very poor job of

predicting the local high rate in Skamania County, and that relative risks are exaggerated in

the low population density counties along Oregon’s southern border. The maps of relative

risks based on the three random effects models are similar in general, with some subtle

differences. All three are able to capture the excess variability observed in the data,

especially the extreme value in Skamania County. We note that the interval containing the

largest estimated relative risks covers a very large range of values, with the darkest counties

in the fixed effect model representing local relative risks less than 20, but the other three

maps all assigning Skamania County a relative risk near 70. The convolution prior appears

to offer something of a compromise between the nonspatial exchangeable model and the

spatial CAR model, particularly along the eastern border of our study area. This is sensible,
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since with both types of random effects in our model, we would expect the fitted values to

exhibit both spatial and nonspatial heterogeneity.

This compromise is seen more clearly in Figure 14.5, which shows the posterior median and

95% credible sets for the log relative risks associated with Skamania County and its

neighbors for each of the four models. As noted above, for Skamania County the

neighborhood includes seven adjacent counties and one nearby county, namely Wasco

County to the southeast (labeled in Figure 14.1). Figure 14.5 reveals that the model with no

random effects generates deceptively tight credible sets (ignoring the substantial extra-

Poisson variation in the data set) and clearly misses the increased risk of reporting observed

in Skamania County (indicated by a filled circle), well above that expected based on the

offset (population size) and the covariate (population density). The three random effect

models are quite similar for our data, and all three capture the increased risk of reporting in

Skamania County.

A closer look at the posterior distribution for Wasco County (indicated by a filled square) in

Figure 14.5 highlights the subtle differences between models in our data. Note that Wasco

County has a wide credible set, suggesting a locally imprecise estimate in need of input from

other regions. In the CAR model, the posterior distribution of the relative risk of reporting in

Wasco County is pulled (slightly) upward toward that of its neighbor Skamania when

compared to the posterior distribution for Wasco County in the exchangeable model. As

suggested by the maps, the convolution model represents a compromise between the

posterior distributions of relative risks from the spatial CAR model and the non-spatial

exchangeable model. We remark that the WinBUGS code for the full model (given in the

Appendix) uses a relatively vague Gamma(0.1, 0.1) hyperprior for τCAR; a hyperprior

centered more tightly on smaller values (or even a fixed, larger value of τCAR) would further

smooth Wasco toward Skamania.

Our example illustrates several features of disease mapping models. First, there is often a

concern that disease mapping models may oversmooth extreme rates, particularly

observations that are very unlike their neighbors. Our data provide an extreme example of

this with a single outlier, well identified by the model which does not overly influence its

neighboring estimates. As noted in Figure 14.5 there is some impact on the most variable

neighboring estimates (e.g., that from Wasco County) but this is very slight and unlikely to

strongly influence conclusions. In addition, the example reveals that all three random effects

models fit the data approximately equally well, suggesting a clear need for borrowing

strength from other regions, but does not suggest a clear preference for global versus local

assistance. Further analyses might check the robustness of the Bayesian model choice

decision (via DIC or some other method) to deleting Skamania from the dataset and

recomputing the posterior.

14.4 Extending the Basic Model

14.4.1 Zero-inflated Poisson models

Many spatial datasets feature a large number of zeros (areas with no reported disease cases)

that may stretch the credibility of our Poisson likelihood. As such, a zero-inflated Poisson
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(ZIP) model may offer a sensible alternative. Lambert (1992) implemented such a model in

a manufacturing-related regression context using the EM algorithm; Agarwal et al. (2002)

offer a fully Bayes-MCMC version for spatial count data.

In our context, suppose we model the disease count in region i as a mixture of a Poisson(λi)

distribution and a point mass at 0. That is, when there are no cases observed in region i, we

assume that such zero counts arise as Poisson variates with probability (1 − ωi), and as

“structural zeros” with probability ωi. More formally, we can write the regression model as

where , and xi and zi are covariate

vectors which may or may not coincide. More parsimonious models are often used to

preserve parameter identifiability, or to allow the λi and ωi to be related in some way.

