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Abstract

RNA-binding proteins (RBPs) are effectors and regulators of posttranscriptional gene regulation

(PTGR). RBPs regulate stability, maturation, and turnover of all RNAs, often binding thousands

of targets at many sites. The importance of RBPs is underscored by their dysregulation or

mutations causing a variety of developmental and neurological diseases. This chapter globally

discusses human RBPs and provides a brief introduction to their identification and RNA targets.

We review RBPs based on common structural RNA-binding domains, study their evolutionary

conservation and expression, and summarize disease associations of different RBP classes.
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1 Principles of Posttranscriptional Gene Regulation

RNA is an essential constituent of all living organisms and central to decoding the genetic

information of every cell. Recent advances in RNA sequencing technologies have facilitated

the discovery of novel transcripts and we will soon know the precise composition of most

cellular transcriptomes. While functional annotation for many RNAs is still in progress, the

major classes of RNAs have now been described (Table 1.1). The most abundant RNAs,

constituting 90 % of cellular RNAs by copy number, are shared by all organisms and

required for protein synthesis: rRNAs, tRNAs, and mRNAs (Table 1.1). The remaining 10

% are noncod-ing RNAs (ncRNAs) that mainly serve as guides or molecular scaffolds in a

variety of processes including RNA splicing, RNA modification, and RNA silencing. The

structure, length, and composition of these RNAs and their ribonucleoprotein particles

(RNP) are distinct and allow their integration into diverse functions and layers of regulation

to control target RNAs and their many functions.

Posttranscriptional gene regulation (PTGR) is a term that refers to the cellular processes that

control gene expression at the level of RNA; it encompasses RNA maturation, modification,

transport, and degradation. Consequently, every RNA molecule independent of its ultimate

function is at some level subject to PTGR. RNA- binding proteins (RBPs) are central players
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of PTGR, as they directly bind to RNAs to form RNPs. In many cases, the RNP is the most

basic unit, comprising a complex of obligate RNA and protein partners (e.g., snRNPs,

snoRNPs, RNase P, ribosome subunits), which elicits its respective function. However,

many other types of RNAs, particularly mRNAs and tRNAs, only transiently associate with

RBPs, whose functions are necessary for their proper maturation, localization, and turnover

(Dreyfuss et al. 2002; Granneman and Baserga 2004; Phizicky and Hopper 2010; Müller-

McNicoll and Neugebauer 2013). Indeed most mRNA-binding proteins (mRBPs) have

thousands of targets they regulate (Ascano et al. 2011). Hence the proper assembly and

function of RNA-protein complexes are critical for development and maintenance of all

cells and organisms. For a large fraction of RBPs, we are only starting to understand the

complexity of their basic molecular roles, modes of recognition, and global targets.

In this chapter we review the current state of knowledge of the protein components involved

in PTGR in humans. We discuss common patterns found among RBPs, based on targets,

evolutionary conservation, shared structural domains, and cell-type-specific or ubiquitous

expression. We then examine various classes of RBPs commonly implicated in human

disease.

2 Human RBPs

2.1 Experimental and Bioinformatic Approaches Leading Towards a Census of RBPs

A complete catalogue of the proteins involved in PTGR is an important goal. Historically,

different strategies have been employed towards the identification of RBPs (Ascano et al.

2013). Common approaches used RNA pull-down assays to recover associated proteins in

cell lysates, followed by their mass spectrometric identification, or candidate proteins were

recombinantly expressed and interrogated for their RNA-binding properties in vitro. These

RNA-centric approaches identified the interactome of subsets of RNAs but did not capture

the whole RBP proteome, and were not suitably of high throughput.

The first genome-wide approaches for the identification of proteins involved in PTGR

utilized predictive methods and searched for the presence of protein domains conferring

RNA binding. Early studies on the protein components of heteronuclear RNPs (hnRNPs) led

to the identification of the first conserved, canonical RNA- binding domain (RBD) within

RBPs (Burd and Dreyfuss 1994). Following these initial discoveries, and facilitated by

advances in genome sequencing and the acquisition of protein structures, more precise

classification of structural and functional protein domains followed rapidly (Henikoff et al.

1997). Computational prediction algorithms that use probability matrices from multiple

sequence alignments enabled the detection of structural domains in uncharacterized protein

sequences across organisms. The results of these predictions are publically available in a

number of databases such as Interpro, Pfam, SCOP, SMART, or CDD (Murzin et al. 1995;

Apweiler et al. 2001; Marchler-Bauer et al. 2003; Letunic et al. 2009; Finn et al. 2010).

Among these domain classifications, at least 600 can be found with annotation referring to

involvement in RNA-related processes.

Predicting the number of RBPs encoded in various genomes has remained a challenge.

RBPs were defined by the presence of one or more canonical RBDs, such as RRM, KH,
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CSD, zinc fingers, and PUF domains (Lunde et al. 2007). Selecting these predominantly

mRNA-binding RBDs, the number of RBPs was initially estimated to ~400–500 in human

and mouse (McKee et al. 2005; Galante et al. 2009; Cook et al. 2011), ~300 in D.

melanogaster (Lasko 2000; Gamberi et al. 2006), ~250–500 in C. elegans (Lasko 2000; Lee

and Schedl 2006; Tamburino et al. 2013), and ~500 RBPs in S. cerevisiae (Hogan et al.

2008). Inclusion of RNA-processing domains involved in RNA metabolism of every known

type of RNA leads to numbers near ~700 RBPs in humans (Anantharaman et al. 2002).

Other predictive approaches such as the Kyoto Encyclopedia of Genes and Genomes

database (KEGG) (Kanehisa and Goto 2000) and the Gene Ontology project (GO)

(Ashburner et al. 2000) integrate domain annotations, protein homologies, and searches of

scientific literature statements. These estimate the number of human proteins with RNA-

related functions to ~1,800 proteins (Fig. 1.1). However, these methods are often not reliable

due to false classifications of proteins, leading to a large number false positives and false

negatives.

In parallel, experimental proteome-wide methods were employed to identify the number of

known and novel RBPs such as the development of protein microarrays, which allowed

increased throughput for probing the RNA-binding capabilities of a fraction of the proteome

in vitro, using RNA probes of defined sequence (Scherrer et al. 2010; Tsvetanova et al.

2010; Siprashvili et al. 2012). In an attempt to comprehensively identify existing and novel

RBPs in human at large scale with a singular approach, cross-linking-based methods were

recently introduced. In these methods, RBPs were covalently cross-linked to endogenous

RNAs using in vivo UV cross-linking, followed by polyA selection of mRNAs, and

subsequent identification of interacting proteins by mass spectrometry. These approaches

identified ~800 mRBPs in human HEK293 and HeLa cell lines, respectively (Baltz et al.

2012; Castello et al. 2012), 555 in mouse embryonic stem cells (mESCs) (Kwon et al. 2013),

and 200 mRBPs in yeast (Mitchell et al. 2013). Together, 1,100 of known and putative

human mRBPs were experimentally defined and, assuming homologous function between

mouse and human proteins, an additional ~80 proteins may be added (Fig. 1.1a, b). A

significant portion of these (64 %) overlapped with known GO-classified RBPs (Fig. 1.1a,

b). Many of the residual mRBP candidates did not contain previously described RBDs and

require further experimental validation, while other known and expressed RBPs were missed

due to the sensitivity of the experiments. However, in comparison to earlier predictive

counts of the number of mRBPs (Cook et al. 2011), this approach expanded the mRBP

proteome from ~400 to ~1,200 proteins and may, with increasing sensitivity, represent the

most suitable method to identify novel RBPs in proteome-wide experiments in different cell

types.

Here, we describe our attempt in generation of a curated and comprehensive list of RBPs

involved in PTGR processes to guide us in their study of molecular and cellular function and

definition of all RNA-related processes.

2.2 Generation of a Curated List of Human RBPs

Our approach selects RBDs involved in RNA-related processes as defined by Pfam (Finn et

al. 2010) and searches the human genome for any protein-coding gene that contains at least
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one of the selected domains, but remains overall unbiased to the putative function of the

gene and its RNA targets. Arriving at a list of 2,130 candidates, we added known RBPs from

literature searches with unclassified RBDs and additionally screened proteins defined as

RBPs by GO (Ashburner et al. 2000) and proteome-wide mass spectrometry datasets (Baltz

et al. 2012; Castello et al. 2012; Kwon et al. 2013) for literature-based evidence of their

involvement in PTGR.

The list of RBPs was finalized according to the following main criteria: (1) the proteins

possessed defined RNA-binding or RNA-enzymatic domains, (2) the proteins were

experimentally shown to be part of RNP complexes and thereby involved in RNA metabolic

pathways, or (3) they possessed high sequence identity to homologs and paralogs involved

in PTGR. Some of the candidate RBPs identified in the recent cross-linking-mass

spectrometry studies were not considered as RBPs, if their RNA-binding activity could not

be confirmed independently in other published datasets or their domain structure, family

members, and homologs were not indicative of an RBP. We furthermore disregarded

proteins containing putative RBDs if they showed strong evidence for exclusive roles in

RNA-unrelated pathways, such as the majority of C2H2 zinc finger transcription factors of

which only a small subset are RNA-binding, e.g., TF3A binding to 5S rRNA (Brown 2005).

We included proteins, which are components of well-defined, large RBP complexes, such as

the ribosome or the spliceosome, as it is difficult to establish with certainty which proteins

interact with RNA directly or indirectly in these large RNPs. This approach is supported by

recent proteome-wide cross-linking studies, and the RNA-binding properties of scaffold

proteins CNOT1 and TDRD3 have for example emerged through this process (Thomson and

Lasko 2005; Siomi et al. 2010; Baltz et al. 2012; Castello et al. 2012; Kwon et al. 2013).

Through this curation process we reduced the union of ~3,700 proteins, derived from

domain annotation, mass spectrometry datasets, literature search, and GO annotation, to

arrive at a final of 1,542 proteins (Fig. 1.1b). The resulting curated list of RBPs contains

proteins interacting with all RNA classes. A comparison to the conventionally named

“canonical RBPs” (Lunde et al. 2007; Cook et al. 2011) shows that canonical RBPs only

represent one-third of RBPs in this set and the majority of RBPs in our set would not be

considered using currently available datasets (Fig. 1.1c). The following sections discuss

abundance, evolution, expression, and RBPs in human disease based on this curated set of

RBPs.

3 Quantitative Aspects of Proteins in RNA Metabolism

The dynamics of complex assembly and composition of RNPs, their targets, and protein

cofactors are extremely sensitive to the quantitative relationship between the abundance of

RBPs and their targets (Dreyfuss et al. 2002; Müller-McNicoll and Neugebauer 2013). RBPs

are in constant competition for binding to frequently occurring short and degenerated RNA

sequence elements and thus the cellular compartment concentration of RNA and RBPs will

affect the equilibrium of dynamic RNP formation and disassembly. Processes such as pre-

mRNA splicing and alternative polyadenylation, where the choice of alternative splice sites

or 3′UTR lengths is dependent on the abundance of splicing enhancers, silencers, or U1

snRNP (Smith and Valcarcel 2000; Kaida et al. 2010; Berg et al. 2012; Kornblihtt et al.

2013), emphasize the importance of determining precise RBP levels.
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Approximately 7 % of all protein-coding genes are committed to PTGR, but their

contribution to the pool of expressed proteins in cells is much higher. We analyzed

expression level of ubiquitous RBPs based on RNA-seq data in HEK293 cells (Teplova et

al. 2013) (Fig. 1.2). In this cell line, RBPs represented 9 % (1,364 genes) of the ~16,300

expressed genes (expressed with RPKM > 1), but their corresponding transcripts represent

more than 25 % of total cellular mRNA, including 7 % mRBPs and 14 % ribosomal proteins

(RBP categorization discussed in next section), stressing the abundance of mRNA

metabolism and the central role of protein translation (Fig. 1.2). In contrast, transcription

factors and cytoskeletal proteins were not overrepresented in the transcriptome of HEK293

cells. In summary, about a quarter of the transcriptome is committed to RNA metabolism,

highlighting its fundamental role in the cell.

4 Paralogous RBP Families and their Targets

Determining the evolutionary relationships and the conservation of gene families has been

critical for understanding gene function and emphasized the utility of model organisms for

the study of fundamental biological processes (Henikoff et al. 1997). To account for

redundancies among RBPs it is therefore beneficial to consider the RBP family as the

smallest functional unit. Grouping the 1,542 RBPs into paralogous gene families with at

least 20 % homology gives 1,113 RBP families with one or two members on average. The

large number of families reflects a high diversity of RBPs in human.

Here, we categorized RBPs and RBP families based on their reported natural targets and

examined their distribution and evolutionary relationships among different classes. Although

RBPs often show some degree of interaction with a range of target RNAs in vivo, most of

them are committed to one subtype of RNA (Hafner et al. 2010; Wang et al. 2012; Ascano et

al. 2012; Hussain et al. 2013; Lovci et al. 2013; Wang et al. 2013) (Table 1.1). Some

exceptions remain, such as RNA nucleases, and RBPs acting at the interface of two different

RNA classes, such as spliceo-somal proteins, XPO5, or EEF1A, recognizing snRNA/

mRNAs, pre-miRNAs/mRNAs, and tRNAs/mRNAs, respectively (Liu et al. 2002; Lund

2004; Mickleburgh et al. 2006; Bennasser et al. 2011; Dever and Green 2012). For the RBPs

with multiple targets, we either classified them as diverse in target preference or counted the

proteins towards the predominant group of targets based on available literature. The

resulting distribution of RBPs and RBP families across all RNA targets in human and their

conserved homologs in yeast is shown in Fig. 1.3a–c.

Our analysis shows that mRBPs form the largest group among RBPs comprising 45 % of all

human RBPs (~700 proteins). mRBPs frequently represent families of RBPs with more than

two members. Ribosomal proteins constitute the next larger group of RBPs with ~170

proteins of the cytosolic and mitochondrial ribosomes. The next smaller groups of RBPs are

committed to tRNA (~150) and rRNA (~120) biogenesis pathways, followed by proteins

involved in snRNA, snoRNA, and other ncRNA pathways (Fig. 1.3a, b).

Of the ~1,100 human RBP families, ~550 have homologs in yeast with on average 30 %

homology. Different clades of RBPs display varied degrees of conservation. Cytosolic

ribosomal proteins are the most conserved with ~57 % homology, while proteins associating
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with mRNAs or ncRNAs are least conserved, 27 % and 20 %, respectively, and also have

the least number of conserved homologs, 45 % and 21 %, respectively (Fig. 1.3c).

Nevertheless, despite the gene expansions within protein families at later evolutionary stages

(Venter 2001; Van de Peer et al. 2009), the relative ratios of paralogous RBPs families

invested in the different RNA pathways remain approximately the same across evolution as

seen for the distribution between human and yeast RBP families (Fig. 1.3b, c). This breadth

of PTGR factors agrees with an earlier analysis of 32 RBP domain classes of canonical

RBDs (including RRM, KH, dsrm, DEAD, PUF, Piwi, PAZ, zinc finger, LSM) showing that

the large diversity of RBPs found in contemporary metazoans was already established in the

last common ancestor (LCA) of animals, and which possessed an estimated total number of

88 RRM, 15 KH, 49 DEAD box, 9 dsrm, and 38 other RBD proteins (Kerner et al. 2011).

Thus the complexity of PTGR was present at the earliest stages of evolution, reflecting that

RNA metabolism lies at the heart of eukaryotic gene regulation.

Visualization of the evolutionary relationships of RBP families facilitates systems biology

approaches to dissect their regulatory roles. Phylogenetic trees give an intuitive graphic

representation of the conservation of proteins, highlight closely related homologs, and

thereby provide a glimpse into function of uncharacterized RBPs if function has been

already established for a relative. Phylogenetic comparison of the predominantly mRNA-

binding KH-domain-containing proteins and the proteins of the small subunit of the

cytosolic ribosome illustrates the differences in their evolutionary trajectory (Fig. 1.4).

KH proteins experienced multiple gene expansions, as noted earlier for mRBPs, and evolved

new RBP families at the later metazoan stages, thereby expanding and diversifying

components involved in various regulatory pathways, such as mRNA splicing, translational

regulation, and transport. KH protein families contain between one and four members in

human, and possess generally one distantly related homolog in yeast (Fig. 1.4a). Multiple

family members often have redundant biological functions and RNA target spectra. For

example, members of the FMR1 family (FMR1, FXR1, FXR2) or the IGF2BP1 family

(IGF2BP1, 2, and 3) show >90 % identical RNA-binding specificities (Hafner et al. 2010;

Ascano et al. 2012).

