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Abstract

In settings where a randomized trial is infeasible, observational data are frequently used to

compare treatment-specific survival. The average causal effect (ACE) can be used to make

inference regarding treatment policies on patient populations, and a valid ACE estimator must

account for imbalances with respect to treatment-specific covariate distributions. One method

through which the ACE on survival can be estimated involves appropriately averaging over Cox-

regression-based fitted survival functions. A second available method balances the treatment-

specific covariate distributions through Inverse Probability of Treatment Weighting (IPTW), then

contrasts weighted nonparametric survival function estimators. Since both methods have their

advantages and disadvantages, we propose methods which essentially combine both estimators.

The proposed methods are double-robust, in the sense that they are consistent if at least one of the

two working regression models (i.e., logistic model for treatment, and Cox model for death

hazard) is correct. The proposed methods involve estimating the ACE with respect to restricted

mean survival time, defined as the area under the survival curve up to some pre-specified time

point. Asymptotic results are derived and evaluated through simulation. We apply the proposed

methods to estimate the ACE of donation-after-cardiac-death kidney transplantation using data

obtained from multiple centers in the Netherlands.
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1. Introduction

Observational data are frequently used to compare treatment-specific survival in settings

where a randomized clinical trial is infeasible. Even in cases where a randomized trial to

compare treatments is feasible, observational studies may be an attractive alternative since

much greater sample sizes can be obtained at considerably less cost and effort. Methods

applicable to observational data include those which accommodate imbalances with respect

to the treatment-specific distributions of pre-treatment patient characteristics. Covariate
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adjustment may also be desired for randomized trials, to adjust for chance imbalances in

adjustment factors and perhaps to increase precision.

Despite the value of observational studies, the randomized trial rightfully serves as the gold

standard. This has important implications from at least two angles. First, in analyzing

observational data, one is motivated to compute an estimator whose target (e.g., difference

in treatment-specific means) would be obtained in the setting where treatment was

randomized. Second, there is an incentive to estimate quantities that would be estimated in

the context of a randomized trial. For example, in the case of censored survival data, the

analysis of data from a randomized trial would likely consist of plots of treatment-specific

Kaplan-Meier or Nelson-Aalen survival curves. Survival probability is easily intuited by

non-statisticians. A related measure is the area under the survival curve. In particular, if T

represents failure time with survival function, P (T > t) = S(t), then mean survival time is

equal to the area under the entire survival curve, given by . The most

popular methods of estimating S(t) in settings where covariate adjustment is unnecessary are

nonparametric; i.e., the afore-listed Kaplan-Meier [1] and Nelson-Aalen methods. In cases

where covariate effects are modeled, the Cox [2] model (a semiparametric approach) has

dominated the hazard regression applications in the biomedical literature almost since its

inception. The nonparametric aspects of each of the three afore-listed methods result in

inference which is restricted to the (0, τ] time interval, where τ is the maximum observation

time. Although mean survival time may be of most inherent interest, since inference is on a

restricted range anyway, restricted mean lifetime,  is a useful

and practical alternative metric; e.g., see Karrison[3], Karrison [4], Zucker [5], Andersen,

Hansen and Klein [6]; Schaubel et al [7]; Meier et al [8], Andersen and Perme [9].

Restricted mean lifetime has a straightforward interpretation (i.e., expected number of time

units lived out of the next L) and is the measure of interest in this report.

With respect to restricted mean lifetime, the average causal effect (ACE) is the area between

the average treatment-specific survival curves (out to t = L), with the averaging (for both

treatments) being with respect to the marginal covariate distribution. As will be explicitly

developed later, this quantity is the same as the area between the unadjusted treatment-

specific survival curves in the setting of a randomized study. There are different ways to

estimate the pertinent treatment-specific average survival functions. Various authors have

advocated fitting Cox models, then explicitly averaging over fitted survival curves; e.g.,

Karrison[3], Zucker[5], and Chen and Tsiatis[10]. An alternative method involves Inverse