Agarwal et al. (2002) set xi = zi and eliminate the wi random effects; a follow-up paper by

Agarwal (2006) retains both the ui and wi, but assigns them independent proper CAR priors.

Another possibility is to replace  with  in the expression for logit(ωi)

(Lambert, 1992); note that ν < 0 will often be necessary to reverse the directionality of xi’s

relationship when switching responses from λi to ωi.

To complete the Bayesian model, we assign vague normal priors to β and γ, and CAR or

exchangeable priors to the ui and wi. Disease mapping can now proceed as usual, with the

advantage of now being able to use the posterior means of the ωi as the probability that

region i is a structural zero in the spatial domain.

We remark that this model may be sensible for the data in the previous section, since 10 of

the 75 counties had no reported Sasquatch sightings. In the interest of brevity, however, we

leave this investigation (in WinBUGS or some other language) to the interested reader.

14.4.2 Spatiotemporal models

Many spatially-referenced disease count datasets are collected over time, necessitating an

extension of our Section 14.2 models to the spatiotemporal case. This is straightforward if

time and space are both discretely indexed – say, with space indexed by county and time

indexed by year. In fact, the data may have still more discrete indexes, as when disease

counts are additionally broken out by race, gender, or other sociodemographic categories.

To explicate the spatiotemporal extension as concretely as possible, we develop

spatiotemporal extensions in the context of a particular dataset originally analyzed by

Devine (1992, Chapter 4). Here, Yijkt is the number of lung cancer deaths in county i during

year t for gender j and race k in the U.S. state of Ohio, and nijkt is the corresponding exposed

population count. These data were originally taken from a public use data tape (Centers for

Disease Control, 1988), and are now available online at www.biostat.umn.edu/~brad/

data2.html. The subset of lung cancer data we consider here are recorded for J = 2 genders

(male and female) and K = 2 races (white and nonwhite) for each of the I = 88 Ohio counties
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over an observation period of T = 21 years, namely 1968–1988 inclusive, yielding a total of

7392 observations.

We begin our modeling by extending our Section 14.2 Poisson likelihood to

We obtain internally standardized expected death counts as Eijkt = nijktr̂, where r̂ = ȳ = ∑ijkt

yijkt=∑ijkt nijkt, the average statewide death rate over the entire observation period. The

temporal component is of interest to explore changes in rates over a relatively long period of

time. Demographic issues are of interest because of possible variation in residential

exposures for various population subgroups. In addition, the demographic profile of the

counties most likely evolved over the time period of interest.

Devine (1992) and Devine, Louis, and Halloran (1994) applied Gaussian spatial models

employing a distance matrix to the average lung cancer rates for white males over the 21-

year period. Waller et al. (1997) explored a full spatiotemporal CAR-based model, adopting

the mean structure

(14.6)

where sj and rk are the gender and race scores

Letting , and denoting the I-dimensional

identity matrix by I, we adopt the prior structure

(14.7)

so that heterogeneity and clustering may vary over time. Note that the socio-demographic

covariates (gender and race) do not interact with time or location.

To complete the model specification, we require prior distributions for α, β, ξ, the τt and the

λt. Since α, β, and ξ will be identified by the likelihood, we may employ a flat prior on these

three parameters. Next, for the priors on the τt and λt we employed conjugate, conditionally

i.i.d. Gamma(a, b) and Gamma(c, d) priors, respectively. As mentioned earlier, some

precision is required to facilitate implementation of an MCMC algorithm in this setting. On

the other hand, too much precision risks likelihood-prior disagreement. To help settle this

matter, we fit a spatial-only (reduced) version of model (14.6) to the data from the middle

year in our set (1978, t = 11), using vague priors for λ and τ having both mean and standard

deviation equal to 100 (a = c = 1, b = d = 100). The resulting posterior 0.025, 0.50, and

0.975 quantiles for λ and τ were (4.0, 7.4, 13.9) and (46.8, 107.4, 313.8), respectively. As
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such, in fitting our full spatio-temporal model (14.6), we retain a = 1, b = 100 for the prior

on τ, but reset c = 1, d = 7 (i.e., prior mean and standard deviation equal to 7). While these

priors are still quite vague, the fact that we have used a small portion of our data to help

determine them does give our approach a slight empirical Bayes flavor. Still, our

specification is consistent with the aforementioned advice of Bernardinelli et al. (1995a).