In contrast, cytosolic ribosomal proteins display an unusually high conservation, not too

surprising, given that the process of protein translation is conserved to such a high degree

between prokaryotes and all clades of eukaryotes that functional details of translation

determined in bacteria are almost identical to higher systems (Wool et al. 1995; Melnikov et

al. 2012; Dever and Green 2012). The ~90 human ribosomal cytosolic proteins are highly

similar in structure and function between yeast and human and show late divergence in

evolution, as illustrated for the phylogenetic tree of small ribosomal subunit proteins (Fig.

1.4b). With on average 57 % protein identity, all human cytosolic ribosomal proteins have

direct one-to-one, or due to a whole-genome duplication in yeast, one-to-two or two-two

matching homologs (Wool 1979; Wool et al. 1995; Anger et al. 2013). In contrast, the

majority (80 %) of the ~80 human mitochondrial ribosomal proteins (Matthews et al. 1982)

have no homologs in yeast, and the few that are conserved have comparatively low

homology (22 % identity), reflecting that mitochondrial ribosomes, acquired through
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eubacterial endosymbiosis, rapidly evolved independently across species and that major

remodeling events happened later in evolution (Cavdar Koc et al. 2001; O’Brien 2003).

5 Structural Analysis of RNA-Binding Domains

Analysis of structural features in proteins and the grouping of proteins into domain classes

can help to understand their biological function (Henikoff et al. 1997; Anantharaman et al.

2002). Structural domains can predict how RBPs recognize and bind RNAs. It can also

uncover redundancies to other RBPs in target recognition, as well as highlight families of

RBPs that remain to be characterized. The size of a domain class mirrors its diversity and

evolutionary adaptation to biological pathways.

Structure-guided searches can be valuable to place proteins into biological pathways and, for

instance, DICER1 and DROSHA were identified as the endonucle-ases responsible for

double-stranded RNA (dsRNA) processing in microRNA (miRNA) maturation based on

known structure and substrate preferences of the dsRNA-processing bacterial and yeast

RNase III enzymes (Hammond et al. 2000) (Bernstein et al. 2001; Lee et al. 2003).

Similarly, the structural similarity of AGO proteins and the germline-specific PIWI proteins

sparked the search for PIWI- interacting small RNAs with similar features as miRNAs, now

known as piRNAs (Girard et al. 2006; Grivna 2006; Aravin et al. 2006).

For a review of the structural features of RBPs, we analyzed characteristic domain

combinations of RBD classes (Fig. 1.5a) and will give here a brief overview over the

abundant RBD classes and their modes of RNA-binding, natural targets, and the processes

they are involved in. For excluded classes, we refer to a number of excellent review articles

(Burd and Dreyfuss 1994; Sommerville 1999; Aravind and Koonin 2001a; Aravind and

Koonin 2001b; Anantharaman et al. 2002; Arcus 2002; Szymczyna et al. 2003; Kim and

Bowie 2003; Maraia and Bayfield 2006; Lunde et al. 2007; Rajkowitsch et al. 2007;

Glisovic et al. 2008; Curry et al. 2009; Mihailovich et al. 2010; Zhang et al. 2010). To give

additional insight into the structural properties of RBPs, we distinguished between RBDs

with only RNA-binding properties (nonenzymatic RBDs), and RBDs that also contain

enzymatic functions (enzymatic RBDs), such as RNA helicases, ATPases, polymerases,

editing enzymes, and nucleases.

5.1 Modes of RNA Interaction by RBPs and their Domain Organization

Prototypical single-stranded RNA (ssRNA)-binding domains interact with their targets in a

nucleobase-sequence-specific manner typically binding between 4 and 8 nucleotides (Singh

and Valcarcel 2005; Lunde et al. 2007; Glisovic et al. 2008). Specificity is introduced

mainly by hydrogen bonding and van der Waals interactions of the nucleobases with the

protein side chains or the carbonyl and amide groups of the main chain (Auweter et al.

2006), often leaving the RNA phosphate backbone exposed to the solvent. Additional base

stacking interactions with aromatic amino acids or positively charged residues in cationic π

interactions serve to increase affinity. Double-stranded RNA (dsRNA)-binding proteins

achieve specificity through recognition of shape of RNA secondary structure, such as stem–

loops (Masliah et al. 2013). Non-sequence-specific RBDs generally interact with the

negatively charged phosphate backbone, leaving the bases exposed to the solvent. To

Gerstberger et al. Page 7

Adv Exp Med Biol. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



achieve specificity, these RBPs can interact with cofactors recruiting them to specific

targets, as has been observed for many RNA helicases (Rocak and Linder 2004; Auweter et

al. 2006).

Many RBDs (but also DNA-binding domains) derive from a few common superfamily folds,

such as the oligonucleotidyl transferase fold and the oligosaccharide-binding fold (OB-fold).

Oligonucleotidyl transferase fold proteins include enzymatic RBPs such as TUTases, polyA

polymerases, RNA ligases, tRNA CCA-adding enzymes, and immune-stimulatory 2′, 5′-

oligoadenylate synthases (Kuchta et al. 2009). RBDs of the OB-fold superfamily are the S1,

PAZ, and CSD domains (Murzin 1993; Arcus 2002; Lunde et al. 2007). However, RBDs

largely diversified throughout evolution and most RBD classes have only one member,

while only 4 % of all RBD classes found in human have more than eight members. Members

of the 26 most abundant RBD classes (with 9 and more members) constitute a third of the

1,542 curated RBPs (Fig. 1.5a); most of them are mRBPs. Some of the highly studied RBDs

(Lunde et al. 2007), such as the PUF (two proteins), S1, CSD, and PIWI domains (eight

members each), define smaller RBD classes in humans. Particularly, ribosomal structural

components and proteins involved in processes related to ribosome maturation are unique

and thus cannot be classified into large families of related structural organization

(Korobeinikova et al. 2012).

More than half of all RBPs contain only one RBD; mRBPs, however, form a notable

exception and often have multiple RBDs, either one repeated RBD or multiple RBDs in

combination. This modular design allows flexibility and versatility for target recognition

and, as RBDs usually recognize relatively short stretches of RNA, increases the affinity and

specificity for RNA targets by extending the RNA recognition element (RRE) of the protein

(Lunde et al. 2007). A few RBDs are exclusively found in combination with other conserved

protein domains, such as RBM1CTR in hnRNPs or the PAZ domain found in the Argonaute

proteins and DICER1.

5.2 Abundant Nonenzymatic RBDs

5.2.1 RNA-Recognition Motif—The ssRNA-recognition motif (RRM) is the most

frequently found RNA-binding domain in eukaryotes, and has 226 members in humans. The

~90 amino-acid-long domain adopts a βαββαβ topology and is composed of two RNP

consensus motifs that recognize 4–6 nucleotides (nts) by stacking interactions of the bases

with three conserved aromatic amino acids in the β-sheets (Auweter et al. 2006; Lunde et al.

2007; Cléry et al. 2008). Its small size and modular organization yield flexibility to adaptive

change and allowed the RRM domain to vastly expand during evolution (Anantharaman et

al. 2002).

Deviations from this canonical binding mode, including N- and C-terminal extensions of the

domain, as well as usage of the linker regions and other regions outside of the β-sheet, have

been characterized and allow for recognition of up to 8 nt (Maris et al. 2005; Auweter et al.

2006; Lunde et al. 2007; Cléry et al. 2008; Muto and Yokoyama 2012).

Sixty-one RRM proteins only comprise a single isolated RRM domain; examples include the

polyA-binding protein CPEB family and the nuclear cap-binding protein NCBP2 (CBP20)
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(Fig. 1.5b). Sixty RBPs occur with several repeated RRMs; among them are the PTBP and

the ELAVL families, regulators of mRNA splicing, stability, and localization (Sawicka et al.

2008; Simone and Keene 2013). Another 68 RRM proteins are found in combination with

other RBDs; prominent examples in this group include the IGF2BP1 and FUS families,

involved in translational regulation, mRNA transport, and splicing (Tan and Manley 2009;

Bell et al. 2013) (Fig. 1.5b). Hence, RRM proteins are found in a variety of biological

pathways, the majority of which involve mRNA-related processes, such as regulation of

mRNA stability, splicing, translation, and transport. RRM domains are generally a

diagnostic indicator for ssRNA binding. In a few cases, however, protein-binding partners

have been shown to occlude interaction of the RRM domain with RNA, as seen for the RRM

domain of the exon junction complex protein RBM8A (Y14), which binds to the protein

cofactor MAGOH (Maris et al. 2005; Glisovic et al. 2008).

5.2.2 K-Homology Domain—The heterogeneous nuclear RNP K-homology (KH)

domain binds to ssRNA and ssDNA, and has 39 members in humans. KH domains are ~70

amino acids long and characterized by a hydrophobic core domain with an (I/L/

V)IGXXGXX(I/L/V) consensus sequence in the center. Structurally, all KH domains form a

three-stranded β-sheet packed against three α-helices and belong either to the eukaryotic

type I, of βααβα topology, or the prokaryotic type II, of αββααβ topology (Grishin 2001;

Lunde et al. 2007; Valverde et al. 2008). KH domains typically recognize 4-nt ssRNA

sequences through electrostatic interactions. Signal transduction and activation of RNA

(STAR) proteins, such as SAM68 and QKI, contain just a single KH domain sandwiched

between two short signaling motifs, which modulate the protein activity through

posttranslational modifications in response to intracellular signaling pathways (Lasko 2003;

Chénard and Richard 2008). However, most KH proteins contain combinations of RBDs

including the IGF2BP1 family, with four KH and two RRM motifs (Bell et al. 2013), and

the brain-specific NOVA splicing family with three repeated KH domains (Li et al. 2007)

(Fig. 1.5b). The most extreme example of multiplication of RBDs is found in HDLBP,

conserved from yeast to humans, which has 14 repeated KH domains in human (Fig. 1.5b).

Analogous to RRM proteins, KH domain proteins predominantly interact with mRNAs and

are found in posttranscriptional processes, such as mRNA splicing (PCBP and NOVA

family), transport, and translation (IGF2BP1, FMR1, and the MEX family). The two, highly

conserved, KH domain proteins PNO1 and RPS3 represent an exception in their target

specificity and interact with rRNA during ribosome biogenesis (Vanrobays et al. 2004;

Anger et al. 2013).

5.2.3 Double-Stranded RNA-Binding Motif—The dsRNA-binding motif (dsrm) has 21

members and 4 dsrm-like members in humans. Dsrm domains are ~70 amino acids long and

adopt an αβββα topology, in which the two α-helices are packed against the three β-sheets.

This facilitates nonspecific, shape-dependent contacts with the RNA backbone along the

minor and major grooves of A-form dsRNA helix, as well as base contacts along the minor

groove and the apical loop (Chang and Ramos 2005; Lunde et al. 2007; Masliah et al. 2013).

Dsrm domains are rarely found alone; 24 of the 25 of human dsrm proteins contain multiple

dsrm domains or other enzymatic and nonenzymatic RBDs that modulate their function.

While the best known dsrm-containing proteins are the Staufen family (STAU1, STAU2) of
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mRNA stability and transport regulators (Miki et al. 2005; Park and Maquat 2013), this

domain type is not confined to mRBPs; instead, most dsrm proteins interact with a range of

RNA substrates and are commonly found in RNA enzymes. Members include the adenine-

to-inosine RNA-editing ADAR family, processing stem–loops or double strands in mRNAs,

viral RNAs, and miRNA precursors (Savva et al. 2012), the two miRNA-processing

endonucleases DROSHA and DICER1 (Kim et al. 2009; Wilson and Doudna 2013), as well

as the interferon-inducible protein kinase EIF2AK2 (PKR), which, upon binding dsRNA,

activates its kinase domain (Saunders and Barber 2003; Raven and Koromilas 2008) (Fig.

1.5b).

5.2.4 CCCH and CCHC Zinc Fingers—The two ssRNA-binding zinc fingers (zf), zf-

CCCH and zf-CCHC, form rigid structures by coordination of a Zn2+ ion with three cysteine

(C) and one histidine (H) residues. In humans, 45 genes contain the zf-CCCH (C-×8-C-×5-

C-×3-H type) and 21 contain the zf-CCHC (C-×2-C-×4-H-×4-C) motif, also known as zinc

knuckle. Zf proteins form sequence-specific interaction with RNAs through hydrogen

bonding and van der Waals interactions of the protein backbone (Lunde et al. 2007; Kaymak

et al. 2010), and use stacking interactions of aromatic side chains with the bases to increase

RNA-binding affinity. In contrast to other ssRNA-binding domains, the rigidity and shape of

the protein structure are the key determinant for specificity of zinc-finger proteins to their

target RNAs. The domains generally occur in repeats or in combination with other RBDs.

While for most of the CCHC and CCCH zf proteins the molecular function remains unclear,

characterized zf proteins are predominantly involved in regulation of mRNA-related

processes. Classic examples of zf-CCCH proteins are the AU-rich-binding ZFP36 (TTP)

proteins, which participate in rapid degradation of mRNAs transcribed after immune

stimulation (Sandler and Stoecklin 2008; Brooks and Blackshear 2013), and the muscleblind

(MBNL1,2,3) family, which regulates alternative splicing during muscle differentiation

(Pascual et al. 2006; Cooper et al. 2009). Characterized zf-CCHC proteins include the

CPSF4 mRNA polyadenylation and cleavage factor (Colgan and Manley 1997; Shatkin and

Manley 2000; Proudfoot and O’Sullivan 2002; Proudfoot 2004) (Fig. 1.5b), and the

ZCCHC7 (AIR1) protein, member of the nuclear polyadenylation TRAMP complex,

required for the degradation of aberrant nuclear ncRNAs (Anderson and Wang 2009).

Another prominent member in this class is the LIN28 family (Fig. 1.5b), which posttran-

scriptionally maintains pluripotency in early embryonic development by inhibiting

maturation of miRNA let-7 family precursors and increasing stability and translation of

mRNA targets (Thornton and Gregory 2012; Wilbert et al. 2012; Cho et al. 2012; Hafner et

al. 2013).

5.2.5 LSM Domain—The LSM domain is found in 19 proteins in humans. First

discovered in Sm proteins, it later was re-named LSM (“like-Sm”) to include proteins

outside of its founding members. The LSM fold is a bipartite domain that stretches along a

region of ~65 amino acids and folds into an N-terminal α-helix followed by a twisted five-

stranded β-strand (Wilusz and Wilusz 2005; Tharun 2009). The two motifs, motif I, ~22

residues long, and motif II, ~16 residues long, are connected by a variable linker region.

LSM proteins form hexa- and heptameric-ring-shaped complexes around RNA. Binding to

short, internal polyU- and polyA-rich stretches, they generally associate with snRNAs and
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some snoRNAs to form stable snRNP complexes (Achsel et al. 2001; Khusial et al. 2005).

These RNP complexes commonly act as RNA-RNA and RNA-protein chaperones (Wilusz

and Wilusz 2005; Tharun 2009).

The originally characterized Sm proteins (SNRPB, SNRBPD1, SNRBPD2, SNRBPD3,

SNRBPE, SNRBPF, SNRBPG) form the core protein complex around the snRNAs of the

major and minor spliceosome (U1, U2, U4, U5, U11, U12, U4atac) (Tharun 2009). Other

combinations of LSM-fold proteins and their RNA components lead to functional complexes

(Beggs 2005; Wilusz and Wilusz 2005; Tharun 2009), such as the nuclear LSM2-8 protein

complex (LSM2, LSM3, LSM4, LSM5, LSM6, LSM7, LSM8), which forms around U6 and

U6atac snRNA and participates in mRNA splicing. Association of the same LSM proteins

around the C/D box U8 snoRNA results in an RNP complex functioning in rRNA

maturation (Pannone et al. 2001; Tomasevic and Peculis 2002). In addition, binding of

LSM2-8 to nuclear polyadenylated mRNAs promotes mRNA decapping (Kufel et al. 2004).

Other LSM complexes include the U7 snRNP complex (SNRPB, LSM10, SNRPD3,

LSM11, SNRPE, SNRPF, SNRPG), which is essential for histone 3′end processing (Pillai et

al. 2001), and the cytoplasmic LSM1-7 complex (LSM1, LSM2, LSM3, LSM4, LSM5,

LSM6, LSM7), which localizes to P bodies and facilitates mRNA decapping after

deadenylation (Tharun et al. 2000; Coller and Parker 2004; Parker and Song 2004; Parker

and Sheth 2007). We can expect the identification of novel functions and target specificities

in PTGR by as yet uncharacterized variations in the composition of LSM complexes (Wilusz

and Wilusz 2005).

5.2.6 PIWI and PAZ Domain—The combination of PIWI, PAZ, and MID domains

characterizes the Argonaute RBP family, a clade wirh four AGO and four PIWI protein

members in humans (Peters and Meister 2007; Kim et al. 2009). Proteins of this clade bind

miRNAs, siRNAs, and piRNAs by anchoring the 5′ phosphate in the MID-domain pocket

and the 3′end in the PAZ domain, while the PIWI domain interacts with the RNA backbone

(Song 2004; Song and Joshua-Tor 2006; Wang et al. 2008b; Tian et al. 2011; Simon et al.