Probability of Treatment Weighting (IPTW) [11, 12, 13, 14, 15]. In IPTW, each subject is

weighted by the inverse of the probability of being assigned the treatment they actually

received. The weighted treatment-specific samples have a covariate distribution that equals

that of the margin (across both treatments). Hence, differences between integrated IPTW

versions non-parametric estimators serve as estimators of the ACE of restricted mean

lifetime. For example, Hubbard et al [16] developed IPTW methods to contrast survival

curves, while Wei [15] proposed various measures based on S(t) using the IPTW method,

including restricted mean lifetime. Instead of inverse probability weighting, a popular

alternative is to match by the probability of being treated ([17, 18], which we do not

consider in this article.
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In this report, we propose a semiparametric double-robust estimator of the ACE on restricted

mean lifetime. The proposed method can be viewed as a hybrid of the approaches of Chen

and Tsiatis [10] and Wei [15]. A logistic model is assumed for treatment assignment, and a

Cox model is used for the death hazard conditional on treatment and the adjustment

covariates; both are working models. The proposed methods are double-robust in the sense

that consistent estimation of the ACE is obtained if at least one of the two working models is

correct (Bang and Robins [19], Kang and Schafer [20], Robins, Rotnitzky and Zhao [21]).

The data which motivate our methods originate from a multi-center study of kidney

transplant patients from the Netherlands [22]. The practice of transplanting kidneys from

deceased donors following cardiac death (so-called DCD kidneys) is controversial. The

practice happens to be a lot more frequent in the Netherlands than other parts of the world

(e.g., the united States). We sought to estimate the average causal effect of DCD kidney

transplantation versus the its alternative, which we refer to collectively as non-DCD

transplantation.

The remainder of this report is organized as follows. In the next section, we formalize the

ideas outlined above, and describe the proposed methods and corresponding asymptotic

properties. The finite-sample applicability of the procedures is assessed through simulation

in Section 3. The proposed methods are then used in Section 4 to analyze the kidney

transplant data described above. Section 5 concludes the report with some discussion.

2. Method

Suppose we are interested in comparing two groups, with group denoted by A (with A=0 or

1) in terms of the mean of the restricted lifetime up to time L. If we denote the survival time

by T , then the restricted lifetime is defined as min(T, L) and restricted mean lifetime can be

represented as E{min(T, L)}. In the setup we consider in this article, treatment groups are not

randomized, and therefore some sort of adjustment for imbalance in baseline covariates, Z,

is required. As in almost all studies involving time to an event, survival time is subject to

right censoring, denoted by C. We assume that censoring is conditionally independent of

death time given treatment; i.e., T⫫C|A, an assumption that we discuss further in Section 5.

We define the observed possibly censored lifetime as U = min(T, C) and the indicator for not

being censored as Δ = I(T ≤ C). The observed data for each subject i are (Ai, Zi, Ui, Δi),

which are assumed to be independent and identically distributed across i = 1, . . . , n. We

denote the observed counting process of event and the at-risk process by Ni(t) = I(Ui ≤ t, Δi =

1) and Yi(t) = I(Ui ≥ t), respectively. For simplicity of presentation, we define Aij = I(Ai = j),

Nij(t) = AijNi(t), and Yij = AijYi(t).

The quantity that we would like to infer in the comparison of two treatments (the ACE) is

the difference in restricted mean lifetimes had all subjects in the population received

treatment A = 1 as opposed to that had all subjects received A = 0. Specifically, denoting the

potential (counterfactual) lifetime of a subject, if possibly contrary to facts, s/he received

treatment A = j by T j, j = 0, 1, the restricted mean lifetime for treatment A = j is μj =

E{min(T j, L)} and the treatment effect can be contrasted through the difference, δ = μ1 − μ0.

It can be shown that restricted mean lifetime can be represented as the area under the
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survival curve up to L, , where Sj(t) is the marginal survival function of T j.

Therefore, treatment-specific restricted mean lifetimes and their difference represent a

cumulative measure of treatment effects. Throughout this article, we will make the Stable

Unit Treatment Value Assumption (SUTVA; [23, 24]) which assumes that there is no

interference between subjects and that the observed survival time T for a subject receiving

treatment A = j is equal to her/his potential lifetime under the treatment j; i.e., T = AT 1 + (1

− A)T 0. This assumption usually holds in a study with no interference between subjects, as

in the application we will consider. However, this assumption may not hold, for example, in

studies involving infectious disease as subjects interfere with each other and an subject's

potential response under one treatment may be influenced by treatments other subjects

receive.