Specifically, recasting their advice in terms of prior precisions and the adjacency structure or

our CAR prior for the , we have λ ≈ τ/(2 m̃), where m̃ is the average number of counties

adjacent to a randomly selected county (about 5–6 for Ohio).

Model fitting is readily accomplished in WinBUGS using an assortment of univariate Gibbs

and Metropolis steps. Convergence was diagnosed by graphical monitoring of the chains for

a representative subset of the parameters, along with sample autocorrelations and Gelman

and Rubin (1992) diagnostics. The 95% posterior credible sets (−1.10, −1.06), (0.00, 0.05),

and (−0.27, −0.17) were obtained for α, β, and ξ, respectively. The corresponding point

estimates are translated into the fitted relative risks for the four subgroups in Table 14.1. It is

interesting that the fitted sex-race interaction ξ reverses the slight advantage white men hold

over nonwhite men, making nonwhite females the healthiest subgroup, with a relative risk

nearly four times smaller than either of the male groups. Many Ohio counties have very

small nonwhite populations, so this result could be partly the result of our failure to model

covariate-region interactions. Replacing the raw death counts Yijkt by age-standardized

counts also serves to eliminate the nonwhite females’ apparent advantage, since nonwhites

die from lung cancer at slightly younger ages in our dataset; see Xia and Carlin (1998).

Turning to the spatio-temporal parameters, histograms of the sampled values (not shown)

showed  distributions centered near 0 in most cases, but  distributions typically

removed from 0. This suggests some degree of clustering in the data, but no significant

additional heterogeneity beyond that explained by the CAR prior. Use of the DIC statistic

(Spiegelhalter et al., 2002) or some other Bayesian model choice statistic confirms that the

nonspatial  terms may be sensibly deleted from the model.

Since under our model the expected number of deaths for a given subgroup in county i

during year t is Eijkt exp(μijkt), we have that the (internally standardized) expected death rate

per thousand is 1000ȳ exp(μijkt). The first row of Figure 14.6 maps point estimates of these

fitted rates for nonwhite females during the first (1968), middle (1978), and last (1988) years

in our dataset. These estimates are obtained by plugging in the estimated posterior medians

for the μijkt parameters calculated from the output of the Gibbs sampler. The rates are

greyscale-coded from lowest (white) to highest (black) into seven intervals: less than 0.08,

0.08 to 0.13, 0.13 to 0.18, 0.18 to 0.23, 0.23 to 0.28, 0.28 to 0.33, and greater than 0.33. The

second row of the figure shows estimates of the variability in these rates (as measured by the

interquartile range) for the same subgroup during these three years. These rates are also

greyscale-coded into seven intervals: less than 0.01, 0.01 to 0.02, 0.02 to 0.03, 0.03 to 0.04,

0.04 to 0.05, 0.05 to 0.06, and greater than 0.06.

Figure 14.6 reveals several interesting trends. Lung cancer death rates are increasing over

time, as indicated by the gradual darkening of the counties in the figure’s first row. But their
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variability is also increasing somewhat, as we would expect given our Poisson likelihood.

This variability is smallest for high-population counties, such as those containing the cities

of Cleveland (northern border, third from the right), Toledo (northern border, third from the

left), and Cincinnati (southwestern corner). Lung cancer rates are high in these industrialized

areas, but there is also a pattern of generally increasing rates as we move from west to east

across the state for a given year. One possible explanation for this is a lower level of

smoking among persons living in the predominantly agricultural west, as compared to those

in the more mining and manufacturing-oriented east. Finally, we see increasing evidence of

clustering among the high rate counties, but with the higher rates increasing and the lower

rates remaining low (i.e., increasing heterogeneity statewide). The higher rates tend to

emerge in the poorer, more mountainous eastern counties, suggesting we might try adding a

socioeconomic status fixed effect to the model.