2011; Schirle and MacRae 2012). The PAZ RBD is also a structural component of the

miRNA-processing endonuclease DICER1 (Zhang et al. 2004).

The 110 amino-acid-long PAZ domain consists of a β-barrel followed by an αβ-domain, and

is structurally related to OB folds, S1, and LSM domains (Lunde et al. 2007). Forming a

clamp-like structure, the PAZ domain selectively binds the two-nucleotide overhangs of

small RNA duplexes at the 3′end, thereby acting as an anchor to position small RNAs for

cleavage (Jinek and Doudna 2009). The PIWI domain is structurally similar to the RNase H

endonuclease domain; however, in mammals, only PIWI proteins (Siomi et al. 2011) and

AGO2 (Meister et al. 2004; Liu 2004) display nuclease activity, while in other AGO

proteins subtle changes in the active site or the N-terminal regulatory domain prevent

catalytic activity (Hauptmann et al. 2013; Faehnle et al. 2013; Nakanishi et al. 2013). AGO

proteins initiate, guided by miRNAs and siRNAs, posttranscriptional silencing of mRNAs

(Hutvagner and Simard 2008), and PIWI proteins, guided by piRNAs, silence transposons at

the posttranscriptional and epigenetic levels (Kim et al. 2009; Siomi et al. 2011). Given the

variability of possible guide RNA sequences, Argonaute proteins are tremendously versatile

and by using different endogenously expressed guide RNA sequences they can form
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hundreds of distinct RNP complexes in vivo. Capable of targeting virtually any given

cytosolic RNA sequence in a specific manner, they are used extensively as a tool in

biotechnological applications (Dorsett and Tuschl 2004).

5.2.7 PUF Repeat—In humans, PUF repeats are only found in the two members of the

Pumilio family; however, the structure and RNA-recognition mechanism of this domain are

highly conserved and probably the best understood among all RBDs. PUF domains are ~40

amino acids long and consist of three α-helices that pack together into a half-ring structure.

Each PUF domain recognizes only one nucleotide, but multiple repeats additively increase

the number of bases recognized, and Pumilio proteins contain multiple PUF repeats that

recognize highly sequence-specifically stretches within mRNAs (Wang et al. 2001). The

extremely high specificity is achieved by hydrogen bonding interactions of two residues per

repeat, while aromatic side chains wrap the bases into a tight fit. Human Pumilio proteins

(PUM1, PUM2) contain eight PUF repeats, which together recognize the sequence

UGUANAUA frequently located within the 3′UTRs of its targets to regulate mRNA

stability and translation (Wickens et al. 2002; Wang et al. 2002; Hafner et al. 2010).

Compared to other RBDs recognizing short and often degenerated RNA sequences, the RRE

of Pumilio repeats is highly predictive for identifying Pumilio protein targets. Indeed,

predictions of conserved RREs within 3′UTRs of mRNAs mainly identified, next to

miRNA, Pumilio protein-binding sites (Xie et al. 2005), highlighting the exceptionally high

information content of the Pumilio RRE. The high molecular specificity of the interaction

has allowed engineering of RNA-binding specificity of Pumilio proteins to recognize

different sequences (Cheong and Hall 2006).

5.3 Predominant Enzymatic RNA-Binding Domains

5.3.1 DExD/H helicases—DExD/H helicases, comprising DEAD and DEAH box

helicases, are ATP-dependent enzymes that are involved in RNA-protein remodeling in the

cell. They form the second largest class of RBPs comprising 73 members in humans, of

which 62 interact specifically with RNA, and the remaining with DNA. The majority of the

human RNA-binding DexD/H helicases, 42 members, belong to the DEAD box class, while

the others are DEAH and DExH Ski-like helicases (named after its founding member Ski2p)

(la Cruz et al. 1999). DExD/H RNA helicases belong to the SF2 helicase superfamily and

contain NTPase characteristic Walker A and B motifs; their seven helicase signature motifs

extend over ~400 amino acids (Tanner and Linder 2001; Rocak and Linder 2004; Pyle 2008;

Jankowsky and Fairman-Williams 2010; Fairman-Williams et al. 2010). The helicases are

differentiated by their catalytic core residues Asp-Glu-Ala-Asp for DEAD box helicases,

and Asp-Glu-Ala/x- His for the related DEAH box and Ski2-like helicases. The enzymatic

core arranges into two discrete domains connected by a linker that forms a cleft, in which an

ATP can bind (Tanner and Linder 2001), whose hydrolysis provides the energy for

unwinding RNA secondary structures or reorganizing RNPs in either a directional (DEAH

helicases) or a bidirectional (DEAD helicases) manner. DExD/H RNA helicases generally

lack substrate specificity, or even affinity, towards RNA and DNA. This allows them to

promiscuously unwind and remodel a broad range of targets, but also requires their

association with cofactors that give specificity and affinity for their targets (Rocak and

Linder 2004; Jankowsky and Fairman-Williams 2010). While most members of DExD/H
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helicases are involved in mRNA-related processes, in particular splicing, they play essential

roles in diverse PTGR pathways such as transcriptional regulation, rRNA and tRNA

maturation, viral defense, miRNA RISC loading, translation initiation, RNA export, and

degradation (Rocak and Linder 2004; Fukuda et al. 2007; Pyle 2008; Jankowsky 2011;

Linder and Jankowsky 2011; Martin et al. 2013; Schmidt and Butler 2013; Fullam and

Schröder 2013). Next to RNA-RNA and RNA-protein remodeling, DExD/H helicases are

also important in RNA-protein complex disassembly and facilitate removal of protein

interactors from their targets during RNA export (Linder and Jankowsky 2011).

Paralogs within one RBP family can function in highly diverse roles and pathways, but even

one helicase can assume a variety of different biological functions depending on its

associated cofactors. For instance, EIF4A1, the first DEAD box helicase for which

remodeling and unwinding was mechanistically characterized, forms the EIF4F translation

initiation complex, together with the cap-binding protein EIF4E and the scaffolding protein

EIF4G (Gingras et al. 1999; Andreou and Klostermeier 2013). Complexed with EIF4H or

EIF4B cofactors, EIF4A1 unwinds secondary structures in the 5′UTR, allowing binding of

the 43S ribosome complex for AUG start codon scanning. In contrast, although structurally

very similar (65 %), the family member EIF4A3 is a core component of the exon junction

complex (EJC), in which it acts as an RNA clamp to assist correct positioning of the EJC

20–24 nt upstream of mRNA exon-exon junctions (Linder and Fuller-Pace 2013).

5.3.2 EF-Tu GTP-Binding Domain—The EF-Tu GTP-binding domain (GTP_EFTU),

named after its prokaryotic founding member EF-Tu, is a highly conserved domain across

all kingdoms of life, and shared by 21 genes in humans. The domain is typically found in

GTP-binding translation elongation factors, which are composed of three structural domains,

the GTP- binding domain, and two β-barrel nucleotide-binding domains, D2 and D3, which

bind to aminoacylated tRNAs (Nissen et al. 1995; Wang et al. 1997; Negrutskii and

El’skaya 1998). Eukaryotic EF-1α (human ortholog EEF1A1) has also been shown to

interact with higher molecular weight G/U-rich RNAs and rRNAs at a tRNA- independent

binding site (Negrutskii and El’skaya 1998). Translation elongation factors are essential for

protein synthesis; they bind aminoacyl-tRNAs in a GTP- dependent manner and direct them

to the A-site of the ribosome where, upon codon recognition by the tRNA, GTP is

hydrolyzed and the factor released (Dever and Green 2012). Furthermore, the GTP_EFTU

domains are not only found in combination with D2 and D3 in various translation initiation

and release factors, but also alone in GTPases involved in mRNA splicing (EFTUD2)

(Fabrizio et al. 1997) and rRNA biogenesis (GNL3 family) (Du et al. 2006; Kressler et al.

2010). The biological role for a majority of the human GTP_EFTU-containing proteins has

not been characterized. Particularly, the translation-independent roles of EF1-α and family

members, which have been found to directly interact with stem–loops in β-actin (ACTB) and

metallothionein 1 (human orthologs MT1 family) mRNAs, are not well understood (Liu et

al. 2002; Mickleburgh et al. 2006). More than half of the GTP_EFTU-containing proteins

were isolated from direct mRNA-cross-linking experiments by Castello et al. (Castello et al.

2012), supporting a wider role for these proteins in PTGR.
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6 Tissue Specificity of RNA-Binding Proteins

Given the evolutionary conservation of RBPs and their involvement in general RNA

metabolism, one anticipates predominantly ubiquitous expression for the majority of RBPs.

Most tissue-specific proteins evolved recently and have ancestral proteins with low

conservation, or no homologs in lower eukaryotes (Winter et al. 2004). Hence, tissue-

specific RBPs evolved at later stages of metazoan evolution, the most extreme example of

which is represented by the vertebrate-specific secreted RNA ribonucleases A (RNase A)

family comprising eight nucleolytic and five inactive pseudo-nuclease members (Rosenberg

2011). Among the active members of this class are angiogenin (ANG), which promotes

blood vessel growth, cleaves tRNAs under oxidative stress and is predominantly expressed

and secreted from the liver, as well as the EDN and ECP RNases (RNASE2 and RNASE3),

which play a role in innate immune response and are expressed in bone marrow eosinophiles

(Yamasaki et al. 2009; Rosenberg 2011; Ivanov et al. 2011) (Fig. 1.6a).

In order to obtain an overview of the number of tissue-specific RBPs, we examined mRNA

expression levels across tissues, which provide a reliable estimate of protein abundance in

the cell (Guo et al. 2010). Current RNA-seq resources do not provide a comprehensive

collection of tissues profiled in one study and thus we used a publically available microarray

tissue atlas comprising 31 different human tissues to examine the tissue specificity of

~17,000 profiled genes (Dezso et al. 2008). We devised a metric measuring tissue specificity

by calculating the deviation for each gene from a uniform expression across all tissues. Our

analysis likely underestimates tissue specificity, particularly of low-expressed genes, due to

tissue heterogeneity, which adds additional noise to the true expression profiles. In addition,

mRNA splicing or alternative polyadenylation events, which can give rise to cell-type-

specific protein isoforms with different biological functions (Black 2000; Kornblihtt et al.

2013) (Matlin et al. 2005; Sandberg et al. 2008; Mayr and Bartel 2009; Hogg and Goff

2010), cannot be captured by microarray analysis. Nevertheless, a few general themes

contrasting RBPs from other protein-coding genes emerge from the present analysis.

About 90 % of the curated RBPs (~1,400) were profiled in the study. While RBPs showed

similar average expression levels as compared to other protein-coding genes, they displayed

markedly lower variation of expression across tissues. Only ~2 % of RBPs showed very

high, tissue-specific expression on the mRNA level compared to 8 % among other protein-

coding genes (Dezso et al. 2008). Even when setting the criteria for tissue-specific

expression more lenient to include known RBPs with enrichment in selected tissues, only

about ~6 % of RBPs were classified as tissue specific, while at the same threshold 20 % of

non-RNA-binding proteins displayed tissue-specific expression (Fig. 1.6b, c). Tissue-

specific RBPs were predominantly located to the germline, and to a lesser degree to brain,

bone marrow, liver, and muscle, where they play distinct biological roles in RNA metabolic

pathways (Fig. 1.6a).

RNA metabolism in the germline is uniquely specialized and many of the exclusively

expressed RBPs are involved in the piRNA-induced silencing pathway, comprising piRNA

biogenesis as well as their effector components such as PIWI (PIWIL1,2,3,4) and TUDOR

proteins, MOV10L1, Maelstrom, and PLD6 and DDX4 (VASA) (Siomi et al. 2010; Siomi et
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al. 2011). Other germline-specific RBPs are the DAZL family (DAZ1,2,3, DAZL, BOLL)

and the nanos zinc fingers (NANOS2, NANOS3), both of which are regulators of mRNA

translation (Parisi and Lin 2000; Brook et al. 2009; Barckmann and Simonelig 2013). Loss

of function of these genes commonly results in arrest of germline development and leads to

infertility (Yen 2004; Klattenhoff and Theurkauf 2008; Kim et al. 2009; Brook et al. 2009;

Thomson and Lin 2009; Siomi et al. 2011; Massart et al. 2012; Ishizu et al. 2012; Lasko

2013).

The brain shows higher levels of alternative splicing, polyadenylation, and editing compared

to other tissues, which are required for neuronal development, plasticity, and memory

functions (Xu et al. 2002; Yeo et al. 2005; Wang et al. 2008a; Grabowski 2011; Miura et al.

2013). The higher level of posttranscriptional regulation points towards the brain’s demand

to rapidly adapt to evolutionary pressure and PTGR can be considered a means for

accelerating evolution of protein diversity (Xing and Lee 2006). Hence, in particular

splicing factors are overrepre-sented among the brain-specific RBPs such as the NOVA

family, PTB2, and the neuronal members of the RBFOX and ELAVL families (Li et al.

2007). Dysregulation of these proteins results in defects in neurological function and brain

development.

We examined paralogous RBP protein families in further detail and defined three categories

for tissue specificity in RBP families: (1) highly tissue-specific RBP families, (2) ubiquitous

RBP families containing tissue-specific members that evolved independently to meet cell-

type-specific needs, and (3) ubiquitous families wherein the individual members display a

gradient of expression in different tissues and cell types.

About 2 % of RBP families fall into the first category and display a high degree of tissue

specificity in all of their members, expressed in only one or two tissues. Among them are the

DAZL, NOVA, RNase A, and PIWI family.

RBP families in the second category (~3 %) have ubiquitously expressed members and one

or two tissue-specific paralogs. Members generally have highly overlapping functions, with

the tissue-specific paralogs carrying out similar functions to the ubiquitous paralog. A

number of germline-restricted helicases, essential for gametogenesis, belong to this

category, including DDX4 and DDX3Y, the RNA export factor DDX25, and the piRNA

pathway MOV10L1 helicase, all of which have ubiquitously expressed paralogs (DDX3X

paralog of DDX4 and DDX3Y, DDX19A and DDX19B paralog of DDX25, MOV10

paralog of MOV10L) (Abdelhaleem 2005; Tsai-Morris et al. 2010; Frost et al. 2010; Zheng

et al. 2010; Lasko 2013). Other RBPs include the AU-rich element- binding,

nucleocytoplasmic shuttling ELAVL mRBP family (ELAVL1,2,3,4, also known as

HuR,B,C,D) (Brennan and Steitz 2001; Simone and Keene 2013). Tissue-specific paralogs

likely fulfill a specific demand in PTGR by potentially regulating an increased abundance or

number of RNA targets in this tissue. Several mRBP families, such as the ELAVL family,

possess identical RNA-binding specificities (Ascano et al. 2011). Whether ubiquitous

paralogs are able to functionally compensate for loss of function of their tissue-specific

counterparts has not been evaluated systematically in vivo. However, despite their close

homology, overexpression of ELAVL4 but not ELAVL1 in cultured neural crest cells is able
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to induce neurite outgrowth (Wakamatsu and Weston 1997), suggesting that, differences in

expression levels alone may not fully account for the different biological functions of

paralogs.

About 25 % of paralogous families are ubiquitously expressed but their members display

some tissue-specific variation in expression. For these proteins, different expression levels in

different tissues can reflect a higher demand or sensitivity for the expressed RBP due to

different metabolic activities in different cell types. As expected, dysregulation of the RBPs

shows the strongest phenotype in the tissues with highest expression. For instance loss of

FMR1, expressed ubiquitously in every tissue but found elevated in brain and gonads (Wang

et al. 2008a), leads to mental retardation and autism, macroorchidism, and ovarian

insufficiency (Ascano et al. 2012). The variations in RBP expression leading to tissue-

specific phenotypes may be considered in the selection of suitable model systems for the

investigation of their biological function.

The residual 70 % of paralogous RBP families are expressed ubiquitously with marginal

variation in expression. Dysregulation of ubiquitous RBPs impacts PTGR in multiple

tissues; however, the severity of the phenotype in different tissues varies. Thus,

counterintuitively, loss of abundantly and ubiquitously expressed SMN1 leads to spinal

muscular atrophy (SMA), and mutation or loss of TARDBP/TDP43 is associated with

amyotrophic lateral sclerosis (ALS) (Ule 2008; Lagier-Tourenne et al. 2010). These

examples indicate that tissue-specific defects caused by dysregu-lation of an RBP do not

strictly correlate with levels of expression and that differences in expression of RNA targets,

protein partners, or additional biological roles of the protein must also be taken into

consideration. To understand tissue-specific phenotypes of ubiquitous RBPs it may be

necessary to also consider the tissue-specific expression levels of RNA targets or protein

cofactors.