The average causal effect δ is defined in terms of potential outcomes, which are not

observed for all subjects. Nevertheless, inference on the hypothetical quantity δ has to be

based on observed data. In observational data, the distribution of baseline covariates Z

among subjects in one group is possibly different from that in the other group, or

equivalently, Z is not independent of A. If these covariates also predict potential survival

times, i.e., Z is not independent of (T 0, T 1), then both treatment difference and differences

in Z contribute to the observed difference in survival times between two groups, i.e., the

effect of treatment on survival is confounded by imbalance in covariates. Put another way,

treatment assignment is not independent of the potential lifetimes due to the mutual

correlation with covariates Z, also referred to as confounders. This nonindependence

introduces some difficulty in making causal inference based on observational data; in

contrast with randomized study where by design treatment assignment is independent of

potential lifetimes. A key assumption that allows causal inference on observational data

possible is that, conditional on Z, treatment assignment can be viewed as random in the

sense that it is independent of potential lifetimes; i.e., A⫫(T0, T1|Z. This assumption,

required by both the Chen and Tsiatis [10] method and the IPTW method of Wei [15], is

referred to as the “strong ignorability” assumption of treatment [17], or the “no unmeasured

confounders” assumption [12]. Note that this condition is also well-studied in the economics

and social science literature; for example, [25, 26]. This assumption states that the

dependence of treatment assignment on the potential outcomes can be completely eliminated

by the observed variables Z. This assumption cannot be tested statistically and can only be

justified based on knowledge on the subject matter. In medical applications, as treatment

decisions made by patients or their caregivers are usually based on information available at

the time of the decision-making, such as demographics, comorbidities, severity and past

treatments of the subjects. If such information is also captured in the data at hand, then this

assumption is plausible.

In the next two paragraphs, we describe the Chen and Tsiatis method [10] and the IPTW

method of Wei [15], in order to later establish the relationship between each of these two

methods and our proposed method. Much of the notation introduced here will be needed

later in the development of the proposed method. The method of Chen and Tsiatis [10]

removes confounding by first estimating the treatment effect conditional on covariates Z.

This part is straightforward since, conditional on Z, treatment A can be viewed as randomly
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assigned. The conditional treatment effect measures the difference in survival had subjects

with covariates Z = z been assigned to A = 1 versus A = 0, since f(T |A = j, Z = z) = f(T j|A =

j, Z = z) = f(T j|Z = z) for j = 0, 1, where f denotes “distribution of” and the two equalities are

due to the SUTVA and no unmeasured confounders assumptions, respectively. Note, this

result implies P (T j > t|Z) = P (T > t|A = j, Z), which relates the conditional survival

functions of potential lifetimes to those of the observed lifetimes. Next, the average causal

effect of A can be estimated by the average of the conditional effects across the distribution

of Z. Specifically, the Chen and Tsiatis method [10] posits treatment-stratified Cox models

[2] for T given (A, Z),

(1)

where λ(t|A, Z) denotes the conditional hazard function given A and Z, and λ0j(t) are

unspecified treatment-specific baseline hazard functions. Inference on this model can be

carried out by standard survival analysis techniques. For example, βj can be estimated by the

maximum partial likelihood estimator,  [2, 27], while the baseline cumulative hazard

function  can be consistently estimated by the Breslow estimator [28],

denoted by . The treatment effect conditional on (which

equals the difference in restricted mean lifetime) can be estimated by

, where  estimates the conditional survival function P (Ti

> t|Ai = j, Zi), with . Finally, the average causal treatment effect δ is

estimated by averaging the conditional treatment effects across all Zi for i = 1, . . . , n; i.e.,

. Note that  estimates the marginal

survival function Sj(t) and therefore  is also integrated difference in estimated marginal

survival functions.