Interested readers can find other variants of CAR-based spatio-temporal disease mapping

models in the literature including those proposed by Bernardinelli et al. (1995b), Knorr-Held

and Besag (1998), and Knorr-Held (2000). Further extensions include spatial age-period-

cohort models (Lagazio et al., 2003; Schmid and Held, 2004; Congdon, 2006) which

incorporate temporal effects through time-varying risk and through birth-cohort-specific

risks. In addition, MacNab and Dean (2001) extend the alternate formulation for convolution

priors proposed by Leroux et al. (1999) (and described in Section 14.2.4) to the spatio-

temporal setting through the addition of smoothing splines to model temporal and spatio-

temporal trends in mortality rates.

14.4.3 Multivariate CAR (MCAR) models

The methods illustrated so far apply to the modeling of regional counts of a single disease.

However, it will often be the case that we have counts of multiple diseases over the same

regional grid. This type of analysis has been examined in different ways (Held et al., 2005;

Knorr-Held and Best, 2001), but can be considered within a multivariate extension of the

CAR models above. To adapt our notation to this case, suppose we let Yij be the observed

number of cases of disease j in region i, i = 1,…,I, j = 1,…,p, and let Eij be the expected

number of cases for the same disease in this same region. As in Section 14.2, the Yij are

thought of as random variables, while the Eij are thought of as fixed and known. For the first

level of the hierarchical model, conditional on the random effects uij, we assume the Yij are

independent of each other such that

(14.8)

where the xij are explanatory, region-level spatial covariates for disease j having (possibly

region-specific) parameter coefficients βj.

Carlin and Banerjee (2003) and Gelfand and Vounatsou (2003) generalized the univariate

CAR (14.2) to a joint model for the random effects uij under a separability assumption,

which permits modeling of correlation among the p diseases while maintaining spatial

dependence. Separability assumes that the association structure separates into a non-spatial

and spatial component. More precisely, the joint distribution of u is assumed to be
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(14.9)

where , Λ is a p × p positive definite matrix that is

interpreted as the non-spatial precision (inverse dispersion) matrix between diseases, and ⊗

denotes the Kronecker product. Also, α ∈ [0, 1] is a spatial autocorrelation parameter that

ensures the propriety of the joint distribution; α = 1 returns us to the improper CAR case,

while α = 0 delivers an independence model. We denote the distribution in (14.9) by

MCAR(α, Λ). The improper MCAR(1, Λ) model is sometimes referred to as a multivariate

intrinsic autoregression, or MIAR model.

The MCAR(α, Λ) can be further generalized by allowing different smoothing parameters for

each disease, i.e.,

(14.10)

where . The the distribution in (14.10) is sometimes denoted by

MCAR(α1,…,αp, Λ). Note that the off-diagonal block matrices (the Ri’s) in the precision

matrix in (14.10) are completely determined by the diagonal blocks. Thus, the spatial

precision matrices for each disease induce the cross-covariance structure in (14.10).

Jin et al. (2005) developed a more flexible generalized multivariate CAR (GMCAR) model

for the random effects u. For example, in the bivariate case (p = 2), they specify the

conditional distribution u1|u2 as N ((η0I + η1W)u2, [τ1(D − α1W)]−1), and the marginal

distribution of u2 as N (0, [τ2(D − α2W)]− 1), both of which are univariate CAR. This

formulation yields the models of Kim et al. (2001) as a special case and recognizes explicit

smoothing parameters (η0 and η1) for the cross-covariances, unlike the MCAR models in

(14.10) where the cross-covariances are not smoothed explicitly. However, it also requires

the user to specify the order in which the variables (for us, diseases) are modeled, since

different conditioning orders will result in different marginal distributions for u1 and u2 and,

hence, different joint distributions for u. This may be natural when one disease is a precursor

to another, but in general may be an awkward limitation of the GMCAR. To overcome this,

Jin et al. (2007) developed an order-free MCAR that uses a linear model of

coregionalization (Wackernagel, 2003; Gelfand et al., 2004) to develop richer spatial

association models using linear transformations of much simpler spatial distributions. While

computationally and conceptually more challenging, Jin et al. (2007) do illustrate the

strengths of this approach over previous methods via simulation, and also offer a real-data

application involving annual lung, larynx, and esophageal cancer death rates in Minnesota

counties between 1990 and 2000. For more on MCAR models and underlying theory, the

reader is referred to the textbooks by Banerjee et al. (2004, Sec. 7.4) and Rue and Held

(2005).