7 RBPs in Human Disease

Efforts to understand the role and the pathomechanisms of RBPs in disease have focused

predominantly on mRBPs (Wang and Cooper 2007; Lukong et al. 2008; Ule 2008; Cooper

et al. 2009; Hanson et al. 2011; Kapeli and Yeo 2012; Castello et al. 2013; Ramaswami et al.

2013). Disease associations of RBPs targeting other classes of RNA such as tRNAs, rRNAs,

snoRNAs, snRNAs, and others have been less extensively covered (Scheper et al. 2007a, b;

Antonellis and Green 2008; Perron and Provost 2009; Narla and Ebert 2010; Wapinski and

Chang 2011; Esteller 2011; Batista and Chang 2013). Here we will give a brief overview of

RBPs identified as Mendelian disease factors, categorized by targets, and will focus on their

characteristic disease phenotypes (Table 1.2).

Despite the interdependence of RNA regulatory pathways, many of the observed disease

phenotypes are specific for RBPs binding to particular classes of RNAs, and symptoms of

diseases with unknown molecular mechanisms could point towards putative dysregulated

RNA metabolic pathways. The majority of RBPs have not been associated with diseases yet,

but the recurring patterns occurring for the known proteins may support, facilitated by the
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growing genomic and transcriptomic data from patients, the interpretation of the

dysregulated pathways involving new candidates in disease.

7.1 Diseases Involving mRNA-Binding Proteins

Most of the ~150 RBPs currently listed in the OMIM database (Hamosh et al. 2005) are

mRNA-binding proteins with phenotypes characteristically showing neurological and

neuromuscular dysfunctions due to dysregulation of splicing, translation, localization, or

protein aggregation (Lukong et al. 2008; Ule 2008; Cooper et al. 2009; Hanson et al. 2011;

Kapeli and Yeo 2012). Family members tend to have overlapping phenotypes reflecting

functional redundancies; for instance the paralogs RBM20 and MATR3 are both involved in

myopathies due to dysregulated splicing of their targets (Senderek et al. 2009; Guo et al.

2012).

RNA gain of function leading to altered mRBP-binding patterns is a common

pathomechanism (Cooper et al. 2009; Echeverria and Cooper 2012; Nelson et al. 2013). In

these disorders, repeat expansions in introns or UTRs of mRNAs often lead to sequestration

of mRBPs in the nucleus, thus causing dysregulation of their respective targets. Such

diseases comprise FXTAS (fragile X-associated tremor/ataxia syndrome), caused by

trinucleotide repeat expansions in the 5′UTR of the FMR1 mRNA (Hagerman 2013), and

the myotonic dystrophies DM1 and DM2, caused by repeat expansions in the 3′UTR of

DMPK and the intron of CNBP (ZNF9), sequestering the mRBPs CELF1 and MBNL1 and

their paralogs (Echeverria and Cooper 2012).

Mutations leading to prion-like aggregation of cytoplasmic or shuttling mRBPs and the

dysregulation in assembly and disassembly processes of cytoplasmic RNP granules have

been found to be the underlying cause in a range of neurodegenerative disorders.

Cytoplasmic inclusion of TARDBP/TDP43 and FUS has been found in amyotrophic lateral

sclerosis, a motor neuron disease leading to muscle atrophy (Anthony and Gallo 2010;

Lagier-Tourenne et al. 2010; Lee et al. 2012; Ling et al. 2013). Accumulation and inefficient

removal of these RNA-protein granules lead to cellular stress predominantly affecting

neuronal cells (Liu-Yesucevitz et al. 2011; Li et al. 2013; Buchan et al. 2013; Ramaswami et

al. 2013).

7.2 Mitochondrial RBPs in Disease

mRBPs involved in mitochondrial metabolism, such as translation elongation factors GFM1

and TSFM, typically cause deficiencies in oxidative phosphorylation that manifest

themselves on a physiological level as neurological and muscular myopathies (Smeitink et

al. 2006). Analogously, defects in mitochondrially localized tRNA- and rRNA-binding

proteins and subunits of the mitochondrial ribosome also cause deficiencies in oxidative

phosphorylation (Smits et al. 2010; Yao and Fox 2013) (Table 1.2).

7.3 Diseases Involving snRNA-Binding Proteins

Mutation or loss of function of snRBPs involved in snRNP complex formation or snRNA

biogenesis causes defects in proper mRNA splicing and affects mRNA splicing patterns.

Overall, only a few snRBPs have been linked to disease.

Gerstberger et al. Page 17

Adv Exp Med Biol. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The most studied snRBP is the SMN protein, the loss of function of which causes spinal

muscular atrophy (SMA). SMN proteins form a multimeric complex with Gemin proteins,

which carries out the assembly of snRNPs and other RNP complexes in the cytoplasm

(Paushkin et al. 2002; Battle et al. 2006). Autosomal recessive loss of function of the SMN1

gene is the molecular cause for SMA, affecting 1 in 6,000 births (Gubitz et al. 2004). The

pathomechanism of SMA exemplifies a striking example of how a single point mutation

within a cryptic splice-enhancer site can lead to dramatically altered protein levels that result

in global defects in mRNA splicing. Two copies, SMN1 and SMN2, are found in the human

genome encoding identical forms of the mature protein. Transcription from the SMN1 locus

gives full-length mRNA. The SMN2 gene, however, harbors a single, silent nucleotide

mutation in exon 7 leading to frequent exon skipping and resulting in only a small fraction

of functional protein being produced, with the majority of transcripts giving rise to

truncated, inactive protein. In the disease, deletion of the SMN1 gene results in the SMN2

locus being the only source for full-length mRNAs and protein. The very low amounts of

SMN protein produced lead to highly skewed ratios of snRNPs, resulting in global aberrant

splicing patterns (Zhang et al. 2008; Cooper et al. 2009). While snRNP assembly defects are

detected in all tissues upon SMN1 deletion, the physiological phenotype manifests itself

mainly in motor neurons (Glisovic et al. 2008; Cooper et al. 2009; Liu-Yesucevitz et al.

2011).

Mutations in other snRNP complexes have also been shown to cause disease. Loss of

function of snRBPs of the U2, U12, and U4/U6-U5 snRNP complexes specifically cause

retinitis pigmentosa, a retinal degeneration leading to blindness caused by incorrect splicing

of mRNAs encoding for photoreceptors (Daiger et al. 2013). Why mutations in components

of the general splicing machinery display highly tissue-specific phenotypes in the eye

remains unclear (Wang and Cooper 2007; Singh and Cooper 2012).

7.4 Diseases Involving tRNA Metabolism of tRNA-Binding Proteins

Disease-causing mutations in tRNA-binding proteins are found in the tRNA maturation and

aminoacylation pathways and show predominantly neurological phenotypes (Scheper et al.

2007a, b) (Table 1.2). Mutations in a number of cytoplasmic tRNA synthetases cause

Charcot-Marie-Tooth disease, affecting the peripheral nervous system and leading to

muscular atrophy (Antonellis and Green 2008; Yao and Fox 2013). Mutations in TSEN

tRNA-splicing endonucleases lead to pontocerebellar hypoplasia, a sometimes fatal

underdevelopment of the cerebellum, causing intellectual disability and impairing muscle

control and motor skills (Budde et al. 2008). Dysfunctions of cytoplasmic tRNA aminoacyl

synthetases lead to inefficient translation and molecularly link tRNAs with mRNA-binding

proteins (Scheper et al. 2007a, b), explaining the overlapping range of symptoms observed

for these classes of RBPs in neurological diseases.

7.5 Diseases Involving rRNA-Biogenesis Factors and Ribosomal Proteins

Loss of function of rRNA biogenesis factors and ribosomal proteins is generally

embryonically lethal and only few diseases, classified as ribosomopathies, are known for

these RBPs (Ruggero and Pandolfi 2003; Narla and Ebert 2010). Ribosomopathies

commonly show growth retardation, organ malformation, and frequently bone marrow

Gerstberger et al. Page 18

Adv Exp Med Biol. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



failure (Liu 2006). Examples of ribosomopathies include mutations in the SBDS rRNA

biogenesis gene that cause Shwachman-Bodian syndrome, displaying a deficit in neutrophils

and other blood cell types (Boocock et al. 2003), as well as a number of ribosomal proteins

predominantly belonging to the small ribosomal subunit that cause Diamond-Blackfan

anemia, an impairment of red blood cell formation (Narla and Ebert 2010).

7.6 Diseases Involving snoRNA-Binding Proteins

snoRNA-binding proteins are involved in maturation pathways of rRNAs, snRNAs, and the

H/ACA-snRNA-like telomerase RNA. Dysregulation of snoRNPs leads to deficiencies in

nucleotide modifications, pseudouridylation, or methylation of their targets (Bachellerie et

al. 2002; Filipowicz and Pogacić 2002). As a consequence, snoRNP disease phenotypes

overlap with those observed for defects in rRNA biogenesis, ribosomal proteins, as well as

proteins involved in the telomerase assembly pathway, such as the protein components

TERT and WRAP53 of the telomerase complex. Defects in snoRNA biogenesis manifest

themselves in the severe developmental disorder dyskeratosis congenita, leading to bone

marrow failure, growth retardation, neurological defects, and premature aging (Filipowicz

and Pogacić 2002; Smogorzewska and de Lange 2004).

7.7 Diseases Involving microRNA Pathway Components

Mutations in miRNA-binding proteins are involved in different cancers and developmental

disorders and have been well characterized (Merritt et al. 2008; Perron and Provost 2009;

Kaneko et al. 2011). For example, mutations and loss of function or reduced levels of

DICER1, TARBP2, and XPO5 have been found in pleuropul-monary blastomas and ovarian

and other types of cancers (Zhang et al. 2006; Melo et al. 2009; Hill et al. 2009; Melo et al.

2010). In addition, changes in miRNA profiles are observed in many more human diseases

due to changes in the cellular metabolism, and may prove valuable diagnostic tools,

analogous to mRNA expression profiles (Esquela-Kerscher and Slack 2006; Kloosterman

and Plasterk 2006; Calin and Croce 2006; Li and Kowdley 2012).

7.8 Immune Stimulatory and Stress-Related Diseases Caused by RBPs

In recent years it has become evident that nucleic acids play a central role in autoimmune

and cellular stress-related diseases. Mutations or loss of function in three RNA/DNA

nucleases, SAMHD1, the RNase H2 complex, and TREX1, leads to development of the

autoimmune disease Aicardi-Goutieres syndrome (AGS), a neurodevelopmental disorder

causing white matter abnormalities and cerebral atrophy. Symptomatically, AGS overlaps

with the autoimmune disorder systemic lupus erythematosus (SLE) (Crow et al. 2006b). In

both cases, a failure to remove accumulating nucleic acids is central to disease development

and activates the innate immune system by type I interferon signaling (Atianand and

Fitzgerald 2013; Rabe 2013).

The triphosphatase SAMHD1 possesses 3′–5′ exonuclease activity for ssRNA, ssDNA, and

DNA/RNA hybrids. Its antiviral and autoimmune-suppressive function has been attributed

to its role in the removal of nucleotides and nucleic acids in the cell (Beloglazova et al.

2013). The heterotrimeric RNase H2 complex endonucleolytically cleaves DNA/RNA

hybrids and is thought to be required for the removal of Okazaki fragments during DNA
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replication (Cerritelli and Crouch 2009; Rabe 2013). Mutations in all three subunits of the

RNase H2 complex (RNASEH2A, RNASEH2B, RNASEH2C) have been found to cause

AGS (Crow et al. 2006b; Rabe 2013). The 3′–5′ DNA exonuclease TREX1 is implicated in

degradation of ssDNA fragments during replication and antiviral defense (Rabe 2013).

Mutations in TREX1 are found in AGS patients (Crow et al. 2006a) and TREX1 knockout

mice accumulate endogenous retroelements; the accumulating nucleic acids are thought to

trigger a subsequent interferon response (Stetson et al. 2008). Interestingly, loss of function

of the dsRNA-editing ADAR enzyme has also been shown to cause AGS by an as yet

unknown mechanism (Rice et al. 2012).

Many autoantibodies against other RBPs and even RNA have been detected in

paraneoplastic syndromes and autoimmune diseases (DeHoratius et al. 1975; Hendrick et al.

1981; Pettersson et al. 1984; Gold et al. 1988; Gelpi et al. 1992; Sakai et al. 1994;

Buckanovich et al. 1996). It is thought that dysregulation of RNA clearance mechanisms

triggers innate immune responses and leads to apoptosis and release of RBP-RNA

complexes into circulation. There these granules mobilize the immune system to develop

autoantibodies against self-RNA-protein complexes (Gaipl et al. 2005; Muñoz et al. 2010).

The Ro60 complex, consisting of the TROVE2 (Ro60) protein and Y RNAs, was among the

first identified targets of autoimmune antibodies in SLE patients was the Ro-RNP particle

(Lerner et al. 1981; Hendrick et al. 1981). The Ro60 complex plays a regulatory role in

DNA replication and stress response, removing misfolded RNAs, and mice lacking Ro60

develop lupus-like syndromes (Chen and Wolin 2004; Sim and Wolin 2011; Hall et al.

2013). Cleavage of tRNAs and Y RNAs accompanies cellular stress response and apoptosis

(Phizicky and Hopper 2010; Nawrot et al. 2011; Hall et al. 2013; Köhn et al. 2013) and

these stress-induced small RNA fragments may also act as immune-stimulatory RNAs.

Autoantibodies against RBPs associating with these RNAs have been found in serum of SLE

patients, stressing the importance of efficient clearance of circulating RNP granules in

autoimmune diseases.

Dysfunctional nucleic acid clearance has not only been associated with autoimmune diseases

but also with neurological defects of the peripheral nervous system, as seen in loss of

function of the RNA exosome component EXOSC3 and RNASET2 (Henneke et al. 2009;

Wan et al. 2012), which also acts as a tumor suppressor (Monti et al. 2008). Given the

autoimmune-stimulatory role of nucleic acids it is surprising that loss of these general RNA

turnover factors more closely resembles loss of mRBPs or tRNA-binding proteins. It will be

interesting to understand in mechanistic detail whether the defects caused by these general

factors are due to accumulation of RNA or protein aggregates inside the cell, or due to

impaired RNA biogenesis pathways.

8 Conclusion

The central role of PTGR in cellular metabolism can be appreciated by considering the large

number of proteins interacting with RNA. Over 1,500 of the 21,000 unique human proteins

are directly contributing to PTGR. RBPs form many distinct families with few members and

human RBPs can be grouped into ~1,100 paralogous families related by 20 % identity.
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The complexity of PTGR was established early evolutionary time scales. The lowest

common ancestor of metazoans had a set of ~200 RBPs (Kerner et al. 2011), and of the

~1,100 human RBP families ~600 families have homologs in yeast. As a comparison, a

census of human and S. cerevisiae transcription factors containing transcription factor

domains estimated ~1,400 and ~150 genes in human and yeast, respectively (Costanzo et al.

2000; Lee et al. 2002; Vaquerizas et al. 2009). The difference reflects that transcription

factors underwent large expansions in the eumetazoan lineage (Larroux et al. 2008; Degnan

et al. 2009), suggesting that the rapidly evolved complexity of transcriptional regulation was

required for the development of multiple cell types in eukaryotes.

Consistent with their high degree of conservation, most RBPs (98 %) do not display highly

tissue-specific expression, but they are abundant and make up to 25 % of the total cellular

protein content. Interestingly, dysregulation of ubiquitous and general components in PTGR

often shows highly tissue-specific phenotypes; for instance defects involving mRNA- and

tRNA-binding proteins are most frequently associated with neurological diseases, especially

of the peripheral nervous system.

Given that the common RBD folds have been characterized and the majority of RBPs do not

fall into large families, novel RBPs are most probably singular or have recently evolved

RNA-binding activity independent of their family. This makes RBP prediction highly

challenging and leaves experimental approaches as the most suitable strategy for their

identification. Novel genome-wide experimental methods such as covalent RNA-protein

cross-linking coupled with high-throughput sequencing to identify RNA target sites, or

combined with mass spectrometric approaches to identify proteome-wide RBPs cross-linked

to RNAs, have substantially advanced the efforts towards the elucidation of

posttranscriptional regulatory networks. With the increasing sensitivity of experimental

approaches, the number of RBPs is likely to grow. Even at present though, the precise

biological functions and RNA targets for the majority of known human RBPs have not been

characterized and some processes, such as noncoding RNA maturation pathways, control of

RNA transport, sensing of intracellular RNA, and mechanisms of RNA/RNP clearance,

remain poorly understood. Thus, the main challenges in the field are the characterization of

these processes and the mechanisms leading to human disease.
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Fig. 1.1.
Different approaches to define the catalogue of human RBPs. (a) Venn diagram showing the

overlap of proteins with RNA-related Gene Ontology (GO) categories (Ashburner et al.