Instead of going through the treatment effect (and treatment-specific survival functions)

conditional on covariates, a different strategy is to estimate the average treatment effect

directly through weighted nonparametric estimators. In particular, the IPTW method [15]

removes confounding by building up the whole population that could have received the

treatment, say, A = j, by inverse weighting the individuals in group j with the probability of

being in that group conditional on covariates. For example, if a subject in treatment j has

covariates Z = z and the probability of receiving the treatment P (A = j|Z = z), then this

subject actually represents 1/P (A = j|Z = z) individuals in the population of interest that

could have received the treatment and inverse weighting by this probability builds up the

whole population. Specifically, as marginal survival function can be estimated through the

Nelson-Aalen estimator of cumulative hazard function, the IPTW estimator for the marginal

cumulative hazard function of T j, Λj(t), can be viewed as a weighted Nelson-Aalen

estimator; i.e.,
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(2)

where  and  is an estimator of P (Ai = j|Zi). Note that if the

weights, wij, are set to 1, then (2) reduces the usual Nelson-Aalen estimator of the

cumulative hazard function of T . If, instead,  is set to 1, then (2) reduces to the

Nelson-Aalen estimator conditional on each treatment. The probability P (Ai = j|Z) can

estimated be by fitting a logistic regression model, which assumes

(3)

where Xi includes an intercept and (possibly transformed) elements of Zi and logit(u) = log

{u/(1−u)}.

The Chen and Tsiatis [10] method builds models for survival time and the resulting

estimators for Sj(t), j = 0, 1, and δ are consistent for the true average causal effect if the

assumed model (1) is correct. The IPTW method builds a logistic model for treatment

assignment and the resulting estimators are consistent if the assumed logistic model (3) is

correct. In our proposed method, we propose to build models for both the treatment

assignment and survival time. The strategy is to attempt to either model the treatment

assignment correctly, allowing one to balance the distribution of covariates between

treatments , or to model the survival process correctly. If at least one of the models are

correct, then the ACE can be estimated consistently. Therefore, in the following, we will

refer to models (1) and (3) as working models as they are not necessarily believed to be true.

As the IPTW method, the proposed method estimates treatment effect through estimating the

marginal cumulative hazard functions, Λj(t). Specifically, the proposed estimator for Λj(t) is

(4)

where  is the Nelson-Aalen estimator of the treatment-specific cumulative hazard

function (given A = j) of C,

with . Consequently, one can estimate Sj(t) by ,

and μj by . Finally, the proposed estimator for δ is given by .

Before introducing the main theorem regarding asymptotic properties of the proposed

estimators, let us first heuristically explain how to understand this method and why it is
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expected to posses, the double- robust property. Note that Kang and [20] provide an

exposition of double robust estimators in the context of continuous outcomes. As Λj(t) can

be expressed as – , our proposed method estimates Λj(t) by estimating

Sj(u) and −dSj(u) respectively. Specifically, the denominator inside the integral in (4)

estimates Sj(u) and the numerator estimates −dSj(u). Considering the denominator, the first

term, , is the Chen and Tsiatis estimator of Sj(u) and as explained earlier it

is an average of estimators of the conditional survival functions P (Ti > u|Ai = j, Zi) across i

= 1, . . . , n. Suppose hypothetically that every subject in the population received treatment j

and, in addition, that censoring does not exist. In this setting, I(Ti ≥ u) would serve as the

response, such that the residual for each subject at time u, in the fit of the model (1), is given

by . If the model for survival is correctly specified, on average

residuals are close to zero; average of residuals estimates the bias of the Chen and Tsiatis

estimator. In reality, because the subjects who actually received treatment j are not

representative of the whole population due to lack of randomization, the average of residuals

among those who actually received A = j does not directly estimate the bias. Applying the

idea of the IPTW method, it is easy to see that the bias can be consistently estimated from

residuals on those who are actually in group j by inverse weighting their contributions by the

corresponding probability of being in group j. In addition, in reality, even for subjects in

group j, I(Ti ≥ u), and correspondingly the residuals, are not observed for all of them due to

censoring, and instead one only observes Yi(u). A solution to this is that one further weights

Yi(u) by the probability of not being censored. Therefore, the bias can be estimated by the

second term in the denominator, i.e., , where

 estimates P (Ci > u|Ai)−1, the inverse probability of remaining uncensored as of time

u Ai = j. To summarize, if model (1) is correct, the first term of the denominator estimates

Sj(u) and the second term estimates zero; if model (1) is possibly wrong but model (3) is

correct, then the second term estimates the bias of the first term and again the denominator

consistently estimates Sj(u). Similarly one can apply the same idea to the numerator, where

the first term can be viewed as an estimator for −dSj(u) and the second term is either

estimator of zero or the bias of the first term. As a result, the proposed estimator (4) is

expected to be consistent for the true ACE if at least one of the working models are correct.

