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Abstract

Purpose of review—Epigenetic studies are transforming our understanding of a variety of

complex pathological conditions including cancer, autoimmune and inflammatory diseases. A

selection of the major recent advances in this area will be reviewed focusing on important

emerging themes that are relevant to these diseases including inflammatory bowel disease (IBD).

Recent findings—The main current themes that will be addressed are the role of epigenetics in

disease pathogenesis, including current understanding of the nature and function of DNA

methylation and histone modifications; the expanding research on chromatin readers and their

potential as selective therapeutic targets; the connection between epigenetics and metabolic

pathways, and new studies on the mechanism of heritability of epigenetic changes. The recent

contribution of epigenetic modifications in defining the molecular basis of IBD and how such

changes may act as fine-tuners of gene expression in these intestinal disorders are also discussed.

Summary—Published evidence over the last 12–18 months indicates that targeting epigenetic

factors can be efficacious in cancer and inflammatory disease. All the indications are that future

research will continue to reveal new epigenetic targets and mechanisms that will advance the

prospects for selective epigenetic therapy for IBD and other complex diseases.
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Introduction

The established impact of epigenetics on our understanding of cancer [1, 2] and its emerging

importance in chronic inflammatory and autoimmune disease pathogenesis [3] [4] suggest

that we are at the beginning of a new and exciting era in IBD research. IBD is now

recognized as a global disease [5]. The consensus view is that IBD arises due to complex

undefined interactions among environmental factors, genetic susceptibility and an abnormal

immune response to the gut microbiome that result in a pathological intestinal inflammatory

response [6]. The continued increase in widespread occurrence of this heterogeneous group

of inflammatory disorders means there is an ever more urgent need for new targets that are

translatable to the clinic. Research in cancer [1, 2] indicates that epigenetic mechanisms

have also an exceptional potential to classify, diagnose and advance our understanding of

IBD [7] [8].
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Classically, the term “epigenetics” refers to heritable changes in phenotype that occur

independently of changes to the DNA sequence. A broader definition to reflect new

advances in epigenetics has been debated but not agreed [9]. Here, I will use the commonly

employed definition of epigenetics as indicating events associated with chromatin that

regulate a range of DNA-based processes including gene transcription. I will outline current

disease-relevant themes in epigenetics, the present status of IBD research with emphasis on

recent studies of epigenetics in IBD, and how epigenetics could reveal new insights into IBD

pathogenesis through acting as fine tuners of gene expression.

Current themes in role of epigenetics in disease

Basic concepts

The advances in epigenetics that have occurred over the last two decades have been in large

part due to knowledge of the crystal structure of the nucleosome, the basic packaging unit of

chromatin [10] (Fig.1). The histone protein core within the nucleosome can be covalently

modified in multiple ways to dynamically alter chromatin structure and gene expression in

response to environmental cues [11]. Currently four different DNA modifications and 16

classes of histone post- translational modifications have been described and these numbers

are likely to increase further [12, 13].

Histone modifications

The multiple modifications of residues within histone tail and core domains are performed

by a large number of chromatin modifying enzymes [11] [14]. Those that add chemical

groups are called chromatin writers and include histone acetylases, lysine and arginine

methyltransferases among many others. The enzymes that catalyze removal of these groups

and include histone deacetylases and demethylases are called chromatin erasers. In addition,

ATP-dependent chromatin remodeling complexes catalyze the relocation of nucleosomes to

promote access of the transcription machinery to DNA. The most studied modifications to

date are acetylation and methylation, but there is increasing interest in ubiquitination,

phosphorylation and SUMOylation [2]. The function of the majority of the more recently

identified modifications remains unknown [13]. The available data indicate that the location

(histone tail or core domain) and type of histone modification determine the biological

outcome [15] [16]. Importantly, histone modifications also engage in cross talk [16, 17] and

in combination provide a platform for the recruitment of chromatin factors and other

proteins to modulate transcription in a context specific manner.

DNA methylation

DNA methylation comprising the covalent addition of methyl groups to cytosine residues of

CpG dinucleotides is the best-characterized epigenetic hallmark of cancer and several other

pathologies [1, 18]. The changes in DNA methylation that are characteristic of chronic

inflammatory and autoimmune diseases have only recently begun to be identified [4].

Addition of this modification is catalyzed by DNA methyltransferases (DNMTs) that are

recruited to specific loci by a combination of histone modifications, chromatin remodeling

enzymes and non-coding RNAs [18]. A new and exciting development has been the

identification of demethylating enzymes such as ten-eleven translocation (TET)
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methylcytosine dioxygenases, activation induced cytidine deaminase (AID) and thymine

DNA glycosylase (TDG) [12]. Three new DNA modifications, of unknown function,

resulting from consecutive oxidation reactions by the TET proteins have recently been

described.