2000) (orange), the human RNA-binding proteome identified by RNA-cross-linking and

mass spectrometry studies (MS RBP proteome, green) (Baltz et al. 2012; Castello et al.

2012; Kwon et al. 2013), and the RBPDB database of human RBPs with canonical RBDs

(Cook et al. 2011) (red). (b) Venn diagram showing the overlaps of GO RBPs (orange), MS

RBP proteome (green), and the curated RBP list based on analysis of RNA-binding domains

and experimental evidence of RNA binding found in the literature (violet). (c) Composition

of RBPs in the curated RBP list: Canonical-RBD RBPs (containing canonical RBDs (Lunde

et al. 2007; Cook et al. 2011), red), ribosomal proteins (bright violet), other RBPs (dark

violet)
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Fig. 1.2.
Analysis of RBP abundance. Curated RBPs are subclassified into ribosomal proteins

(orange), mRBPs (bright red), and other RBPs (dark red). Percentages of RBPs are

compared to a set of GO-defined transcription factors (TFs, yellow), a set of GO-defined

cytoskeletal proteins (CSK proteins, green) (Ashburner et al. 2000), and all other expressed

genes (grey). (a) Count of expressed genes with RPKM > 1 in RNA-seq data from HEK293

cells (Teplova et al. 2013). (b) Relative abundance of each gene group is given by the

summation of expression levels of genes in each category
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Fig. 1.3.
Number of RBPs involved in different RNA pathways. Curated RBPs are categorized into

the following groups: (1) Ribosomal proteins and RBP-interacting proteins (e.g., TUDOR

proteins, RBP transport proteins) (dark blue), (2) mRNA-binding proteins (orange), tRNA-

binding proteins (red), rRNA-binding proteins (dark green), snRNA-binding proteins

(bright green), snoRNA-binding proteins (yellow), ncRNA-binding proteins (ncRNAs

defined as miRNA, piRNA, MRP, 7SL, XIST, lincRNAs, telRNA, etc.) (light grey), RNA/

DNA-hybrid-interacting proteins (violet), RBPs interacting unselectively with a range of

RNA targets (light blue), RBPs with unknown RNA targets (marine blue). Distribution into

the listed categories of the (a) 1,542 curated human RBPs, (b) 1,113 human paralogous RBP

families, and (c) conserved paralogous RBP families in S. cerevisiae and their average

conservation score (orange box)
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Fig. 1.4.
Phylogenetic trees of (a) KH-containing proteins and (b) ribosomal proteins of the small

subunit. Branch lengths are scaled to the sequence identity of the proteins. S. cerevisiae

proteins are marked in red, human proteins in black, homologous families with conserved

members in S. cerevisiae highlighted in yellow
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Fig. 1.5.
(a) Analysis of structural patterns of the most abundant RNA-binding domains (with ≥ 9

members) in humans. Shown are the counts for the number of genes containing the listed

RNA-binding domains (with ≥ 9 members) named by its Pfam abbreviation (Finn et al.

2010). RNA-binding domains are categorized into those binding RNA without additional

enzymatic activity (RBD) (black) and those with additional enzymatic activity (enzRBD)

(red). The RBD category was broadly defined to include protein-protein interacting domains

known to interact with RBPs, such as those found in TUDOR family proteins (TUDOR) or

ribosomal proteins. The following structural patterns are counted: (1) singular occurrence of

an RNA-binding domain (RBD—dark blue, enzRBD—yellow), (2) single RBD repeated

(RBD—marine blue), (3) multiple RBDs (RBD—light blue, enzRBD—red), (4)

combinations of RBDs and enzRBDs (green), and (5) combination of at least one RBD/

enzRBD with at least one other, non-RNA-related protein domain (grey). (b) Scheme of

domain structure organization of representative RBPs, categorized into the domain

combination classes listed in (a)
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Fig. 1.6.
Tissue specificity of RBPs based on their mRNA expression profiles in a human microar-ray

tissue atlas (Dezso et al. 2008). (a) Plot of maximum expression intensity versus their tissue

specificity score. The threshold for tissue specificity is set at 1 (dashed line), to include the

brain- specific ELAVL and NOVA splicing factor families and the germline-specific PIWI

family. Protein-coding genes are marked as grey-filled circles and RBPs as red-filled circles.

Tissue-specific RBPs are marked based on the tissue with their highest expression: testis

(orange triangle), muscle/heart (dark blue triangle), liver/pancreas (dark green inverted

triangle), lymphocytes/bone marrow (light blue triangle), brain (dark red triangle). In (b)

the number of tissue-specific RBPs is compared to all expressed RBPs and in (c) the number

of tissue-specific proteins is compared to total expressed proteins
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Table 1.1

Functional description of the main RNA classes in humans and their length distribution

RNA class Size (nt) Biological role (additional reviews on function and biogenesis)

Messenger RNA (mRNA) ~200–100,000 Encodes the information for protein-coding genes, translated by ribosomes
(Dreyfuss et al. 2002; Glisovic et al. 2008; Müller-McNicoll and Neugebauer
2013)

Transfer RNA (tRNA) ~70–95 RNA adaptor molecule, transports amino acids to ribosome and recognizes
specific triplet codons on mRNA (Suzuki et al. 2011; Maraia and Lamichhane
2011; Simos and Hurt 1999)

Ribosomal RNA (rRNA) 121–5,072 Structural component of ribosomes (Boisvert et al. 2007; Ciganda and Williams
2011; Granneman and Baserga 2004)

Small nuclear RNA (snRNA) ~70–190 snRNAs U1, U2, U4, U5, U6, U11, U12, U4atac, and U6atac are core
components of the spliceosome; U7 snRNA functions in 3′end maturation of
histone RNAs (Kiss 2004; Matera et al. 2007)

Small nucleolar RNA (snoRNA) and
small Cajal-body-specific RNA
(scaRNA)

~50–450 Guide chemical modifications (methylation and pseudouridylation) of rRNAs,
snRNAs, and snoRNAs (Filipowicz and Pogacić 2002; Kiss et al. 2006; Matera
et al. 2007)

microRNA (miRNA) and small
interfering RNA (siRNA)

21–22 Associate with AGO proteins, guide them to target sequences predominantly in
the 3′UTRs of mRNAs, induce degradation and translational repression (Bartel
2009; Kim et al. 2009)

piwi-interacting RNA (piRNA) ~28–32 Associates with PIWI proteins; PIWI RNP complexes induce ribonucleolytic
cleavage and epigenetic silencing of transposable elements (Kim et al. 2009;
Siomi et al. 2011)

Long intervening noncoding RNA
(lincRNA), 7SK RNA

>200 Recruits chromatin modifiers and remodeling complexes, modulates
transcription by recruitment of protein cofactors to transcription starts sites and
enhancers, functions as molecular scaffolds for nuclear RBPs (Batista and Chang
2013; Ulitsky and Bartel 2013); 7SK RNA regulates transcription elongation
(Peterlin et al. 2011)

Ribonuclease P/(RNase P) and
mitochondrial RNA-processing
endonuclease (MRP RNase)

~260–340 Ribonucleolytic RNP complexes that carry out processing of precursor tRNAs,
rRNAs, snRNAs, and other noncoding RNAs (Xiao et al. 2002; Jarrous 2002;
Ellis and Brown 2009; Esakova and Krasilnikov 2010)

Y RNA ~80–110 Small noncoding RNAs that form an RNP complex with TROVE2 (Ro60)
protein and act as RNA chaperones, have a role in DNA replication and immune
response (Hall et al. 2013; Köhn et al. 2013)

Signal recognition particle RNA
(7SL/SRP RNA)

~300 RNA of the signal recognition particle; the complex recognizes signal sequences
of newly synthesized peptides and targets them to the endoplasmatic reticulum
(Akopian et al. 2013)

Vault-associated RNA (vtRNA) ~80–120 Small noncoding RNAs, part of the vault RNP complex, involved in drug
resistance, downregulate mRNA targets through posttranscriptional gene
silencing (Berger et al. 2008)

Telomerase RNA (telRNA) ~450 RNA component of the telomerase complex TERC, which acts as reverse
transcriptase and elongates telomerase repeats, TERC is structurally related to
box H/ACA snoRNAs (Egan and Collins 2012)

Additional reviews on biogenesis pathways and RBP components interacting with each class of RNA are referenced

Adv Exp Med Biol. Author manuscript; available in PMC 2014 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Gerstberger et al. Page 54

T
ab

le
 1

.2

O
ve

rv
ie

w
 o

f 
R

B
Ps

 w
ith

 id
en

tif
ie

d 
ge

ne
tic

 d
is

ea
se

-c
au

si
ng

 m
ut

at
io

ns
 c

ol
le

ct
ed

 in
 th

e 
O

M
IM

 d
at

ab
as

e 
(H

am
os

h 
et

 a
l. 

20
05

),
 c

at
eg

or
iz

ed
 in

to
 th

ei
r 

m
ai

n

R
N

A
 ta

rg
et

 g
ro

up
s 

M
ito

ch
on

dr
ia

lly
 lo

ca
liz

ed
 p

ro
te

in
s 

ar
e 

in
di

ca
te

d 
w

ith
 (

m
t)

. P
ro

te
in

s 
w

ith
in

 th
e 

sa
m

e 
R

B
P 

fa
m

ily
 a

re
 w

ri
tte

n 
in

 o
ne

 li
ne

; i
f 

fa
m

ily

m
em

be
rs

 a
re

 a
ls

o 
in

vo
lv

ed
 in

 d
is

ea
se

 th
ey

 a
re

 h
ig

hl
ig

ht
ed

 in
 b

ol
d;

 if
 f

am
ily

 m
em

be
rs

 a
re

 in
vo

lv
ed

 in
 d

is
ea

se
s 

ot
he

r 
th

an
 th

e 
lis

te
d 

ca
te

go
ry

 th
ey

 a
re

hi
gh

lig
ht

ed
 in

 b
ol

d 
br

ow
n 

an
d 

fo
un

d 
el

se
w

he
re

 in
 a

 s
ep

ar
at

e 
ca

te
go

ry
 in

 th
e 

ta
bl

e

R
B

P
 c

la
ss

di
se

as
e 

ca
te

go
ry

R
B

P
 f

am
ily

di
se

as
e

ge
ne

ti
c 

m
ut

at
io

n
re

fe
re

nc
e

m
R

N
A

-b
in

di
ng

C
an

ce
r

E
W

SR
1,

 F
U

S,
 T

A
F

15
E

w
in

g 
sa

rc
om

a,
 s

of
t t

is
su

e 
tu

m
or

s
G

en
e 

fu
si

on
(M

ay
 e

t a
l. 

19
93

;
Ic

hi
ka

w
a 

et
 a

l.
19

94
;

Pa
na

go
po

ul
os

 e
t

al
. 1

99
4;

 G
ill

 e
t a

l.
19

95
;

Pa
na

go
po

ul
os

 e
t

al
. 1

99
9)

T
P

R
G

as
tr

ic
, t

hy
ro

id
 c

ar
ci

no
m

a,
 s

ar
co

m
a

G
en

e 
fu

si
on

(D
ea

n 
et

 a
l. 

19
87

;
G

on
za

tti
-H

ac
es

 e
t

al
. 1

98
8)

M
us

cu
la

r/
ca

rd
ia

c 
di

se
as

e
C

N
B

P
, Z

C
C

H
C

13
M

yo
to

ni
c 

dy
st

ro
ph

y
R

N
A

 r
ep

ea
t e

xp
an

si
on

se
qu

es
te

rs
 R

B
Ps

(L
iq

uo
ri

 e
t a

l.
20

01
)

M
B

N
L

1,
 M

B
N

L
2,

 M
B

N
L

3
M

yo
to

ni
c 

dy
st

ro
ph

y
Se

qu
es

te
re

d 
R

B
P 

in
 r

ep
ea

t
ex

pa
ns

io
n

(M
ill

er
 2

00
0;

M
an

ko
di

 e
t a

l.
20

01
; F

ar
da

ei
20

02
)

C
E

L
F

1,
 C

E
L

F2
-6

M
yo

to
ni

c 
dy

st
ro

ph
y

Se
qu

es
te

re
d 

R
B

P 
in

 r
ep

ea
t

ex
pa

ns
io

n
(T

im
ch

en
ko

 e
t a

l.
19

96
; R

ob
er

ts
 e

t
al

. 1
99

7)

M
A

T
R

3,
 R

B
M

20
C

ar
di

o-
/d

is
ta

l m
yo

pa
th

y
M

is
se

ns
e 

m
ut

at
io

n
(S

en
de

re
k 

et
 a

l.
20

09
; B

ra
uc

h 
et

al
. 2

00
9)

N
O

L
3

M
yo

cl
on

us
M

is
se

ns
e 

m
ut

at
io

n
(R

us
se

ll 
et

 a
l.

20
12

)

P
A

B
P

N
1,

 P
A

B
N

1L
M

us
cu

la
r 

dy
st

ro
ph

y
Po

ly
al

an
in

e 
ex

pa
ns

io
n 

le
ad

in
g

to
 p

ro
te

in
 a

gg
re

ga
tio

n
(B

ra
is

 e
t a

l. 
19

98
)

N
eu

ro
lo

gi
ca

l d
is

ea
se

A
FF

1,
 A

F
F

2,
 A

FF
3,

 A
FF

4
M

en
ta

l r
et

ar
da

tio
n

D
el

et
io

n,
 lo

ss
-o

f-
fu

nc
tio

n
th

ro
ug

h 
re

pe
at

 e
xp

an
si

on
 in

m
R

N
A

(K
ni

gh
t e

t a
l.

19
93

; S
te

ttn
er

 e
t

al
. 2

01
1)

A
T

X
N

1,
 A

T
X

N
1L

Sp
in

oc
er

eb
el

la
r 

at
ax

ia
Po

ly
gl

ut
am

in
e 

ex
pa

ns
io

n
le

ad
in

g 
to

 p
ro

te
in

 a
gg

re
ga

tio
n

(O
rr

 e
t a

l. 
19

93
;

B
an

fi
 e

t a
l. 

19
94

;
Se

rv
ad

io
 e

t a
l.

19
95

)

Adv Exp Med Biol. Author manuscript; available in PMC 2014 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Gerstberger et al. Page 55

R
B

P
 c

la
ss

di
se

as
e 

ca
te

go
ry

R
B

P
 f

am
ily

di
se

as
e

ge
ne

ti
c 

m
ut

at
io

n
re

fe
re

nc
e

A
T

X
N

2,
 A

T
X

N
2L

Sp
in

oc
er

eb
el

la
r 

at
ax

ia
, s

us
ce

pt
ib

ili
ty

 to
la

te
-o

ns
et

 P
ar

ki
ns

on
 d

is
ea

se
, s

us
ce

pt
ib

ili
ty

to
 a

m
yo

tr
op

hi
c 

la
te

ra
l s

cl
er

os
is

 (
A

L
S)

Po
ly

gl
ut

am
in

e 
ex

pa
ns

io
n

le
ad

in
g 

to
 p

ro
te

in
 a

gg
re

ga
tio

n
(P

ul
st

 e
t a

l. 
19

96
;

C
an

ce
l e

t a
l. 

19
97

;
G

w
in

n-
H

ar
dy

 e
t

al
. 2

00
0;

 E
ld

en
 e

t
al

. 2
01

0)

D
Y

N
C

1H
1,

 D
N

A
H

1-
11

,
D

N
A

H
17

, D
Y

N
C

2H
1

C
ha

rc
ot

-M
ar

ie
-T

oo
th

 d
is

ea
se

, m
en

ta
l

re
ta

rd
at

io
n,

 s
pi

na
l m

us
cu

la
r 

at
ro

ph
y 

(S
M

A
)

M
is

se
ns

e 
m

ut
at

io
n

(V
is

se
rs

 e
t a

l.
20

10
; W

ee
do

n 
et

al
. 2

01
1;

 H
ar

m
s 

et
al

. 2
01

2)

U
B

A
1,

 U
B

A
6-

7
Sp

in
al

 m
us

cu
la

r 
at

ro
ph

y 
(S

M
A

)
M

is
se

ns
e 

m
ut

at
io

n
(R

am
se

r 
et

 a
l.