We point out that the denominator of (4) is itself a double-robust estimator of Sj(u). In our

proposed method, we do not use it directly due to the following considerations. The

denominator can be written equivalently as

, which can be

viewed as an augmented IPTW estimator of Sj(u) with the first term being an IPTW

estimator second term as the augmentation term [29]. From this perspective, the

denominator builds upon the idea that E{Yi(t)/P(Ci > t)} = P(Ti > t) in a one sample setting.

Few practitioners would use this method in the one-sample setting, in part because the

resulting survival curve is not monotone. The two most popular estimators in the one-sample

setting are the Kaplan-Meier and Nelson-Aalen estimators. Our method builds on the latter

(and the Kaplan-Meier estimator is asymptotically equivalent to the Nelson- Aalen
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estimator). One can interpret our estimator as a modified Nelson-Aalen estimator, with the

modifications being to incorporate adjustment covariates and double-robustness. In addition,

simulation studies show that using the denominator to estimate Sj(u) directly and then to

estimate μj may lead to considerably more bias than the proposed method in finite samples.

The asymptotic properties of the proposed estimators for μj and δ are summarized by the

following theorem, the proof of which is outlined in the Appendix.

Theorem 1: Under conditions (a) – (f) listed in the Appendix, as n → ∞, if at least one of

the working models specified in (1) and (3) is correct then  converges in probability to μj

and  is asymptotically normal with mean zero and variance , where

,

θ* and βj* are the asymptotic limiting values of  and , respectively, which may or may

not equal to the respective true values, depending on whether the corresponding assumed

model is correct, and , with ,

, ,  defined in the Appendix. In addition, under

the same conditions,  converges in probability to δ and  is asymptotically normal

with mean zero and variance E(ϕi1 − ϕi0)2.

In the above theorem, φij and ϕij seem complicated and this is because it is stated without

explicitly assuming which working model is correctly specified. If one or both of the

working models are correctly specified, some of the terms in φij(t) and ϕij are identically

zero. For example, if the model (1) is correct, then  is equal to zero, and if the

model (3) is the true model, then  and  are identically zero.

Variance for  and  can be consistently estimated through  and

, respectively, where  is obtained by replacing limiting values in

 with their empirical counterparts. Although  seems complicated, variance estimators
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can actually be computed very fast. SAS code for implementing the proposed methods and

the variance estimators are available at http://www-personal.umich.edu/~mzhangst/.

3. Simulation Studies

In this section, we report results from simulation studies to evaluate the finite sample

properties of the proposed method. Results are based on 1000 Monte Carlo data sets with a

sample size of n=600.

In our simulated data, baseline covariates, Z1, Z2, Z3, are generated as normal with zero

mean and unit variance, and the correlation between Z1 and Z3 is 0.2. Each covariate is

truncated at -4 and 4 to be consistent with the regularity conditions listed in the Appendix.

We then generated treatment indicator, A, according to a logistic regression model with

logit{P (A = 1|Z)} = −0.5Z1 − 0.5Z2. Lifetime, T, was generated as exponential with rate

exp(−2.5 −1.5 Z1 − Z2 − 0.7Z3) for A = 0 and exp(−3 − Z1 − 0.9Z2 − Z3) for A = 1

respectively. Note that covariates Z1 and Z2 predict both treatment assignment and survival

time, therefore they serve as confounders. Finally, censoring time C was generated as

exponential with rate exp(−4.5), which lead to approximately 25% censoring.

We compare the proposed method with the other methods introduced previously: the method

of Chen and Tsiatis [10], where one models the relationship of survival time to covariates by

treatment-specific Cox models; and the IPTW method of Wei [15] wherein one instead

models the treatment assignment with covariates using a logistic regression model. Each of

the three estimators are evaluated under settings where the assumed models for survival time

and treatment assignment are both correct or both incorrect or only one of them is correct.