New functions of DNA methylation

A great deal remains poorly understood about the function and timing of DNA methylation.

Yet, the loss of global and gene specific DNA methylation; promoter hypermethylation and

dysregulated expression of DNMTs in a variety of human cancers is well established [2]

[18]. However, whether this modification precedes or follows gene expression to further

stabilize the repressed state is unclear. The location of DNA methylation in gene bodies,

non-CpG island promoters and enhancers suggests that it may have a variety of functions. In

fact, DNA hypermethylation of gene bodies is positively correlated with gene expression

[18] and DNA hypermethylation of exons is reported to have a role in regulating splicing

[19].

Histone modifications: Causal, circumstantial and consequential?

Many published studies indicate that modifications of histone proteins correlate with

changes in gene transcription but whether these have causal effects, occur incidentally or as

a consequence of changes in phenotype is unclear [15] [16] [20]. A major reason for this is

the difficulty in distinguishing unambiguously between these possibilities experimentally.

Given the diversity and complexity of the epigenome and the environmental factors that can

influence it, it is likely that all three scenarios could occur at any time in a particular cellular

context. The evidence to date supports the notion that some histone modifications, e.g.,

H4K16ac are regulators of chromatin structure [21] and gene expression [22]. The rapidly

increasing number and possible combinations of modifications that could be functional

means the final verdict on causality will require considerable further research.

Histone modifications, like DNA methylation, are associated with functionally distinct

regions of the genome [23]. For example, H3K4me1, H3K4me2, H3K4me3, H3K27ac, and

H3K9ac have been shown to mark the active enhancer regions of genes in a cell type

specific manner [24]. Whether they simply reflect enhancer states or determine them is

unknown. Interestingly, levels of H3K4me1 have been used to map gain and loss of

enhancer loci in colon cancer and have been linked with a colon cancer specific

transcriptome that promotes carcinogenesis [25].

Chromatin readers

Chromatin readers encompass a variety of chromatin and transcription regulators that

contain specialized domains which allow them to recognize specific histone modifications

(Fig.2) [14]. These dock at specific sites and provide a platform for the recruitment of other

proteins in response to upstream signaling pathways [16]. Residues within the binding

pocket of these domains recognize specific modifications and neighboring modified residues

in histones can also influence binding specificity. The “readers” of acetylated lysine residues

contain evolutionarily conserved binding regions called bromodomains [26]. Some of the

major methyl lysine readers include plant homoedomain fingers (PHD) domains, chromo
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domains, Tudor domains and malignant brain tumor (MBT) domains among others [27]

[14]. Importantly, some chromatin readers, e.g., BPTF are “multivalent” [28]. The latter

have more than one reading domain and recognize combinations of modified residues to

recruit the proteins required for a specific transcriptional outcome. Mutations of these reader

domains, e.g. the ING family PHD finger domain which recognizes H3K4me3, have been

reported in melanoma and breast cancer [2]. The function and nature of these protein-protein

interactions and their potential as therapeutic targets has been demonstrated recently and are

areas of intensive research activity [29].

Metabolism

A relatively new avenue of research that is potentially relevant to IBD is investigating the

link between the epigenome, metabolic pathways and disease [30]. Cellular metabolites such

as acetyl CoA, nictoinamide adenine dinucleotide (NAD) and S adenosyl methionine serve

as cofactors for a number of chromatin modifying enzymes. Exciting new studies indicate

that metabolites can influence the level of specific histone modifications and exert precise

changes in phenotype [31] [32]. These and other studies suggest that metabolic pathways

can regulate pathogenic gene expression through their ability to influence the epigenome.

Heritability of epigenetic changes and disease

A fundamental tenet of epigenetic changes is that they are heritable, i.e. they should be

stable to DNA replication and be able to rapidly reestablish gene expression patterns in the

next generation [33, 34]. The mechanism of heritability is poorly understood but recent

compelling data indicate that specific H3K4 and the H3K27 trimethylases can remain

associated with newly replicated DNA during cell division, thus retaining the appropriate

chromatin state and level of gene expression in the next generation [35].

During development, epigenetic changes are usually erased and reset during gametogenesis.

However, if there is perturbation of the epigenome in response to environmental factors,

altered epigenetic changes can persist and be passed on to the offspring via the gametes [34].

This is termed multigenerational epigenetic inheritance and has major implications for

disease. New data suggest that the HRDE1 (heritable RNAi defective) gene, trimethylated

H3K9 associated with gene silencing and H3K9 methyltransferases are involved [36] [37].