20
08

)

E
IF

2B
1

L
eu

ko
en

ce
ph

al
op

at
hy

 w
ith

 v
an

is
hi

ng
 w

hi
te

m
at

te
r

M
is

se
ns

e 
m

ut
at

io
n

(v
an

 d
er

 K
na

ap
 e

t
al

. 2
00

2)

E
IF

2B
2

L
eu

ko
en

ce
ph

al
op

at
hy

 w
ith

 v
an

is
hi

ng
 w

hi
te

m
at

te
r

M
is

se
ns

e,
 n

on
se

ns
e 

m
ut

at
io

n
(L

ee
gw

at
er

 e
t a

l.
20

01
)

E
IF

2B
3

L
eu

ko
en

ce
ph

al
op

at
hy

 w
ith

 v
an

is
hi

ng
 w

hi
te

m
at

te
r

M
is

se
ns

e 
m

ut
at

io
n

(v
an

 d
er

 K
na

ap
 e

t
al

. 2
00

2)

E
IF

2B
4

L
eu

ko
en

ce
ph

al
op

at
hy

 w
ith

 v
an

is
hi

ng
 w

hi
te

m
at

te
r

M
is

se
ns

e 
m

ut
at

io
n

(v
an

 d
er

 K
na

ap
 e

t
al

. 2
00

2)

E
IF

2B
5

L
eu

ko
en

ce
ph

al
op

at
hy

 w
ith

 v
an

is
hi

ng
 w

hi
te

m
at

te
r

M
is

se
ns

e 
m

ut
at

io
n

(L
ee

gw
at

er
 e

t a
l.

20
01

; v
an

 d
er

K
na

ap
 e

t a
l. 

20
02

;
Fo

gl
i e

t a
l. 

20
02

)

E
IF

4G
1,

 E
IF

4G
2,

 E
IF

4G
3

Pa
rk

in
so

n 
di

se
as

e
M

is
se

ns
e 

m
ut

at
io

n
(C

ha
rt

ie
r-

H
ar

lin
 e

t
al

. 2
01

1)

F
M

R
1,

 F
X

R
1,

 F
X

R
2

Fr
ag

ile
 X

 m
en

ta
l r

et
ar

da
tio

n 
sy

nd
ro

m
e

(F
X

S)
, f

ra
gi

le
 X

 tr
em

or
/a

ta
xi

a 
sy

nd
ro

m
e

(F
X

T
A

S)
, p

re
m

at
ur

e 
ov

ar
ia

n 
fa

ilu
re

D
el

et
io

n,
 r

ep
ea

t e
xp

an
si

on
le

ad
in

g 
to

 p
ro

te
in

 lo
ss

-o
f-

fu
nc

tio
n 

(F
X

S)
 o

r 
R

N
A

-g
ai

n-
of

-f
un

ct
io

n 
(F

X
T

A
S)

 s
eq

ue
st

er
s

R
B

Ps

(K
re

m
er

 e
t a

l.
19

91
; D

ev
ys

 e
t a

l.
19

92
; G

ed
eo

n 
et

al
. 1

99
2;

 W
öh

rl
e

et
 a

l. 
19

92
;

M
ur

ra
y 

et
 a

l.
19

98
; H

ag
er

m
an

et
 a

l. 
20

01
)

A
m

yo
tr

op
hi

c 
la

te
ra

l s
cl

er
os

is
 (

A
L

S)
M

is
se

ns
e 

m
ut

at
io

n 
le

ad
in

g 
to

pr
io

n-
lik

e 
pr

ot
ei

n 
ag

gr
eg

at
io

n
(K

w
ia

tk
ow

sk
i e

t
al

. 2
00

9;
 V

an
ce

 e
t

al
. 2

00
9)

H
N

R
N

P
A

2B
1,

 H
N

R
N

PA
0,

H
N

R
N

PA
B

, H
N

R
N

PA
1L

2,
H

N
R

N
P

A
1,

 H
N

R
N

PA
3,

H
N

R
N

PD
, H

N
R

N
PD

L

A
m

yo
tr

op
hi

c 
la

te
ra

l s
cl

er
os

is
 (

A
L

S)
M

is
se

ns
e 

m
ut

at
io

n 
le

ad
in

g 
to

pr
io

n-
lik

e 
pr

ot
ei

n 
ag

gr
eg

at
io

n
(K

im
 e

t a
l. 

20
13

)

SE
T

X
A

m
yo

tr
op

hi
c 

la
te

ra
l s

cl
er

os
is

 (
A

L
S)

M
is

se
ns

e,
 n

on
se

ns
e 

m
ut

at
io

n,
de

le
tio

n
(M

or
ei

ra
 e

t a
l.

20
04

)

Adv Exp Med Biol. Author manuscript; available in PMC 2014 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Gerstberger et al. Page 56

R
B

P
 c

la
ss

di
se

as
e 

ca
te

go
ry

R
B

P
 f

am
ily

di
se

as
e

ge
ne

ti
c 

m
ut

at
io

n
re

fe
re

nc
e

T
A

R
D

B
P

A
m

yo
tr

op
hi

c 
la

te
ra

l s
cl

er
os

is
 (

A
L

S)
M

is
se

ns
e 

m
ut

at
io

n 
le

ad
in

g 
to

pr
ot

ei
n 

ag
gr

eg
at

io
n

(S
re

ed
ha

ra
n 

et
 a

l.
20

08
)

IG
H

M
B

P
2

D
is

ta
l s

pi
na

l m
us

cu
la

r 
at

ro
ph

y 
(D

SM
A

1)
M

is
se

ns
e 

m
ut

at
io

n
(G

ro
hm

an
n 

et
 a

l.
20

01
)

L
R

P
P

R
C

L
ei

gh
 s

yn
dr

om
e

M
is

se
ns

e 
m

ut
at

io
n

(M
oo

th
a 

et
 a

l.
20

03
)

M
E

C
P

2
R

et
t s

yn
dr

om
e,

 X
-l

in
ke

d 
m

en
ta

l r
et

ar
da

tio
n

M
is

se
ns

e,
 n

on
se

ns
e 

m
ut

at
io

n,
fr

am
es

hi
ft

, d
el

et
io

n
(A

m
ir

 e
t a

l. 
19

99
;

W
an

 e
t a

l. 
19

99
;

C
he

ad
le

 e
t a

l.
20

00
; H

up
pk

e 
et

al
. 2

00
0)

M
T

P
A

P
, T

U
T

1
Sp

as
tic

 a
ta

xi
a

M
is

se
ns

e 
m

ut
at

io
n

(C
ro

sb
y 

et
 a

l.
20

10
)

P
A

R
K

7
Pa

rk
in

so
n 

di
se

as
e

M
is

se
ns

e 
m

ut
at

io
n

(B
on

if
at

i e
t a

l.
20

03
)

P
Q

B
P

1
R

en
pe

nn
in

g 
sy

nd
ro

m
e 

1
Fr

am
es

hi
ft

(K
al

sc
he

ue
r 

et
 a

l.
20

03
)

D
ys

to
ni

a
Fr

am
es

hi
ft

, m
is

se
ns

e 
m

ut
at

io
n

(C
am

ar
go

s 
et

 a
l.

20
08

; S
ei

bl
er

 e
t a

l.
20

08
)

R
A

N
B

P
2,

 R
G

PD
1-

6,
 R

G
PD

8
A

cu
te

, i
nf

ec
tio

n-
in

du
ce

d 
su

sc
ep

tib
ili

ty
 to

en
ce

ph
al

op
at

hy
M

is
se

ns
e 

m
ut

at
io

n
(N

ei
ls

on
 e

t a
l.

20
09

)

R
B

M
28

A
lo

pe
ci

a,
 n

eu
ro

lo
gi

c 
de

fe
ct

s,
en

do
cr

in
op

at
hy

 s
yn

dr
om

e
M

is
se

ns
e 

m
ut

at
io

n
(N

ou
sb

ec
k 

et
 a

l.
20

08
)

U
PF

3A
, U

P
F

3B
M

en
ta

l r
et

ar
da

tio
n

Fr
am

es
hi

ft
, m

is
se

ns
e,

 n
on

se
ns

e
m

ut
at

io
n

(T
ar

pe
y 

et
 a

l.
20

07
)

T
IA

1,
 T

IA
L

1
W

el
an

de
r 

di
st

al
 m

yo
pa

th
y

M
is

se
ns

e 
m

ut
at

io
n

(H
ac

km
an

 e
t a

l.
20

12
)

R
B

F
O

X
1,

 R
B

FO
X

2,
 R

B
FO

X
3

M
en

ta
l r

et
ar

da
tio

n,
 e

pi
le

ps
y

D
el

et
io

n,
 b

re
ak

po
in

t
(B

ha
lla

 e
t a

l.
20

04
; M

ar
tin

 e
t a

l.
20

07
)

N
eu

ro
lo

gi
ca

l/d
ev

el
op

m
en

ta
l d

is
ea

se
G

L
E

1
L

et
ha

l c
on

ge
ni

ta
l c

on
tr

ac
tu

re
 s

yn
dr

om
e

Sp
lic

e 
si

te
 m

ut
at

io
n,

 m
is

se
ns

e
m

ut
at

io
n

(N
ou

si
ai

ne
n 

et
 a

l.
20

08
)

D
ev

el
op

m
en

ta
l d

is
ea

se
B

IC
C

1
Su

sc
ep

tib
ili

ty
 to

 r
en

al
 d

ys
pl

as
ia

M
is

se
ns

e,
 n

on
se

ns
e 

m
ut

at
io

n
(K

ra
us

 e
t a

l. 
20

12
)

E
IF

2A
K

1,
 E

IF
2A

K
2,

 E
IF

2A
K

3
W

ol
co

tt-
R

al
lis

on
 s

yn
dr

om
e,

 m
ul

tip
le

ep
ip

hy
se

al
 d

ys
pl

as
ia

M
is

se
ns

e,
 n

on
se

ns
e 

m
ut

at
io

n,
sp

lic
e 

si
te

 m
ut

at
io

n
(D

el
ép

in
e 

et
 a

l.
20

00
; B

ri
ck

w
oo

d
et

 a
l. 

20
03

;
D

ur
oc

he
r 

et
 a

l.
20

06
)

Adv Exp Med Biol. Author manuscript; available in PMC 2014 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Gerstberger et al. Page 57

R
B

P
 c

la
ss

di
se

as
e 

ca
te

go
ry

R
B

P
 f

am
ily

di
se

as
e

ge
ne

ti
c 

m
ut

at
io

n
re

fe
re

nc
e

F
T

O
G

ro
w

th
, d

ev
el

op
m

en
ta

l d
el

ay
M

is
se

ns
e 

m
ut

at
io

n
(B

oi
ss

el
 e

t a
l.

20
09

)

M
K

R
N

1,
 M

K
R

N
2,

 M
K

R
N

3
C

en
tr

al
 p

re
co

ci
ou

s 
pu

be
rt

y 
2

M
is

se
ns

e 
m

ut
at

io
n,

 in
se

rt
io

n
(A

br
eu

 e
t a

l.
20

13
)

N
R

0B
1,

 N
R

0B
2

C
on

ge
ni

ta
l a

dr
en

al
 h

yp
op

la
si

a
D

el
et

io
n,

 m
is

se
ns

e 
m

ut
at

io
n

(M
us

ca
te

lli
 e

t a
l.

19
94

; Y
an

as
e 

et
al

. 1
99

6)

R
B

M
5,

 R
B

M
6,

 R
B

M
10

T
A

R
P 

sy
nd

ro
m

e
Fr

am
es

hi
ft

, m
is

se
ns

e 
m

ut
at

io
n

(J
oh

ns
to

n 
et

 a
l.

20
10

)

SF
3B

4
A

cr
of

ac
ia

l d
ys

os
to

si
s

M
is

se
ns

e,
 n

on
se

ns
e 

m
ut

at
io

n,
fr

am
es

hi
ft

(B
er

ni
er

 e
t a

l.
20

12
; C

ze
sc

hi
k 

et
al

. 2
01

3)

SK
IV

2L
T

ri
ch

oh
ep

at
on

en
te

ri
c 

sy
nd

ro
m

e 
2

M
is

se
ns

e,
 n

on
se

ns
e 

m
ut

at
io

n
(F

ab
re

 e
t a

l. 
20

12
)

In
fe

rt
ili

ty
B

O
L

L
, D

A
Z

1-
4,

 D
A

Z
L

A
zo

os
pe

rm
ia

D
el

et
io

n
(R

ei
jo

 e
t a

l. 
19

95
)

M
et

ab
ol

ic
 d

is
ea

se
A

U
H

, E
C

H
1,

 E
C

H
S1

, E
C

H
D

C
2,

E
C

H
D

C
3

3-
m

et
hy

lg
lu

ta
co

ni
c 

ac
id

ur
ia

N
on

se
ns

e 
m

ut
at

io
n,

 f
ra

m
es

hi
ft

,
sp

lic
e 

si
te

 m
ut

at
io

n
(I

Jl
st

 e
t a

l. 
20

02
;

L
y 

et
 a

l. 
20

03
)

C
12

O
R

F
65

 (
m

t)
C

om
bi

ne
d 

ox
id

at
iv

e 
ph

os
ph

or
yl

at
io

n
de

fi
ci

en
cy

, s
pa

st
ic

 p
ar

ap
le

gi
a-

55
 (

SP
G

55
)

Fr
am

es
hi

ft
, m

is
se

ns
e,

 n
on

se
ns

e
m

ut
at

io
n

(A
nt

on
ic

ka
 e

t a
l.

20
10

; S
hi

m
az

ak
i

et
 a

l. 
20

12
)

G
F

M
1 

(m
t)

C
om

bi
ne

d 
ox

id
at

iv
e 

ph
os

ph
or

yl
at

io
n

de
fi

ci
en

cy
M

is
se

ns
e,

 n
on

se
ns

e 
m

ut
at

io
n

(C
oe

ne
n 

et
 a

l.
20

04
; V

al
en

te
 e

t
al

. 2
00

7)

T
SF

M
 (

m
t)

C
om

bi
ne

d 
ox

id
at

iv
e 

ph
os

ph
or

yl
at

io
n

de
fi

ci
en

cy
M

is
se

ns
e 

m
ut

at
io

n
(S

m
ei

tin
k 

et
 a

l.
20

06
)

E
E

FS
E

C
, T

U
F

M
 (

m
t)

C
om

bi
ne

d 
ox

id
at

iv
e 

ph
os

ph
or

yl
at

io
n

de
fi

ci
en

cy
M

is
se

ns
e 

m
ut

at
io

n
(V

al
en

te
 e

t a
l.

20
07

)

SE
C

IS
B

P
2,

 S
E

C
IS

B
P2

L
A

bn
or

m
al

 th
yr

oi
d 

m
et

ab
ol

is
m

M
is

se
ns

e 
m

ut
at

io
n

(D
um

itr
es

cu
 e

t a
l.

20
05

)

H
em

at
ol

og
ic

 d
is

ea
se

F
IP

1L
1

Sp
on

ta
ne

ou
s 

hy
pe

re
os

in
op

hi
lic

 s
yn

dr
om

e
D

el
et

io
n 

le
ad

in
g 

to
 g

en
e 

fu
si

on
(C

oo
ls

 e
t a

l. 
20

03
;

G
ri

ff
in

 e
t a

l. 
20

03
)

U
2A

F
1,

 U
2A

F1
L

4
M

ye
lo

dy
sp

la
st

ic
 s

yn
dr

om
e

M
is

se
ns

e 
m

ut
at

io
n

(G
ra

ub
er

t e
t a

l.
20

12
)

O
ph

th
al

m
ol

og
ic

 d
is

ea
se

T
D

R
D

7
C

at
ar

ac
t

Fr
am

es
hi

ft
(L

ac
hk

e 
et

 a
l.

20
11

)

Im
m

un
ol

og
ic

al
/s

ki
n 

di
se

as
e

A
D

A
D

1,
 A

D
A

D
2,

 A
D

A
T

,
A

D
A

R
, A

D
A

R
B

1,
 A

D
A

R
B

2
A

ic
ar

di
-G

ou
tie

re
s 

sy
nd

ro
m

e 
(A

G
S)

,
dy

sc
hr

om
at

os
is

 s
ym

m
et

ri
ca

 h
er

ed
ita

ri
a 

1
(D

SH
1)

M
is

se
ns

e,
 n

on
se

ns
e 

m
ut

at
io

n
(M

iy
am

ur
a 

et
 a

l.
20

03
; R

ic
e 

et
 a

l.
20

12
)

Adv Exp Med Biol. Author manuscript; available in PMC 2014 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Gerstberger et al. Page 58

R
B

P
 c

la
ss

di
se

as
e 

ca
te

go
ry

R
B

P
 f

am
ily

di
se

as
e

ge
ne

ti
c 

m
ut

at
io

n
re

fe
re

nc
e

tR
N

A
-b

in
di

ng
C

an
ce

r/
m

et
ab

ol
ic

 d
is

ea
se

E
L

A
C

2
Pr

os
ta

te
 c

an
ce

r,
 c

om
bi

ne
d 

ox
id

at
iv

e
ph

os
ph

or
yl

at
io

n 
de

fi
ci

en
cy

M
is

se
ns

e,
 n

on
se

ns
e 

m
ut

at
io

n,
fr

am
es

hi
ft

(T
av

tig
ia

n 
et

 a
l.

20
01

; H
aa

ck
 e

t a
l.