Specifically, for the T|A, Z model used in both the proposed and Chen and Tsiatis (2001)

methods, the correct model was fitted using covariates (Z1, Z2, Z3) for each treatment, while

the incorrect model was fitted using (Z1, Z3). For the A|Z model used in the proposed and the

IPTW methods, the correct model was fitted using (Z1, Z2), whereas the incorrect model was

fitted using Z1 only.

Restricted mean lifetimes and their difference were estimated with L set to 10 and 20. Table

1 and Table 2 summarize results for estimating μ1 and δ, respectively, and results for μ0 are

very similar and therefore are not reported. Under all scenarios in which at least one of the

working models is correctly specified, the proposed estimators perform well, which is

consistent with the purported double-robust property of the proposed methods. Specifically,

the proposed estimators are approximately unbiased for the true parameters and the 95%

coverage probabilities achieve the nominal level. In contrast, the Chen and Tsiatis and IPTW

estimators perform well when the corresponding assumed model is correct; however, large

biases and small coverage probabilities are observed if the assumed model is incorrect.

As mentioned before, the denominator of (4) itself can be used as an estimator of the

survival function Sj(u), which can be integrated to estimate μj as well. Although

asymptotically it is also double-robust in the sense that it is consistent for the truth when at

least one of the working models are correct, our simulation studies show that it has

considerable larger bias than the proposed method(see Table 1).
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4. Application

We applied the proposed methods to compare survival following deceased-donor kidney

transplantation among patients receiving a transplant through donation-after-cardiac-death

(DCD) versus the remainder (referred to here as non-DCD). Data were provided by

Eurotransplant, the Dutch Organ Transplant Registry and the Bureau of Geneaology.

Specifically, dates of registration on the kidney waiting list and, where applicable, kidney

transplantation, were collected by Eurotransplant. Information regarding donor and recipient

characteristics, were provided by The Dutch Organ Transplant Registry, as well as date of

death. Data from the Bureau of Geneaology served as the basis for verifying mortality

information.

A total of n=1,139 patients were included in the analysis; 459 of which were DCD kidney

transplants, and 680 non-DCD transplants. The mean age at transplant was approximately 49

years, and there were 88 observed deaths. As indicated above, the groups being compared

were DCD (j=1) versus non-DCD (j=0). Adjustment covariates included age, sex, vascular

disease (as a primary renal diagnosis), panel reactive antibodies, expanded criteria donor,

method of first dialysis, and years on dialysis prior to transplant.

Under the proposed method (see Table 3), mean 5-year post-transplant survival time is

estimated to be  years for the DCD group and  years for the non-DCD

group, for difference of  years (p=0.23). Therefore there appears to be no difference

in 5-year restricted mean lifetime between recipients of DCD versus non-DCD kidneys.

Results were similar based on the method of Chen & Tsiatis (2001) and the IPTW approach.

In terms of precision, the lowest estimated standard error was from the Chen & Tsiatis

(2001) method; since this method also estimated the largest difference , it also yielded the

lowest p value, albeit still non-significant (p=0.06). However, the validity of this method

requires the Cox model to be correct, unlike the proposed method, which only requires that

either the Cox model or the logistic model is correct.

5. Discussion

We propose a semiparametric double-robust estimator of the mean difference in treatment-

specific restricted mean survival time. The proposed method uses working models for

treatment assignment and the death hazard, and is consistent if at least one of the two

working models is correct. Asymptotic properties of the proposed estimator are derived and

shown through simulation to be applicable to practical-sized samples.

We compare our method to two existing methods through which differences in restricted

mean lifetimes can be estimated. The method of Chen and Tsiatis fits group-specific Cox

models, then averages over the fitted values to obtain the average causal effect (ACE). The

IPTW method used inverse probability of treatment weighting to estimate the ACE. Our

proposed method can be viewed as a combination of Chen and Tsiatis and the IPTW

methods. We obtain consistency if the hazard regression model (from Chen and Tsiatis

method) or the group assignment model (used in IPTW method) are correctly specified.
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A potential disadvantage of our method is that censoring times are assumed to be

conditionally independent of the death times, given only on the treatment indicator. The

analogous assumption by Chen and Tsiatis requires conditional independence given both

treatment and adjustment covariates, a much less stringent assumption. However, in many

observational studies it is quite reasonable to assume that the adjustment covariates do not

predict the censoring hazard. For example, in retrospective cohort studies (e.g., particularly

those based on registry or other pre-collected databases), censoring may be primarily

administrative; i.e., the date the database was closed, a fixed calendar date which is external

to the patients, let alone their adjustment covariate pattern. In the IPTW method of Wei [15],

the assumption on the censoring distribution is the same as ours, although the IPTW method

does not involve inverse probability of censoring weighting. It should be noted that the