Regarding computer package implementations of MCAR, WinBUGS offers an

implementation of the MIAR case in a function called mv.car. While this is the only MCAR

model that is built into the software itself, other more general MCAR models can be added
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fairly easily. For example, WinBUGS code to implement the GMCAR is available online at

www.biostat.umn.edu/~brad/software/GMCAR.txt.

14.4.4 Recent developments

The field of disease mapping and areal data modeling more generally continues to generate

research interest, building on the basic models outlined and illustrated in the sections above.

As elsewhere in statistics, many of these new developments have been motivated by special

features of particular spatially-referenced datasets. For instance, Reich et al. (2007) develop

a 2NRCAR model that can accommodate two different classes of neighbor relations, as

would be needed if spatial similarity among regions that neighbor in an east-west direction

is known to be different from that between north-south neighbors. The authors actually

illustrate in a periodontal data setting, where many observations are taken on each tooth, and

the first neighbor relation corresponds to measurements that neighbor as we go around the

jaw while the second corresponds to neighbors across each tooth (i.e., from the cheek to the

tongue side).

Another important area of recent application is spatially varying coefficient models. Here

the basic idea is to place a CAR (or other areal) prior on a collection of regional regression

coefficients in a model, rather than simply on regional intercepts, thereby allowing the

associations between outcomes and covariates to vary by location. So for example assuming

a univariate covariate xij in (14.8), a CAR model would go directly onto the collection of

region-specific coefficients βj = (β1j,…,βIj)′ for each disease j. The spatial residuals uij might

revert to an exchangeable formulation, or be deleted entirely. Such models require some care

in implementation due to an increased potential for multicollinearity among the varying

coefficients. However, the hierarchical approach provides a sounder, model-based

inferential basis for statistical inference than more algorithmic competitors (Waller et al.,

2007; Wheeler and Calder, 2007).

14.5 Summary

The disease mapping models described and illustrated above provide a rich framework for

the definition and application of hierarchical spatial models for areal data that

simultaneously address our twin (but competing) goals of accurate small area estimation and

fine-scale geographic resolution. As noted, the models retain some rough edges in terms of

scalability and generalization of underlying continuous phenomenon. Nevertheless, the

CAR-based structure within a hierarchical generalized linear model offers a robust, flexible,

and enormously popular class of models for the exploration and analysis of small area rates.

Basic and even relatively advanced variations of such models are readily fit using commonly

available GIS (e.g. ArcGIS) and Bayesian (e.g. WinBUGS) software tools. The coming

years will no doubt bring further expansion of the hierarchial spatial modeling and software

toolkits.
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Appendix

WinBUGS code for fitting the convolution model to the Sasquatch report data.

model

{

for (i in 1 : N) {

O[i] ~ dpois(mu[i])

log(mu[i]) <- log(E[i]) + alpha0 + alpha1 * (X[i]-mean(X[])) +

c[i] + h[i]

SMR[i] <- exp(alpha0 + alpha1 * (X[i]-mean(X[])) + c[i] + h[i])

h[i] ~ dnorm(0,tau.h)

}

c[1:N] ~ car.normal(adj[], weights[], num[], tau.h)

for(k in 1:sumNumNeigh) {

weights[k] <- 1

}

alpha0 ~ dflat()

alpha1 ~ dnorm(0.0, 1.0E-5)

tau.c ~ dgamma(0.1, 0.1)

tau.h ~ dgamma(0.01, 0.01)

sigma.h <- sqrt(1/tau.h)

sigma.c <- sqrt(1/tau.c)

sd.c <- sd(c[])

sd.h <- sd(h[])

psi <- sd.c / (sd.c + sd.h) # proportion excess variation that is spatial

}

DATA:

list(N = 75,
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O = c(12, 13, 6, 1, 3, 5, 6, 8, 16, 0, 14, 9, 6, 10, 2,