20
13

)

M
us

cu
la

r/
m

et
ab

ol
ic

/h
em

at
ol

og
ic

 d
is

ea
se

P
U

S1
M

yo
pa

th
y,

 la
ct

ic
 a

ci
do

si
s 

an
d 

si
de

ro
bl

as
tic

an
em

ia
 1

M
is

se
ns

e,
 n

on
se

ns
e 

m
ut

at
io

n
(B

yk
ho

vs
ka

ya
 e

t
al

. 2
00

4;
Fe

rn
an

de
z-

V
iz

ar
ra

et
 a

l. 
20

07
)

Y
A

R
S2

 (
m

t)
M

yo
pa

th
y,

 la
ct

ic
 a

ci
do

si
s 

an
d 

si
de

ro
bl

as
tic

an
em

ia
 2

M
is

se
ns

e 
m

ut
at

io
n

(R
ile

y 
et

 a
l. 

20
10

)

N
eu

ro
lo

gi
ca

l d
is

ea
se

C
ha

rc
ot

-M
ar

ie
 T

oo
th

 d
is

ea
se

M
is

se
ns

e 
m

ut
at

io
n

(L
at

ou
r 

et
 a

l.
20

10
; L

in
 e

t a
l.

20
11

)

A
D

A
T

3
M

en
ta

l r
et

ar
da

tio
n

M
is

se
ns

e 
m

ut
at

io
n

(A
la

za
m

i e
t a

l.
20

13
)

A
IM

P
1

H
yp

om
ye

lin
at

in
g 

le
uk

od
ys

tr
op

hy
Fr

am
es

hi
ft

(F
ei

ns
te

in
 e

t a
l.

20
10

)

Y
A

R
S

C
ha

rc
ot

-M
ar

ie
 T

oo
th

 d
is

ea
se

M
is

se
ns

e 
m

ut
at

io
n,

 f
ra

m
es

hi
ft

(J
or

da
no

va
 e

t a
l.

20
06

)

K
A

R
S

C
ha

rc
ot

-M
ar

ie
 T

oo
th

 d
is

ea
se

, d
ea

fn
es

s
M

is
se

ns
e 

m
ut

at
io

n,
 f

ra
m

es
hi

ft
(M

cL
au

gh
lin

 e
t a

l.
20

10
; S

an
to

s-
C

or
te

z 
et

 a
l. 

20
13

)

G
A

R
S

C
ha

rc
ot

-M
ar

ie
 T

oo
th

 d
is

ea
se

M
is

se
ns

e 
m

ut
at

io
n

(A
nt

on
el

lis
 e

t a
l.

20
03

)

C
L

P
1

M
ic

ro
en

ce
ph

al
op

at
hy

, m
ot

or
 s

en
so

ry
de

fe
ct

s
M

is
se

ns
e 

m
ut

at
io

n
(K

ar
ac

a 
et

 a
l.

20
14

)

D
A

R
S

H
yp

om
ye

lin
at

io
n 

w
ith

 b
ra

in
st

em
 a

nd
sp

in
al

 c
or

d 
in

vo
lv

em
en

t
M

is
se

ns
e 

m
ut

at
io

n
(T

af
t e

t a
l. 

20
13

)

D
A

R
S2

 (
m

t)
L

eu
ko

en
ce

ph
al

op
at

hy
Fr

am
es

hi
ft

, m
is

se
ns

e,
 n

on
se

ns
e

m
ut

at
io

n,
 s

pl
ic

e 
si

te
 m

ut
at

io
n

(S
ch

ep
er

 e
t a

l.
20

07
)

N
SU

N
2

M
en

ta
l r

et
ar

da
tio

n
N

on
se

ns
e,

 m
is

se
ns

e 
m

ut
at

io
n,

sp
lic

e 
si

te
 m

ut
at

io
n

(A
bb

as
i-

M
oh

eb
 e

t
al

. 2
01

2;
 K

ha
n 

et
al

. 2
01

2)

F
T

SJ
1

M
en

ta
l r

et
ar

da
tio

n
Fr

am
es

hi
ft

, s
pl

ic
e 

si
te

 m
ut

at
io

n
(F

re
ud

e 
et

 a
l.

20
04

; R
am

se
r 

et
al

. 2
00

4)

R
A

R
S,

 R
A

R
S2

 (
m

t)
Po

nt
oc

er
eb

el
la

r 
hy

po
pl

as
ia

Sp
lic

e 
si

te
 m

ut
at

io
n,

 m
is

se
ns

e
m

ut
at

io
n

(E
dv

ar
ds

on
 e

t a
l.

20
07

; R
an

ki
n 

et
al

. 2
01

0)

SE
P

SE
C

S
Po

nt
oc

er
eb

el
la

r 
hy

po
pl

as
ia

M
is

se
ns

e 
m

ut
at

io
n

(A
ga

m
y 

et
 a

l.
20

10
)

Adv Exp Med Biol. Author manuscript; available in PMC 2014 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Gerstberger et al. Page 59

R
B

P
 c

la
ss

di
se

as
e 

ca
te

go
ry

R
B

P
 f

am
ily

di
se

as
e

ge
ne

ti
c 

m
ut

at
io

n
re

fe
re

nc
e

T
SE

N
2

Po
nt

oc
er

eb
el

la
r 

hy
po

pl
as

ia
M

is
se

ns
e 

m
ut

at
io

n
(B

ud
de

 e
t a

l.
20

08
)

T
SE

N
34

Po
nt

oc
er

eb
el

la
r 

hy
po

pl
as

ia
M

is
se

ns
e 

m
ut

at
io

n
(B

ud
de

 e
t a

l.
20

08
)

T
SE

N
54

Po
nt

oc
er

eb
el

la
r 

hy
po

pl
as

ia
M

is
se

ns
e,

 n
on

se
ns

e 
m

ut
at

io
n,

de
le

tio
n

(B
ud

de
 e

t a
l.

20
08

; C
as

sa
nd

ri
ni

et
 a

l. 
20

10
)

D
ev

el
op

m
en

ta
l d

is
ea

se
M

an
di

bu
lo

fa
ci

al
 d

ys
os

to
si

s 
w

ith
m

ic
ro

ce
ph

al
y

Sp
lic

e 
si

te
 m

ut
at

io
n,

 n
on

se
ns

e,
m

is
se

ns
e 

m
ut

at
io

n,
 f

ra
m

es
hi

ft
(L

in
es

 e
t a

l. 
20

12
;

B
er

ni
er

 e
t a

l.
20

12
; G

or
do

n 
et

al
. 2

01
2)

M
et

ab
ol

ic
 d

is
ea

se
Sp

in
oc

er
eb

el
la

r 
at

ax
ia

M
is

se
ns

e 
m

ut
at

io
n

(H
ek

m
an

 e
t a

l.
20

12
)

C
om

bi
ne

d 
ox

id
at

iv
e 

ph
os

ph
or

yl
at

io
n

de
fi

ci
en

cy
M

is
se

ns
e 

m
ut

at
io

n
(G

öt
z 

et
 a

l. 
20

11
)

M
T

F
M

T
 (

m
t)

C
om

bi
ne

d 
ox

id
at

iv
e 

ph
os

ph
or

yl
at

io
n

de
fi

ci
en

cy
M

is
se

ns
e,

 n
on

se
ns

e 
m

ut
at

io
n,

de
le

tio
n

(N
ee

ve
 e

t a
l.

20
13

; H
aa

ck
 e

t a
l.

20
14

)

M
T

O
1 

(m
t)

C
om

bi
ne

d 
ox

id
at

iv
e 

ph
os

ph
or

yl
at

io
n

de
fi

ci
en

cy
Fr

am
es

hi
ft

, m
is

se
ns

e 
m

ut
at

io
n

(G
he

zz
i e

t a
l.

20
12

)

E
A

R
S2

 (
m

t)
C

om
bi

ne
d 

ox
id

at
iv

e 
ph

os
ph

or
yl

at
io

n
de

fi
ci

en
cy

M
is

se
ns

e 
m

ut
at

io
n,

 in
se

rt
io

n
(S

te
en

w
eg

 e
t a

l.
20

12
; T

al
im

 e
t a

l.
20

13
)

F
A

R
S2

 (
m

t)
C

om
bi

ne
d 

ox
id

at
iv

e 
ph

os
ph

or
yl

at
io

n
de

fi
ci

en
cy

M
is

se
ns

e 
m

ut
at

io
n

(S
ha

m
se

ld
in

 e
t a

l.
20

12
; E

lo
 e

t a
l.

20
12

)

SA
R

S2
 (

m
t)

H
yp

er
ur

ic
em

ia
, p

ul
m

on
ar

y 
hy

pe
rt

en
si

on
,

re
na

l f
ai

lu
re

, a
nd

 a
lk

al
os

is
M

is
se

ns
e 

m
ut

at
io

n
(B

el
os

to
ts

ky
 e

t a
l.

20
11

)

T
R

M
U

 (
m

t)
L

iv
er

 f
ai

lu
re

, d
ea

fn
es

s
M

is
se

ns
e 

m
ut

at
io

n
(G

ua
n 

et
 a

l. 
20

06
;

Z
eh

ar
ia

 e
t a

l.
20

09
)

O
pt

ha
lm

ol
og

ic
 d

is
ea

se
/h

ea
ri

ng
 lo

ss
H

A
R

S,
 H

A
R

S2
 (

m
t)

U
sh

er
 s

yn
dr

om
e,

 P
er

ra
ul

t s
yn

dr
om

e
M

is
se

ns
e 

m
ut

at
io

n
(P

ie
rc

e 
et

 a
l. 

20
11

;
Pu

ff
en

be
rg

er
 e

t a
l.

20
12

)

L
A

R
S2

 (
m

t)
Pe

rr
au

lt 
sy

nd
ro

m
e

D
el

et
io

n
(P

ie
rc

e 
et

 a
l.

20
13

)

rR
N

A
-b

in
di

ng
D

ev
el

op
m

en
ta

l d
is

ea
se

E
M

G
1

B
ow

en
-C

on
ra

di
 s

yn
dr

om
e

M
is

se
ns

e 
m

ut
at

io
n

(A
rm

is
te

ad
 e

t a
l.

20
09

)

Adv Exp Med Biol. Author manuscript; available in PMC 2014 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Gerstberger et al. Page 60

R
B

P
 c

la
ss

di
se

as
e 

ca
te

go
ry

R
B

P
 f

am
ily

di
se

as
e

ge
ne

ti
c 

m
ut

at
io

n
re

fe
re

nc
e

M
U

R
C

, P
T

R
F

, P
R

K
C

D
B

P,
SD

PR
L

ip
od

ys
tr

op
hy

, m
us

cu
la

r 
dy

st
ro

ph
y

Fr
am

es
hi

ft
(H

ay
as

hi
 e

t a
l.

20
09

; S
ha

st
ry

 e
t

al
. 2

01
0)

T
C

O
F

1
T

re
ac

he
r 

C
ol

lin
s 

sy
nd

ro
m

e 
1

M
is

se
ns

e,
 n

on
se

ns
e 

m
ut

at
io

n,
de

le
tio

n,
 in

se
rt

io
n

(C
al

us
er

iu
 e

t a
l.

20
13

; M
ar

sz
al

ek
et

 a
l. 

20
03

;
Sp

le
nd

or
e 

et
 a

l.
20

02
; W

is
e 

et
 a

l.
19

97
)

D
ev

el
op

m
en

ta
l/h

em
at

ol
og

ic
 d

is
ea

se
SB

D
S

Sh
w

ac
hm

an
-D

ia
m

on
d 

sy
nd

ro
m

e
Fr

am
es

hi
ft

, m
is

se
ns

e,
 n

on
se

ns
e

m
ut

at
io

n
(B

oo
co

ck
 e

t a
l.

20
03

; N
ak

as
hi

m
a

et
 a

l. 
20

04
)

O
pt

ha
lm

ol
og

ic
 d

is
ea

se
W

D
R

36
O

pe
n 

an
gl

e 
gl

au
co

m
a

M
is

se
ns

e 
m

ut
at

io
n

(M
on

em
i e

t a
l.

20
05

)

sn
R

N
A

-b
in

di
ng

N
eu

ro
lo

gi
ca

l d
is

ea
se

SM
N

1,
 S

M
N

2
Sp

in
al

 m
us

cu
la

r 
at

ro
ph

y 
(S

M
A

)
M

is
se

ns
e,

 n
on

se
ns

e 
m

ut
at

io
n,

fr
am

es
hi

ft
, d

el
et

io
n

(L
ef

eb
vr

e 
et

 a
l.

19
95

; C
ob

be
n 

et
al

. 1
99

5;
 P

ar
so

ns
et

 a
l. 

19
96

;
H

ah
ne

n 
et

 a
l.

19
97

;
G

am
ba

rd
el

la
 e

t a
l.

19
98

; S
os

si
 e

t a
l.

20
01

)

Sk
in

 d
is

ea
se

SA
R

T
3

Po
ro

ke
ra

to
si

s
M

is
se

ns
e 

m
ut

at
io

n
(Z

ha
ng

 e
t a

l.
20

05
)

SN
R

P
E

H
yp

ot
ri

ch
os

is
M

is
se

ns
e 

m
ut

at
io

n
(P

as
te

rn
ac

k 
et

 a
l.

20
13

)

U
SB

1
Po

ik
ilo

de
rm

a 
w

ith
 n

eu
tr

op
en

ia
D

el
et

io
n,

 s
pl

ic
e 

si
te

 m
ut

at
io

n,
fr

am
es

hi
ft

(V
ol

pi
 e

t a
l. 

20
10

;
T

an
ak

a 
et

 a
l.

20
10

)

O
pt

ha
lm

ol
og

ic
 d

is
ea

se
SN

R
N

P
20

0,
 A

SC
C

3
R

et
in

iti
s 

pi
gm

en
to

sa
M

is
se

ns
e 

m
ut

at
io

n
(Z

ha
o 

et
 a

l. 
20

09
)

P
R

P
F

3
R

et
in

iti
s 

pi
gm

en
to

sa
M

is
se

ns
e 

m
ut

at
io

n
(C

ha
ka

ro
va

 e
t a

l.
20

02
)

P
R

P
F

31
R

et
in

iti
s 

pi
gm

en
to

sa
Sp

lic
e 

si
te

 m
ut

at
io

n/
de

le
tio

n,
m

is
se

ns
e 

m
ut

at
io

n
(V

ith
an

a 
et

 a
l.

20
01

)

P
R

P
F

6
R

et
in

iti
s 

pi
gm

en
to

sa
M

is
se

ns
e 

m
ut

at
io

n
(T

an
ac

ko
vi

c 
et

 a
l.

20
11

)

P
R

P
F

8
R

et
in

iti
s 

pi
gm

en
to

sa
M

is
se

ns
e 

m
ut

at
io

n
(M

cK
ie

 e
t a

l.
20

01
)

R
P

9
re

tin
iti

s 
pi

gm
en

to
sa

M
is

se
ns

e 
m

ut
at

io
n

(K
ee

n 
et

 a
l. 

20
02

)

sn
oR

N
A

-b
in

di
ng

N
eu

ro
lo

gi
ca

l d
is

ea
se

N
O

P
56

Sp
in

oc
er

eb
el

la
r 

at
ax

ia
R

N
A

 r
ep

ea
t e

xp
an

si
on

se
qu

es
te

rs
 R

B
Ps

(K
ob

ay
as

hi
 e

t a
l.

20
11

)

Adv Exp Med Biol. Author manuscript; available in PMC 2014 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Gerstberger et al. Page 61

R
B

P
 c

la
ss

di
se

as
e 

ca
te

go
ry

R
B

P
 f

am
ily

di
se

as
e

ge
ne

ti
c 

m
ut

at
io

n
re

fe
re

nc
e

H
em

at
ol

og
ic

/n
eu

ro
de

ve
lo

pm
en

ta
l/d

ev
el

op
m

en
ta

l d
is

or
de

r
D

K
C

1
D

ys
ke

ra
to

si
s 

co
ng

en
ita

M
is

se
ns

e 
m

ut
at

io
n,

 d
el

et
io

n,
in

tr
on

 in
se

rt
io

n,
 s

pl
ic

e 
si

te
m

ut
at

io
n

(H
ei

ss
 e

t a
l. 

19
98

;
K

ni
gh

t e
t a

l. 
19

99
;

V
ul

lia
m

y 
et

 a
l.

19
99

; K
ni

gh
t e

t a
l.