IPTW method of Wei has been extended to handle dependent censoring easily, under the

“nounmeasured-confounders-for-censoring” assumption, by inverse probability of censoring

weighting (IPCW), wherein one models the probability of censoring conditional on baseline

and/or time-dependent covariates and modifies the weight function  by further

weighting it by the inverse probability of remaining uncensored; see Schaubel and Wei[31].

However, it is not straightforward to extend the proposed method to accommodate

dependent censoring since, in addition to modifying the weight, one needs to modify the

second term in both the numerator and the denominator of (4) as well. Therefore, we do not

consider this more general assumption on censoring in this article.

The application of the proposed methods implies that 5-year restricted mean post-transplant

survival time is no different for patients receiving a kidney transplant through donation after

cardiac death (DCD). The importance of this finding is tied to the potential to increase the

deceased-donor kidney pool by increasing DCD transplantation. A natural question is

whether a difference in restricted mean lifetime would be observed in the presence of a

similar study with longer post-transplant follow-up. In fact, in a large percentage of practical

settings, it would be preferable to use mean survival time (i.e., without inference being

restricted to the (0, L] time interval). The development of robust methods for estimating and

contrasting mean lifetime would be valuable.

In this article, we considered estimation of the average causal treatment effect for the entire

population of interest. A different but also relevant quantity is the so-called average

treatment effect for the treated (ATT)[30], which targets the question of whether or not the

treatment actually worked among treated subjects. In terms of restricted mean lifetimes, the

ATT is E{min(T 1, L) − min(T 0, L)|A = 1} and estimating ATT requires a weaker

ignorability assumption than the strong ignorability assumption assumed before; i.e., T0⫫A|

Z. We expect that the ideas underlying our proposed method could be extended to estimate

the ATT, which would be interesting for future research.
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Appendix

1. Conditions and Preparation Results

We introduce the following notation that will be used in the proof of Theorem 1:

and

for d = 0, 1, 2, where for a column vector a, , , and .

We assume the following regularity conditions for i = 1, . . . , n, and j = 0, 1:

a. P (Ui ≥ τ) > 0.

b. Zi is bounded almost surely.

c. Λ0j(τ) < ∞.

d.  is the unique solution to

and Ωj(β*) is positive definite.

e. θ* is the unique maximizer to E{AθT X – log(1 + eθT X)} and V (θ* ) is positive

definite.

f. P (Ai = j|Zi) is bounded away from 0.

With regard to model (1), it was shown that (Lin and Wei, 1989), under the assumed

regularity conditions, , with  if model (1) is correct, and  is

asymptotically normal with
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where . It is then straightforward to show that

where .

As for model (3), under the assumed regularity conditions,  with θ* = θ if model (3)

is true, and

for j = 0, 1 (Zeng and Chen,2009).

Finally, regarding censoring, it is standard result (e.g., Fleming and Harrington, 1991) that

where 

2. Consistency

If model (3) is correct, then  and . Considering the

denominator of (4), it can be rewritten as

 and it converges in probability

to

Similarly, one can obtain that the numerator converges in probability to −dSj(u) uniformly

in u ∈ [0, τ]. Combining results, we obtain that  uniformly in t ∈ [0, τ].

Therefore, by the continuous mapping theorem,  uniformly in t ∈ [0, τ] and in

addition,  and  are consistent for μj and δ respectively.
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If model (1) is correct, then  and  uniformly in t ∈ [0, τ]. The

denominator of (4) converges in probability to

Similarly, the numerator converges in probability to −dSj(u) uniformly in u ∈ [0, τ].

Therefore, the proposed estimators for Λij(t), μj and δ are consistent for the true values when

model (1) is correct.

Therefore, the proposed estimators are consistent for the true values when at least one of the

working models is correct.