The precise mechanism remains to be established. Although a rare event, multigenerational

epigenetic inheritance may explain the heritability of diseases such as colon cancer as well

as sporadic and familial cases of IBD.

Stochastic noise (random molecular interactions that result in distinct phenotypes) has been

recognized as a cause of dysregulated epigenetic changes that can result in disease [38]. For

example, hypervariable regions of DNA methylation have been identified in tumors and

these may contribute to tumor heterogeneity [39]. These tissue-specific regions exhibit

marked stochastic variation across a population and correspond to the same key regions that

are reprogrammed during normal cell differentiation or cell fate transitions in development.

It will be important to determine if such regions have a role in the etiology of other complex

heterogeneous diseases including IBD.
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Inhibitors

The expanding families of chromatin regulators have provided a wealth of potential

therapeutic targets for new anti-cancer and anti-inflammatory drugs [29]. Many of the

inhibitors that have been described to date have targeted chromatin writers and erasers. An

example of the latter, the HDAC inhibitors, are proving to be effective in some cancers and

to have efficacy in a variety of inflammatory disease models. However, their non-selectivity

and consequent side effects are still limiting factors in their broader clinical use.

Nevertheless, there remains a great deal of interest in designing small molecule inhibitors of

these chromatin enzymes with improved selectivity. An example of this is the first inhibitor

of an individual methyltransferase: DOT1-L has been recently reported to be efficacious in

mixed lineage leukemia fusions [40]. A number of other effective small molecular inhibitors

of individual human methyltransferases and lysine demethylases have been developed [29].

These include new inhibitors with anti-inflammatory activity such as the inhibitor to the

H3K27me3 demethylase JMJD3 that ameliorates LPS-induced cytokine production in

human macrophages [41]. Inhibition of chromatin reader domains is showing great promise

as a selective pharmacological strategy. For example the bromodomains of the BET family

of proteins have shown excellent efficacy in several cancers and can ameliorate systemic

inflammation [42] [43].

Current status of IBD research including Epigenetics studies

Link between genetics and epigenetics in IBD

IBD can be classified as a multifactorial, complex disease of unknown etiopathogenesis [6,

8]. Genome-wide association studies have identified at least 163 susceptibility loci to date,

however, these only explain a minority of the disease risk [44] [45]. The majority of the

IBD-associated SNPs or alleles are located in noncoding regions of the genome suggesting

that these may have a role in the regulation of gene expression [46]. Intriguingly, links

between the genome and the epigenome are beginning to be identified [46]. In the case of

type I diabetes for example, disease-associated SNPs have been shown to affect DNA

methylation and gene expression [3] Interestingly, a link between the IBD genome and

epigenome has recently been reported. Decreased binding of the miRNAs Let-73 and Let-7f

to the IBD susceptibility variant of IL-23R resulted in increased levels of mRNA and protein

consistent with dysregulation of IL-23R signaling in IBD [47].

Epigenetics and the environment in IBD

Studies of epigenetics have been instrumental in advancing current knowledge of how the

environment regulates phenotype and are therefore likely to be pivotal in mediating affects

of the intestinal microbiota and dietary factors on intestinal homeostasis. Fascinating

experiments in mice have shown that supplementation of the maternal diet of mice with

methyl donors was associated with altered DNA methylation at the loci of select immune

response genes in the offspring and an increased susceptibility to the development of DSS-

induced colitis [48]. Related to these studies are recent observations that dietary additives in

processed foods can modulate the phenotype of intestinal bacteria [49]. Conversely, new

evidence also indicates that bacteria can regulate epithelial gene expression and the

intestinal immune response through epigenetic mechanisms [48, 50].
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The first studies of epigenetic factors in IBD showed differential expression of microRNAs

(small non-coding RNAs that act as epigenetic regulators of gene expression) in the colonic

mucosa samples of UC compared to the mucosa of control patients [51]. Additional reports

including analyses of peripheral blood have identified specific miRNAs that could

distinguish subtypes of IBD, raising the intriguing possibility that these could be new

biomarkers of disease [52] [53, 54].

More recently, global epigenetic profiling studies of tissue from IBD patients have

demonstrated the feasibility of identifying DNA methylome signatures for UC and CD [55]

[56, 57]. However, only one of these studies systematically correlated gene expression with

changes in DNA methylation [57]. Importantly, the function of DNA methylation and its

role in IBD pathogenesis in individual cell types remains to be defined. Very recent data

from studies of IBD-associated fibrosis have shown that chromatin modifications are linked

with transcriptional activation of type I collagen gene expression in intestinal endothelial-to-

mesenchymal transition, suggesting epigenetic changes are involved in regulating fibrotic

genes and intestinal fibrogenesis [58].