20
01

; K
an

eg
an

e 
et

al
. 2

00
5;

 P
ea

rs
on

et
 a

l. 
20

08
)

N
H

P
2

D
ys

ke
ra

to
si

s 
co

ng
en

ita
M

is
se

ns
e 

m
ut

at
io

n
(V

ul
lia

m
y 

et
 a

l.
20

08
)

N
O

P
10

D
ys

ke
ra

to
si

s 
co

ng
en

ita
M

is
se

ns
e 

m
ut

at
io

n
(W

al
ne

 e
t a

l.
20

07
)

cy
to

so
lic

 r
ib

os
om

al
 p

ro
te

in
s

N
eu

ro
lo

gi
ca

l d
is

ea
se

R
P

L
10

, R
PL

10
L

A
ut

is
m

M
is

se
ns

e 
m

ut
at

io
n

(K
la

uc
k 

et
 a

l.
20

06
)

H
em

at
ol

og
ic

 d
is

ea
se

R
P

L
11

D
ia

m
on

d-
B

la
ck

fa
n 

an
em

ia
Fr

am
es

hi
ft

, d
el

et
io

n,
 s

pl
ic

e 
si

te
m

ut
at

io
n,

 n
on

se
ns

e 
m

ut
at

io
n

(G
az

da
 e

t a
l.

20
08

)

R
P

L
35

A
D

ia
m

on
d-

B
la

ck
fa

n 
an

em
ia

M
is

se
ns

e,
 n

on
se

ns
e 

m
ut

at
io

n,
de

le
tio

n
(F

ar
ra

r 
et

 a
l. 

20
08

)

R
P

L
5

D
ia

m
on

d-
B

la
ck

fa
n 

an
em

ia
M

is
se

ns
e,

 n
on

se
ns

e 
m

ut
at

io
n,

fr
am

es
hi

ft
, s

pl
ic

e 
si

te
 m

ut
at

io
n

(G
az

da
 e

t a
l.

20
08

)

R
P

S1
0

D
ia

m
on

d-
B

la
ck

fa
n 

an
em

ia
M

is
se

ns
e,

 n
on

se
ns

e 
m

ut
at

io
n,

fr
am

es
hi

ft
(D

oh
er

ty
 e

t a
l.

20
10

)

R
P

S1
7,

 R
P

S1
7L

D
ia

m
on

d-
B

la
ck

fa
n 

an
em

ia
M

is
se

ns
e,

 f
ra

m
es

hi
ft

(C
m

ej
la

 e
t a

l.
20

07
; G

az
da

 e
t a

l.
20

08
)

R
P

S1
9

D
ia

m
on

d-
B

la
ck

fa
n 

an
em

ia
M

is
se

ns
e,

 n
on

se
ns

e 
m

ut
at

io
n,

fr
am

es
hi

ft
(D

ra
pt

ch
in

sk
ai

a 
et

al
. 1

99
9;

 M
at

ss
on

et
 a

l. 
19

99
)

R
P

S2
4

D
ia

m
on

d-
B

la
ck

fa
n 

an
em

ia
N

on
se

ns
e 

m
ut

at
io

n,
 f

ra
m

es
hi

ft
(G

az
da

 e
t a

l.
20

06
)

R
P

S2
6

D
ia

m
on

d-
B

la
ck

fa
n 

an
em

ia
M

is
se

ns
e 

m
ut

at
io

n,
 s

pl
ic

e 
si

te
m

ut
at

io
n,

 f
ra

m
es

hi
ft

(D
oh

er
ty

 e
t a

l.
20

10
)

R
P

S7
D

ia
m

on
d-

B
la

ck
fa

n 
an

em
ia

Sp
lic

e 
si

te
 m

ut
at

io
n

(G
az

da
 e

t a
l.

20
08

)

m
ito

ch
on

dr
ia

l
(m

t)
 r

ib
os

om
al

pr
ot

ei
ns

M
et

ab
ol

ic
 d

is
ea

se
M

R
P

L
3

C
om

bi
ne

d 
ox

id
at

iv
e 

ph
os

ph
or

yl
at

io
n

de
fi

ci
en

cy
M

is
se

ns
e 

m
ut

at
io

n
(G

al
m

ic
he

 e
t a

l.
20

11
)

M
R

P
S1

6
C

om
bi

ne
d 

ox
id

at
iv

e 
ph

os
ph

or
yl

at
io

n
de

fi
ci

en
cy

N
on

se
ns

e 
m

ut
at

io
n

(M
ill

er
 e

t a
l.

20
04

)

M
R

P
S2

2
C

om
bi

ne
d 

ox
id

at
iv

e 
ph

os
ph

or
yl

at
io

n
de

fi
ci

en
cy

M
is

se
ns

e 
m

ut
at

io
n

(S
aa

da
 e

t a
l. 

20
07

)

lin
cR

N
A

-b
in

di
ng

C
an

ce
r

B
R

C
A

1
B

re
as

t, 
ov

ar
ia

n,
 p

an
cr

ea
tic

 c
an

ce
r

M
is

se
ns

e,
 n

on
se

ns
e 

m
ut

at
io

n,
de

le
tio

n,
 f

ra
m

es
hi

ft
(C

as
til

la
 e

t a
l.

19
94

; S
im

ar
d 

et

Adv Exp Med Biol. Author manuscript; available in PMC 2014 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Gerstberger et al. Page 62

R
B

P
 c

la
ss

di
se

as
e 

ca
te

go
ry

R
B

P
 f

am
ily

di
se

as
e

ge
ne

ti
c 

m
ut

at
io

n
re

fe
re

nc
e

al
. 1

99
4;

 A
l-

Su
kh

ni
 e

t a
l. 

20
08

A
l-

Su
kh

ni
 e

t a
l. 

20
08

A
l-

Su
kh

ni
 e

t a
l. 

20
08

)

N
eu

ro
lo

gi
ca

l d
is

ea
se

D
N

M
T

1
C

er
eb

el
la

r 
at

ax
ia

, n
eu

ro
pa

th
y

M
is

se
ns

e 
m

ut
at

io
n

(K
le

in
 e

t a
l. 

20
11

;
W

in
ke

lm
an

n 
et

 a
l.

20
12

)

D
ev

el
op

m
en

ta
l d

is
or

de
r

E
Z

H
1,

 E
Z

H
2

W
ea

ve
r 

sy
nd

ro
m

e 
2

M
is

se
ns

e 
m

ut
at

io
n,

 f
ra

m
es

hi
ft

(G
ib

so
n 

et
 a

l.
20

12
)

m
iR

N
A

-b
in

di
ng

C
an

ce
r

D
IC

E
R

1
Pl

eu
ro

pu
lm

on
ar

y 
bl

as
to

m
a,

 g
oi

te
r 

w
ith

te
st

ic
ul

ar
 tu

m
ou

rs
, e

m
br

yo
na

l
ha

bd
om

yo
sa

rc
om

a

M
is

se
ns

e,
 n

on
se

ns
e 

m
ut

at
io

n,
fr

am
es

hi
ft

(H
ill

 e
t a

l. 
20

09
;

R
io

 F
ri

o 
et

 a
l.

20
11

; F
ou

lk
es

 e
t

al
. 2

01
1)

X
P

O
5

C
ol

ec
te

ra
l c

an
ce

r
Fr

am
es

hi
ft

, i
ns

er
tio

n
(M

el
o 

et
 a

l. 
20

10
)

C
an

ce
r/

de
ve

lo
pm

en
ta

l d
is

or
de

r
C

ol
or

ec
ta

l c
an

ce
r,

 L
oe

ys
-D

ie
tz

 s
yn

dr
om

e,
ju

ve
ni

le
 p

ol
yp

os
is

, p
an

cr
ea

tic
 c

an
ce

r
M

is
se

ns
e,

 n
on

se
ns

e 
m

ut
at

io
n,

fr
am

es
hi

ft
(S

ch
ut

te
 e

t a
l.

19
96

; H
ow

e 
et

 a
l.

19
98

; B
ro

de
ri

ck
 e

t
al

. 2
00

7;
 v

an
 d

e
L

aa
r 

et
 a

l. 
20

11
;

R
eg

al
ad

o 
et

 a
l.

20
11

)

C
ol

ec
te

ra
l c

an
ce

r
Fr

am
es

hi
ft

(M
el

o 
et

 a
l. 

20
10

)

N
eu

ro
lo

gi
ca

l d
is

ea
se

SN
IP

1
Ps

yc
ho

m
ot

or
 r

et
ar

da
tio

n,
 e

pi
le

ps
y,

cr
an

io
fa

ci
al

 d
ym

or
ph

is
m

M
is

se
ns

e 
m

ut
at

io
n

(P
uf

fe
nb

er
ge

r 
et

al
. 2

01
2)

Pu
lm

on
ar

y 
di

se
as

e
Pu

lm
on

ar
y 

hy
pe

rt
en

si
on

, a
or

tic
 v

al
ve

di
se

as
e 

(A
O

V
D

2)
M

is
se

ns
e,

 n
on

se
ns

e 
m

ut
at

io
n

(N
as

im
 e

t a
l.

20
11

; D
ra

ke
 e

t a
l.

20
11

; T
an

 e
t a

l.
20

12
)

te
lR

N
A

-b
in

di
ng

D
ev

el
op

m
en

ta
l/c

ar
di

ov
as

cu
la

r/
pu

lm
on

ar
y 

di
se

as
e

T
E

R
T

C
or

on
ar

y 
ar

te
ry

 d
is

ea
se

, d
ys

ke
ra

to
si

s
co

ng
en

ita
, a

pl
as

tic
 a

ne
m

ia
M

is
se

ns
e 

m
ut

at
io

n,
 f

ra
m

es
hi

ft
(Y

am
ag

uc
hi

 e
t a

l.
20

05
; A

rm
an

io
s 

et
al

. 2
00

7;
 T

sa
ki

ri
 e

t
al

. 2
00

7;
 M

ar
ro

ne
et

 a
l. 

20
07

)

D
ev

el
op

m
en

ta
l d

is
or

de
r

W
R

A
P

53
D

ys
ke

ra
to

si
s 

co
ng

en
ita

M
is

se
ns

e 
m

ut
at

io
n

(Z
ho

ng
 e

t a
l.

20
11

)

7S
L

-R
N

A
-b

in
di

ng
H

em
at

ol
og

ic
 d

is
ea

se
SR

P
72

B
on

e 
m

ar
ow

 f
ai

lu
re

M
is

se
ns

e 
m

ut
at

io
n

(K
ir

w
an

 e
t a

l.
20

12
)

D
ev

el
op

m
en

ta
l d

is
or

de
r

L
A

R
P

7,
 S

SB
A

la
za

m
i s

yn
dr

om
e

B
as

e 
in

se
rt

io
n

(A
la

za
m

i e
t a

l.
20

12
)

Adv Exp Med Biol. Author manuscript; available in PMC 2014 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Gerstberger et al. Page 63

R
B

P
 c

la
ss

di
se

as
e 

ca
te

go
ry

R
B

P
 f

am
ily

di
se

as
e

ge
ne

ti
c 

m
ut

at
io

n
re

fe
re

nc
e

im
m

un
e-

st
im

ul
at

or
y 

R
N

A
-b

in
di

ng
A

ut
oi

m
m

un
e 

di
se

as
e

IF
IH

1,
 D

D
X

58
, D

H
X

58
A

ic
ar

di
-G

ou
tie

re
s 

sy
nd

ro
m

e 
(A

G
S)

M
is

se
ns

e 
m

ut
at

io
n

(R
ic

e 
et

 a
l. 

20
14

)

M
et

ab
ol

ic
 d

is
ea

se
O

A
S1

, O
A

S2
, O

A
S3

, O
A

SL
Su

sc
ep

tib
ili

ty
 to

 d
ia

be
te

s 
m

el
lit

us
M

is
se

ns
e 

m
ut

at
io

n
(T

es
si

er
 e

t a
l.

20
06

)

C
an

ce
r

R
N

A
SE

L
Pr

os
ta

te
 c

an
ce

r
N

on
se

ns
e,

 m
is

se
ns

e 
m

ut
at

io
n

(C
ar

pt
en

 e
t a

l.
20

02
; C

as
ey

 e
t a

l.
20

02
)

R
N

A
/D

N
A

-h
yb

ri
d-

bi
nd

in
g

A
ut

oi
m

m
un

e/
ne

ur
ol

og
ic

al
 d

is
ea

se
R

N
A

SE
H

2A
A

ic
ar

di
-G

ou
tie

re
s 

sy
nd

ro
m

e 
(A

G
S)

M
is

se
ns

e 
m

ut
at

io
n

(C
ro

w
 e

t a
l. 

20
06

;
R

ic
e 

et
 a

l. 
20

13
)

R
N

A
SE

H
2B

A
ic

ar
di

-G
ou

tie
re

s 
sy

nd
ro

m
e 

(A
G

S)
M

is
se

ns
e 

m
ut

at
io

n
(C

ro
w

 e
t a

l. 
20

06
)

R
N

A
SE

H
2C

A
ic

ar
di

-G
ou

tie
re

s 
sy

nd
ro

m
e 

(A
G

S)
M

is
se

ns
e 

m
ut

at
io

n
(C

ro
w

 e
t a

l. 
20

06
)

SA
M

H
D

1
A

ic
ar

di
-G

ou
tie

re
s 

sy
nd

ro
m

e 
(A

G
S)

,
C

hi
lb

ai
n 

lu
pu

s 
2

M
is

se
ns

e 
m

ut
at

io
n

(R
ic

e 
et

 a
l. 

20
09

;
R

av
en

sc
ro

ft
 e

t a
l.

20
11

)

D
N

M
T

3A
, D

N
M

T
3B

, D
N

M
T

3L
Im

m
un

od
ef

ic
ie

nc
y-

ce
nt

ro
m

er
ic

 in
st

ab
ili

ty
-

fa
ci

al
 a

no
m

al
ie

s 
sy

nd
ro

m
e 

1
M

is
se

ns
e 

m
ut

at
io

n,
 d

el
et

io
n

(X
u 

et
 a

l. 
19

99
)

N
eu

ro
lo

gi
ca

l d
is

ea
se

A
P

T
X

A
ta

xi
a

D
el

et
io

n,
 s

pl
ic

e 
si

te
 m

ut
at

io
n,

m
is

se
ns

e 
m

ut
at

io
n

(A
m

ou
ri

 e
t a

l.
20

04
; C

ri
sc

uo
lo

 e
t

al
. 2

00
5)

di
ve

rs
e 

ta
rg

et
s

N
eu

ro
lo

gi
ca

l d
is

ea
se

A
N

G
, R

N
A

SE
1-

4,
 R

N
A

SE
6-

8
A

m
yo

tr
op

hi
c 

la
te

ra
l s

cl
er

os
is

 (
A

L
S)

M
is

se
ns

e 
m

ut
at

io
n

(G
re

en
w

ay
 e

t a
l.

20
06

)

E
X

O
SC

3
Po

nt
oc

er
eb

el
la

r 
hy

po
pl

as
ia

, s
pi

na
l m

ot
or

ne
ur

on
 d

eg
en

er
at

io
n

M
is

se
ns

e 
m

ut
at

io
n,

 d
el

et
io

n
(W

an
 e

t a
l. 

20
12

)

R
N

A
SE

T
2

L
eu

ko
en

ce
ph

al
op

at
hy

, c
an

ce
r

M
is

se
ns

e 
m

ut
at

io
n,

 d
el

et
io

n,
sp

lic
e 

si
te

 m
ut

at
io

n
(H

en
ne

ke
 e

t a
l.

20
09

)

D
ev

el
op

m
en

ta
l d

is
or

de
r

D
IS

3,
 D

IS
3L

, D
IS

3L
2

Pe
rl

m
an

 s
yn

dr
om

e
D

el
et

io
n,

 s
pl

ic
e 

si
te

 m
ut

at
io

n,
m

is
se

ns
e 

m
ut

at
io

n
(A

st
ut

i e
t a

l. 
20

12
)

M
et

ab
ol

ic
 d

is
ea

se
/d

ea
fn

es
s

P
N

P
T

1
C

om
bi

ne
d 

ox
id

at
iv

e 
ph

os
ph

or
yl

at
io

n
de

fi
ci

en
cy

M
is

se
ns

e 
m

ut
at

io
n

(A
m

el
n 

et
 a

l.
20

12
; V

ed
re

nn
e 

et
al

. 2
01

2)

un
kn

ow
n 

ta
rg

et
s

C
ar

di
ac

 d
is

ea
se

C
A

L
R

3,
 C

A
L

R
, C

A
N

X
, C

L
G

N
C

ar
di

om
yo

pa
th

y
M

is
se

ns
e 

m
ut

at
io

n
(C

hi
u 

et
 a

l. 
20

07
)

D
ev

el
op

m
en

ta
l d

is
or

de
r

A
SC

C
1

B
ar

re
tt 

es
op

ha
gu

s
M

is
se

ns
e 

m
ut

at
io

n
(O

rl
of

f 
et

 a
l.

20
11

)

Pu
lm

on
ar

y 
di

se
as

e
D

N
A

A
F

2
C

ili
ar

y 
dy

sk
in

es
ia

In
se

rt
io

n,
 n

on
se

ns
e 

m
ut

at
io

n
(O

m
ra

n 
et

 a
l.

20
08

)

Adv Exp Med Biol. Author manuscript; available in PMC 2014 October 01.