3. Asymptotic Normality

In the proofs of asymptotic normality, we do not specify explicitly which working model is

correct and we denote that , , and . Let us first consider

 which, as we will show, can be approximated by a scaled summation

of independent and identically distributed variates. We make the following decomposition:

(5)

(6)

(7)

(8)

By Taylor series expansion and substituting preparation results presented previously, after a

lot of algebra, we obtain that

where
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where

and

where

Finally, as for the last term, it is straightforward to show that

where .
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Combining the above results, we have shown that we can represent  as

 plus a term that converges in probability to zero, where

When one of the working models is correct, using similar techniques used in proving

consistency of  for Λij(t), it can be shown that φij(t) has mean zero and are identically

and independently distributed across i = 1, . . . , n.

Considering the estimation of μj,  can be written as

where . When at least one of the two working models is correct,

the ϕij variates are independent and identically distributed with mean 0. Therefore,

 converges to a normal distribution with mean 0 and variance . It then

follows that  is also asymptotically normal with mean 0 and variance E(ϕi1 −

ϕi0)2 and .
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Table 1

Estimation of restricted mean lifetime for A = 1.

Method T model A model True BIAS ESD ASE CP

L=10

Proposed T T 6.849 0.002 0.201 0.193 0.942

T F −0.002 0.201 0.191 0.936

F T 0.002 0.205 0.196 0.937

F F −0.302 0.218 0.207 0.696

Denominator T T 0.028 0.205

T F 0.028 0.203

F T 0.029 0.209

F F −0.275 0.220

IPTW T 0.001 0.212 0.204 0.938

F −0.304 0.227 0.217 0.715

Chen & Tsiatis T 0.006 0.194 0.182 0.929

F −0.378 0.212 0.202 0.535

L=20

Proposed T T 11.488 0.017 0.426 0.418 0.941

T F 0.008 0.422 0.410 0.938

F T 0.019 0.436 0.424 0.938

F F −0.686 0.453 0.438 0.652

Denominator T T 0.071 0.438

T F 0.071 0.427

F T 0.073 0.447

F F −0.630 0.457

IPTW T 0.016 0.454 0.449 0.946

F −0.690 0.474 0.463 0.684

Chen & Tsiatis T 0.021 0.410 0.395 0.938

F −0.810 0.438 0.426 0.533

T model: indicates whether the model for T is true or false; A model: indicates whether the model for A is true or false. Bias is the Monte Carlo
Bias; ESD is the Monte Carlo standard deviation of estimates; ASE is the Monte Carlo average of estimated standard errors; CP is the coverage
probability of nominal 95% Wald confidence intervals.
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Table 2

Estimation of difference in restricted mean lifetimes. Entries as in Table 1.

Method T model A model True BIAS ESD ASE CP

L=10

Proposed T T 0.871 −0.010 0.220 0.222 0.945

T F −0.022 0.217 0.228 0.953

F T −0.009 0.229 0.230 0.953

F F −0.686 0.260 0.259 0.245

IPTW T −0.013 0.248 0.256 0.960

F −0.690 0.279 0.285 0.329

Chen & Tsiatis T −0.004 0.208 0.204 0.943

F −0.726 0.256 0.256 0.188

L=20

Proposed T T 1.682 −0.009 0.454 0.453 0.946

T F −0.031 0.449 0.465 0.956

F T −0.005 0.470 0.467 0.953

F F −1.45 0.537 0.533 0.208

IPTW T −0.013 0.510 0.518 0.956

F −1.460 0.580 0.586 0.295

Chen & Tsiatis T 0.002 0.420 0.417 0.950

F −1.500 0.518 0.520 0.167
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Table 3

Estimation of five year restricted mean lifetimes for DCD and non-DCD kidney recipients and their

difference. Standard error for each estimator is reported in parenthesis and P value is for comparison of the

mean restricted lifetimes between the two groups.

Method μ̂0 μ̂1
δ P value

IPTW of Wei 4.53 (0.057) 4.66 (0.068) 0.14 (0.088) 0.11

Chen & Tsiatis 4.50 (0.058) 4.66 (0.063) 0.16 (0.084) 0.06

Proposed 4.54 (0.057) 4.64 (0.068) 0.105 (0.088) 0.23
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