Epigenetics as fine tuners of IBD

Collectively, the compelling studies that have associated epigenetic changes with UC and

CD, intestinal homeostasis, the regulation of microbial pathogen gene expression and the

host response to the commensal flora suggest that perturbation of epigenetic factors could be

a major contributor to the development of IBD [48] [59] [60]. The epigenome may as a

“gatekeeper” for the host in the context of the intestine, fine-tuning responses to

environmental cues such as alterations in the microbiome, dietary factors and even genetic

variants. IBD-associated SNPs could cause subtle changes in accumulation or deposition of

histone modifications that result in the differential expression of alleles of inflammatory and

fibrotic genes. In fact, in plants [61, 62] SNPs can affect the accumulation of specific

histone modifications (H3K27me3) and encode a variant that antagonizes recruitment of

chromatin modifying enzymes. This causes incomplete silencing and directly affects allelic

expression at specific loci. This demonstrates how small changes in histone modifications

could be caused by SNPs associated with IBD that would fine-tune the transcriptional

output.

The number and complexity of epigenetic modifications and the combinations required to

provide specific biological outputs suggest that each contributing epigenetic factor is

important in fine-tuning of the phenotypic outcome. In IBD, particular combinations of

epigenetic changes could result in a pathogenic phenotype through activating genes that

promote chronic inflammation or inhibiting anti-inflammatory gene expression.

The miRNAs associated with IBD could also serve also as fine tuners of gene expression.

The levels of specific mRNAs have been shown to be tightly controlled by miRNAs,

whereby slight alterations to the threshold level mRNA level results in marked changes in

protein synthesis [63]. Dysregulation of the intestinal inflammatory response could occur

through disruption in the balance between miRNA activity and threshold levels of specific
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target mRNAs, e.g., genes with important functions in intestinal homeostasis resulting in

inappropriate gene expression and disease.

Conclusions

It is clear from the rapid advances made recently in the epigenetics field that future studies

in which the epigenome is defined in normal and disease states will be crucial to a full

understanding of IBD as well as many other complex human conditions. A great deal of

research remains to be done to understand the function and complexity of modifications and

chromatin proteins in regulating phenotype in normal and pathophysiological conditions.

We are in an exciting phase where advances in the development of inhibitors of chromatin

writers, erasers and especially readers provides optimistic prospects for achieving selective

and efficacious therapeutic agents that could revolutionize the treatment of many diseases

including IBD.
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Key points

• Epigenetic changes are central to the pathogenesis of cancer, autoimmune and

inflammatory diseases, and early studies suggest this is likely to also apply to

IBD.

• Epigenetics comprises a plethora of histone modifications, DNA methylation,

chromatin enzymes and miRNAs that, in combination, lead to heritable changes

in phenotype that do no involve changes to the DNA sequence.

• Knowledge of the nature and function of epigenetic modifications and their role

in disease pathogenesis is in its infancy but is advancing rapidly.

• New insights are emerging into the connection between epigenetics and

metabolic pathways, mechanisms of heritability and strategies for selective

epigenetic therapeutics with clinical efficacy.

• Published evidence reported so far supports the notion that epigenetic factors

can act as fine-tuners of gene expression in diseases such as in IBD.
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Figure 1. Diagrammatic representation of the structure of chromatin
The classical model of chromatin structure comprises nucleosomes linked together by DNA

(A). When the nucleosomes are packed tightly together chromatin is condensed and in this

form transcription is repressed, and chromatin is referred to as heterochromatin. When the

chromatin is modified and remodeled the nucleosomes are further apart, and in this form

chromatin is relaxed making the DNA accessible to the transcription machinery (B). This

allows the assembly of an active transcription complex that includes multiple general

transcription factors (GTF) and inducible transcription factors (TF) as well as RNA

polymerase II (RNA pol II). This form of chromatin is referred to as euchromatin. (C) Each

nucleosome contains an octamer of histone proteins made up of two of each type of core

histone: Histone 2A (H2A), H2B, H3 and H4. Each of these histones has an amino terminal

tail that extends beyond the nucleosome structure and can be modified by chromatin

enzymes.
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Figure 2. Chromatin reader domains bind to specific histone modifications to regulate gene
transcription
Chromatin readers contain specialized domains that bind and recognize specific histone

modifications. Bromodomains ‘read” acetyl groups (Ac) and PHD finger domains read

methyl groups (Me) of modified lysine residues in histone tails (e.g. H4K16 and H3K4

respectively). These chromatin reader proteins dock at histone modified sites and provide

platforms for the recruitment of other chromatin regulators or transcription proteins that

signal to upstream signaling pathways. IBD-relevant pro-inflammatory stimuli: LPS, IL-1β,

TNF-α are shown as examples of pathways that activate gene transcription.
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