11, 16, 24, 1, 2, 7, 2, 6, 1, 1, 8, 18, 7, 23, 4,

20, 6, 0, 18, 0, 14, 1, 2, 6, 3, 51, 8, 6, 0, 0,

11, 13, 31, 2, 13, 33, 12, 42, 3, 1, 0, 0, 2, 14,

0, 1, 16, 6, 10, 5, 6, 0, 2, 7, 1, 0, 2, 1, 12, 2),

E=c(21.66807,6.736003,4.18522,2.9842,5.243467,

4.21199,12.16176,1.418131,5.080634,0.9444588,

13.91193,6.236098,1.627794,4.329133,1.741247,

15.56334,3.314697,4.508202,1.407866,0.2565611,

2.3905,2.922542,29.87904,5.702312,0.4870904,

2.688122,2.654441,0.7871273,4.602534,1.596194,

22.70344,5.011663,2.733342,14.93348,3.310806,

4.73323,0.7376802,1.645775,44.31355,9.55898,

0.6623355,23.16282,1.285556,0.1284818,0.1297566,

1.369422,4.469423,40.65957,4.800993,2.187411,

116.5417,2.238335,47.01965,28.04050,0.6832684,

1.102193,0.1608203,0.2726633,3.702155,1.378815,

0.4848092,11.19194,6.909102,19.11018,6.91514,

0.5323777,2.121124,0.5105056,4.278814,0.4979593,

0.1037918,1.275358,1.286965,7.740242,1.123193),

X=c(4.247066,2.985682,4.428433,3.811097,4.745801,

3.663562,4.169761,2.557227,3.830813,4.403054,

5.640843,4.37827,3.091042,3.600048,2.660260,

6.352978,3.927896,3.549617,3.109061,2.624669,

3.777348,4.146304,6.419832,4.772378,1.163151,

2.76001,2.00148,2.104134,3.339322,2.292535,

5.193512,3.288402,2.928524,3.943522,3.663562,

3.08191,1.686399,2.484907,7.257919,4.393214,

1.774952,6.265301,2.312535,0.4700036,0.8329091,

3.642836,3.104587,5.661223,5.82482,2.867899,

6.676201,2.660260,6.025866,5.458308,1.481605,

2.140066,1.193922,1.547563,3.749504,3.468856,

0.8329091,4.345103,4.07244,5.47395,3.797734,

0.5877867,1.163151,−0.3566749,2.341806,−0.1053605,

−0.1053605,2.360854,1.856298,3.632309,1.686399),

num = c(6, 6, 6, 5, 5, 3, 3, 3, 4, 0,

4, 5, 6, 1, 5, 6, 5, 5, 4, 5,

5, 7, 8, 6, 3, 4, 7, 2, 8, 9,

7, 9, 8, 8, 6, 7, 6, 4, 6, 8,

8, 5, 8, 6, 4, 5, 8, 5, 4, 5,

6, 6, 7, 4, 8, 5, 4, 6, 6, 3,

7, 3, 5, 8, 6, 9, 3, 5, 5, 4,

7, 7, 6, 7, 4),

adj = c(74, 69, 65, 5, 4, 2,
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69, 9, 8, 7, 6, 1,

65, 64, 24, 13, 5, 4,

24, 13, 5, 3, 1,

65, 64, 4, 3, 1,

9, 8, 2,

69, 9, 2,

9, 6, 2,

8, 7, 6, 2,

53, 29, 18, 17,

42, 41, 29, 22, 20,

24, 23, 22, 21, 4, 3,

15,

49, 18, 17, 16, 14,

53, 51, 49, 48, 17, 15,

53, 18, 16, 15, 11,

29, 19, 17, 15, 11,

29, 21, 20, 18,

29, 22, 21, 19, 12,

23, 22, 20, 19, 13,

42, 39, 23, 21, 20, 13, 12,

64, 42, 39, 31, 24, 22, 21, 13,

64, 31, 23, 13, 4, 3,

55, 27, 26,

55, 54, 28, 25,

63, 62, 55, 50, 47, 32, 25,

54, 26,

53, 41, 34, 20, 19, 18, 12, 11,

72, 71, 64, 46, 45, 44, 43, 41, 31,

72, 64, 46, 39, 30, 24, 23,

56, 55, 52, 50, 47, 40, 35, 34, 27,

60, 59, 58, 57, 56, 55, 54, 35,

53, 52, 51, 43, 41, 40, 32, 29,

59, 58, 56, 40, 33, 32,

66, 61, 59, 58, 40, 38, 37,

71, 66, 44, 43, 40, 36,

75, 66, 61, 36,

46, 42, 41, 31, 23, 22,

59, 56, 43, 37, 36, 35, 34, 32,

46, 43, 42, 39, 34, 30, 29, 12,

41, 39, 23, 22, 12,

46, 45, 44, 41, 40, 37, 34, 30,

71, 66, 45, 43, 37, 30,

71, 44, 43, 30,

43, 41, 39, 31, 30,
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63, 62, 52, 51, 50, 48, 32, 27,

63, 51, 49, 47, 16,

63, 48, 16, 15,

55, 52, 47, 32, 27,

53, 52, 48, 47, 34, 16,

53, 51, 50, 47, 34, 32,

52, 51, 34, 29, 17, 16, 11,

55, 33, 28, 26,

56, 54, 50, 33, 32, 27, 26, 25,

55, 40, 35, 33, 32,

61, 60, 58, 33,

61, 59, 57, 36, 35, 33,

61, 58, 40, 36, 35, 33,

61, 57, 33,

75, 60, 59, 58, 57, 38, 36,

63, 47, 27,

62, 49, 48, 47, 27,

72, 65, 31, 30, 24, 23, 5, 3,

74, 72, 64, 5, 3, 1,

75, 73, 71, 68, 67, 44, 38, 37, 36,

75, 68, 66,

74, 73, 70, 67, 66,

74, 70, 7, 2, 1,

74, 73, 69, 68,

73, 72, 66, 45, 44, 37, 30,

74, 73, 71, 65, 64, 31, 30,

74, 72, 71, 70, 68, 66,

73, 72, 70, 69, 68, 65, 1,

67, 66, 61, 38),

sumNumNeigh = 414)

INITIAL VALUES:

list(tau.c = 1, tau.h=1, alpha0 = 0, alpha1 = 0,

c=c(0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0),

h=c(0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,
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0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0))
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Figure 14.1.
Maps of the number of reported encounters with Sasquatch (Bigfoot) by county (upper left),

the “rate” of reports by county (upper right), and the population density per county reported

as the number of residents per square mile (2000 U.S. Census).
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Figure 14.2.
Observed number of Sasquatch reports per county compared to the number expected under a

constant per-person probability of filing a report.
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Figure 14.3.
Scatterplots of the county-specific reporting rates versus the natural logarithm of population

density with (left) and without (right) Skamania County.
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Figure 14.4.
Maps of county-specific relative risk of reporting sitings. Each map has counties shaded by

the intervals reported in the legend.
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Figure 14.5.
Posterior median and 95% credible sets for local relative risks associated with Skamania

County (filled circles) and its neighboring counties. Wasco County is of interest and is

labeled by a filled square.
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Figure 14.6.
Posterior median and interquartile range (IQR) by county and year, nonwhite female lung

cancer death rate per 1000 population (see text for greyscale key).
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Table 14.1

Fitted relative risks for the four socio-demographic subgroups in the Ohio lung cancer data.

demographic
subgroup

contribution
to εjk

fitted log-
relative risk

fitted
relative risk

white males 0 0 1

white females α −1.08 0.34

nonwhite males β 0.02 1.02

nonwhite females α + β + ξ −1.28 0.28
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